
Realistic Autonomous Fish
for

Virtual Reality

Adele Lobb

Email: A.Lobb@ru.ac.za

Submitted in partial fulfillment of the requirements for the degree of Bachelor
of Science (Honours) of Rhodes University

November 2002

Acknowledgements

I would like to thank all the staff in the Computer Science Department, who have been so

understanding during these 2 years of doing honours and working at the same time. In particular

Prof Shaun Bangay who is not only a collegue but a very supportive and encouraging supervisor.

Thank you also goes to Dr George Wells, a great landlord and proofreader!

Thank you to Tina, Cheryl and Michelle, the most effecient and friendly secretaries a depart-

ment can have who also listened to all the progress of VRFish, got all enthusiastic when it went

well and very encouraging when I was frustrated.

Then finally but not least a very big thank you to my family. Firstly my husband Kevin, without

his support and encouragement I would have never been able to complete my honours, and

secondly to Jessica for waiting until the writeup was in before arriving.

Abstract

We create a library object, called VRFish, which is self contained and can be used with ease by

virtual reality programmers to create diverse and interesting underwater environments.

� VRFish is a fish library object which is non CPU intensive.

� VRFish creates the 3D fish form procedurally. It uses a mathematical function to deter-

mine the body profile. The basic fin shape allows for a wide range of structures, and

placements of fins. A number of different techniques have been implemented to obtain

more realistic and interesting fins. These include semi-translucent fins of the original

shape, and two different methods for masking the fin shape. The fish’s form sufficiently

approximates the true form of the fish to be realistic in appearance.

� VRFish produces body animation by rotating the caudal, pelvic and pectoral fins back and

forth.

� VRFish implements a schooling algorithm to produce fish with realistic, non scripted

swimming patterns. When fish of the same species are within the environment, they will

swim together, acting as a cohesive whole, closely resembling a school of fish.

Keywords: Modeling, Rendering, Animating, Fish, Procedural Modeling.

Contents

1 Introduction 1

2 Related Work 3

2.1 Modeling and animation of 3D models . 3

2.2 Schooling behaviour . 4

2.3 Summary . 6

3 Background Material 8

3.1 RhoVeR, version GreatDane . 8

3.2 OpenGL . 8

3.2.1 Primitives . 9

3.2.2 Lighting . 9

3.2.3 Colour . 9

3.2.4 Buffers . 9

3.2.5 Rendering an image in OpenGL . 9

3.2.5.1 Alpha Test . 10

3.2.5.2 Stencil Test . 11

4 Design and implementation 12

4.1 Body . 12

4.2 Fins . 17

4.2.1 Caudal Fin . 17

4.2.2 Vertical Fins . 20

i

CONTENTS ii

4.2.3 Pectoral Fin . 21

4.2.4 Pelvic Fin . 23

4.2.5 Parameter file . 23

4.2.6 Schools . 25

4.2.7 Summary . 25

5 Rendering 27

5.1 Texturing . 27

5.2 Fin rendering techniques . 28

5.2.1 Blending . 28

5.2.2 Non-triangular fin . 29

5.2.2.1 Stencil Buffer . 29

5.2.2.2 Alpha Test . 30

5.2.3 Stencil test and alpha test . 31

5.3 Summary . 35

6 Fixel 36

7 Animation 39

7.1 Fin Motion . 39

7.2 Behaviour . 40

7.3 Summary . 42

8 Results 43

8.1 Performance . 43

8.1.1 Level of Detail . 43

8.1.2 Different species . 44

8.1.3 Fin rendering techniques . 44

8.2 Appearance . 45

8.2.1 Level of detail . 47

CONTENTS iii

8.2.2 Different Species . 47

8.2.3 Fin rendering techniques . 49

8.2.4 Schooling behaviour . 49

9 Conclusions 50

A Format of parameter file: BonyBream.txt 55

B Fixel user manual 63

B.1 Introduction . 63

B.2 Open a texture file. 64

B.3 Body . 64

B.4 Caudal fin . 66

B.5 Dorsal fin . 68

B.6 Adipose fin . 68

B.7 Anal fin . 69

B.8 Pectoral fin . 69

B.9 Pelvic fin . 70

B.10 Save file . 70

C UML Diagram 72

Chapter 1

Introduction

Virtual Reality is a technique for creating a computer generated environment, intended to im-

merse the user in another world. The aim is to achieve another dimension which is indistin-

guishable from reality. Unfortunately we are far away from achieving this. Most of the virtual

environments are simplistic and sparsely populated mainly due to the time required to create

the inhabitants and background objects. There are very few libraries available to enable virtual

environment programmers to produce interesting and diverse creatures within their new world

without having to create and program the creatures and objects themselves.

The aim of this project is to provide a component for easily populating an interesting and diverse

world. One of the virtual reality environments created in RHoVeR, the virtual reality system

designed by the members of Rhodes Virtual Reality Special Interest Group, is Atlantis, where

one can go swimming with the dolphins. It has water, dolphins and some seaweed, but what

it really requires is other fish, a variety of fish which could be added and left to swim as they

pleased. This is the inspiration for this project.

We want a fish library object which could be used to create a number of diverse fish. There is

a need to create different fish species. But as it is meant to be a “plug and play” library object

one should not expect the user to create the 3D fish form before using the object. The fish needs

to be autonomous. We do not want the behaviour of the fish to be scripted as this will require

programmer intervention whenever it is added to a new system or virtual environment.

The requirements of this project can therefore be summarized as follows:

� A fish library object needs to be non CPU intensive in design, as it needs to be incorpo-

rated into a real-time virtual environment.

� The objects must allow the creation of different types of fish (different in shape, size and

colour), without the user needing to create, or obtain 3D fish models.

1

CHAPTER 1. INTRODUCTION 2

� The fish’s form needs to be realistic in appearance.

� The fish needs to have some body animation.

� The fish needs realistic, non scripted swimming patterns.

We have called our fish library object VRFish and in the following chapters we will discuss

related works which influenced this project, explain the design of the VRFish which enables us

to fulfill these requirements, the methods we used in our implementation and finally we will

present the results showing the success of the project.

Chapter 2

Related Work

As the project had two main areas of interest, we looked at the related works in these two areas.

Firstly the modeling of the actual fish and any animation of the fish form, and then the group

behaviour of the fish.

2.1 Modeling and animation of 3D models

There have been a number of different techniques proposed for modeling 3D forms. Some

methods seem easy to implement, while others have a great deal of complexity and mathematics

behind them which implies that they will be more CPU intensive.

One can use off the shelf 3D modeling packages such as NewTek’s Lightwave 3D to create a

model. There are many tutorials to be found on the WWW for creating and animating 3D forms

using these well known packages [28]. One can also use data from models constructed by

someone else. Proudfoot et al. [12] used data of a fish form, created by Terzopolous [23], quite

successfully, and added bump-mapping to the body and transparent bump-mapping to the fins

to produce a static scene of a fish. Fröhlich [6] used Softimage and Alias/Wavefront to create

a textured polygonal geometry structure, which they animated by using the software tools and

then storing a number of keyframes to be used by their system later on. The smooth animation

of the individual fish is created using linear interpolation between corresponding vertices of

each keyframe. They produced very realistic fish in their Virtual Oceanarium.

Creating 3D models using modeling packages is time consuming. Obtaining data for the fish

model from someone else’s research limits the choice of what is available. Therefore we do not

feel that this is the best option.

Ebert [5] presents an alternative in procedural modeling. He defines procedural modeling as

“code segments or algorithms used to abstract and encode the details of the model instead of

3

CHAPTER 2. RELATED WORK 4

explicitly storing vast numbers of low-level primitives”. He goes on to state that the algorithm

provides flexibility and removes the burden of low-level control from the modeler/animator

and that using parametric control can provide a large amount of geometric detail. Procedural

modeling therefore presents an attractive option for this project.

There are also many methods of constructing models with the ability to be deformed for ani-

mation. A physically based method is proposed by Miller [7] to create legless creatures such

as snakes and worms. The creatures are modeled using a mass-spring system. To simulate the

contraction of the muscles, Miller animates the spring tensions. Sederberg [16] uses free-form

deformation based on Bernstein polynomials, which can be applied to any surface primitives.

Terzopoulos et. al. [21] proposes an elastically deformable model. By solving the differential

equations that underly the model they create realistic animations. In Turner and Gobbetti’s paper

[24] they state that physics-based deformations derived from elastic and viscous properties of

continuous media can produce realistic looking simulations but can be difficult to control. Platt

and Barr [13] proposed methods using mathematical constraints based on physics and optimiza-

tion theory to create and control physically based flexible models. Chadwick et. al. [3] propose

a layered construction approach to create deformable animated creatures, where the creatures

are built in layers with the relationship between the layers being specified by parametric con-

straints. Terzopoulos[20] uses an image-based modeling techniques to convert photographs of

real fish into 3D B-splines, which he then textures. To achieve the texturing he uses a snake-

grid tool to obtain the nonuniform coordinate system for mapping the texture onto the spline

surface. He then creates the muscles for the locomotion using 23 nodal point masses and 91

springs. Twelve of the springs running the length of the body also serve as simple muscles. The

spring-mass model use Lagrange Equations to control the movement [23].

Although using physically based models produces realistic creatures, the models are by nature

complex to implement and normally are computationally intensive.

2.2 Schooling behaviour

The flocking algorithm for bird objects first created by Craig W Reynolds [15] is the obvious one

to base fish schooling behaviour on. Reynold creates an approach which uses simulation as an

alternative to scripting the path of the birds individually. Scripting a path for each bird within

a flock using traditional computer animation techniques is tedious and makes the animation

rather static. Reynolds states that the behaviour of a flock is simply the result of the interaction

between the behaviours of the individuals.

Reynolds bases his method on Reeves’ particle systems [14]. Particle systems are collections of

large numbers of individual particles, where each particle has its own behaviour and properties.

CHAPTER 2. RELATED WORK 5

Particle systems are used to represent dynamic “fuzzy objects” which have an irregular and

complex shape. Particle systems are used to model fire, smoke, and clouds. Reynolds replaced

the simple dot-like particle of Reeves particle system with an entire complex geometrical object

consisting of a full local coordinate system and a reference to a geometrical shape model. He

also adds an orientation attribute to the particles. The particles in the particle system, as pre-

sented by Reeves, do not interact with one another. In nature birds do, and hence the objects in

Reynolds’ flock must interact with each other in order to flock correctly.

Reynolds names his objects boids (short for bird objects). Each boid’s behaviour is dependent

on an internal state and an external state, the internal state being its own location, direction and

velocity, the external state includes the location and state of the other boids as well as any other

objects which have to be avoided in the environment.

Reynolds states that natural flocks never seem to get overloaded, or obtain a maximum flock

size. This implies that the individual bird does not pay attention to every single bird within its

flock. A bird might be aware of three categories: itself, its two or three nearest neighbours, and

the rest of the flock [11]. Hence when creating a simulation the boid should only concentrate

on its immediate neighbours.

To build a simulated flock, Reynolds starts with a boid model that supports geometric flight. He

adds behaviours that correspond to the opposing forces of collision avoidance and the urge to

join the flock. Stated briefly as rules, and in order of decreasing precedence, the behaviours that

lead to simulated flocking are:

� Collision Avoidance: avoid collisions with nearby flock-mates. This is based on the

relative position of the surrounding boids

� Velocity Matching: attempt to match velocity with nearby flock-mates. Velocity is a

vector quantity and refers to the combination of direction and speed.

� Flock Centering: attempt to stay close to nearby flock-mates. Each boid tries to get near

the center of the flock. Because each boid should have a localized perception of the world

“center of the flock” actually means the center of the nearby flock-mates.

In nature flocks sometimes divide to go around obstacles. As long as the individual boid stays

close to its close neighbours, it does not care if the rest of the flock splits off. More simplistic

models proposed for flock organization, such as central force model or a follow the designated

leader model, do not allow splits.

Each of the rules produce a suggested direction in which to steer the boid. Each rule has

an associated fractional “strength”. The boid has to collect the different suggested directions,

CHAPTER 2. RELATED WORK 6

combine, prioritize and arbitrate between potentially conflicting urges. One could use some

artificial intelligence algorithm to do this, but an easier way is simply to average them.

Reynold’s Boid software was written in Symbolic Common Lisp. With a flock of 80 boids, on

a single Lisp Machine without any special hardware accelerators, the simulation runs for about

95 seconds per frame.

Conrad Parker [10] has suggested a simplified version of Reynolds boid algorithm. His algo-

rithm involves simple vector operations on the positions of the boid. Each of the boid rules work

independently and produce a vector. The first rule: staying a safe distance from its neighbours,

looks at all the boids in the environment. If the boid is within a specified small distance then the

current boid needs to move an equal distance, but in the opposite direction. The second rule:

Match velocity, calculate the perceived velocity and add a small proportion of it to the boid’s

current velocity. Perceived velocity can be defined as the velocity of all the boids, excluding the

velocity of the current boid. The third rule: Fly towards the center, find the perceived average

position of all the boids and return a fraction of it. Parker suggests that it might be a good idea

to use non-constant multipliers for each of the rules, allowing the influence to be varied over

the course of the simulation.

Terzopoulos et. al. [22] use a much more complex behaviour algorithm for their artificial

marine life. They use computer vision algorithms to enable their creatures to “see”, and learning

algorithms to allow them to gain complex motor skills similar to trained marine mammals.

Their behaviour model is controlled by an intention generator. The intention generator obtains

information about the fish’s habits, mental state and incoming sensory information and then

issues an intention. Its will then choose and execute a behaviour routine. The purpose of the

behaviour routine is to bring the fish one step closer to fulfilling the intention during the current

time step.

The innate character of the fish is specified by a set of mental variables, with the value range

[0;1]. The closer to one the value is, the higher the urge of that particular mental state.

Terzopoulos et. al.’s behaviour routines include avoiding-static-obstacles, avoiding-fish, eating-

food, mating, wandering, leaving, escaping and schooling.

2.3 Summary

For this project we want a fish which would not be CPU intensive but would be believable.

The overall concept for this project is to create a library object which can be added to a virtual

reality environment with minimal programmer time and effort. This means that expecting the

programmer to create or find a new fish form for each different species of fish he /she wishes

CHAPTER 2. RELATED WORK 7

to add to the environment is not an option. We feel that the procedural modeling presents

the best option for creating the 3D fish model. It offers a simple model, which will not be

computationally intensive during run-time, but will allow a great level of flexibility for the

model shape.

For the behaviour we have taken ideas from both Reynolds flocking algorithm and Terzopou-

los’s behaviour model. We implement a minimalistic flocking algorithm, and a wandering pro-

cedure. We believe this to be sufficient for this project, although we realize that the behaviour

model could be improved upon by including more behaviour routines.

Chapter 3

Background Material

In this chapter we give a brief overview of the system in which our fish object has been imple-

mented, followed by the background material required for those readers who are not familiar

with OpenGL.

3.1 RhoVeR, version GreatDane

Our fish object, which we will refer to as VRFish, is implemented in RhoVeR, the virtual reality

system designed by the Rhodes Virtual Reality Special Interest Group. RhoVeR was developed

to serve as a platform for developing virtual environments and testing critical aspects of Virtual

Reality.

The current version of RhoVeR, called GreatDane is a Java implementation under Linux. It has

a Java module called GL which uses native C calls to incorporate OpenGL for rendering.

GreatDane maintains a database of all objects in the current environment. This database has a

list of properties for each objects, such as a string identifier to specify the type of object, the

velocity, location and orientation of the object.

3.2 OpenGL

This section can be skipped over by OpenGL experts.

8

CHAPTER 3. BACKGROUND MATERIAL 9

3.2.1 Primitives

When using OpenGL a 3D model has to be constructed out of a small set of geometric primitives

— points, lines and polygons. These primitives are specified by their vertices. The polygons

must be simple (i.e. they cannot intersect), and they must be convex (i.e. given two points in the

interior of the polygon, the line segment joining them must also be in the interior.) The triangle

is by definition simple and planar and is therefore used within this project.

3.2.2 Lighting

OpenGL approximates light and lighting as if light can be broken into red, green, and blue

components. Therefore, the colour of light sources is characterized by the amount of red, green,

and blue light they emit, and the material of surfaces is characterized by the percentage of the

incoming red, green, and blue components that are reflected in various directions.

The colours across the face of a smooth-shaded polygon are determined by the colours calcu-

lated for the vertices. The normal vectors at the vertex determine the orientation of the object

relative to the light source and therefore control the intensity of the highlight at the particular

vertex. Therefore any surface should be created out of a number of smaller polygons rather than

larger ones.

3.2.3 Colour

One can specify colour in RGB or RGBA mode. The three component colour, RGB specifies

the Red, Green and Blue for the colour. In the four component colour, RGBA there is a fourth

value which is called the alpha value. The alpha value does not correspond to a visible colour,

but can be thought of as the opacity value.

3.2.4 Buffers

A buffer is the storage of data for each pixel. Within a given buffer each pixel is assigned the

same amount of data per pixel. The OpenGL system can manipulate the following buffers:

Colour, Depth, Stencil and Accumulation [1] [9].

3.2.5 Rendering an image in OpenGL

To render an image OpenGL performs the major graphics operations in the following order:

CHAPTER 3. BACKGROUND MATERIAL 10

1. Construction of the shapes from geometric primitives.

2. Arrangement of these shapes in 3D space, and selection of a vantage point for viewing

the scene.

3. Calculation of the colour of all the shapes. The colour might be explicitly assigned,

determined from specific lighting conditions or obtained by texturing the surface.

4. Conversion of the geometric primitives making up the shapes and the associated colour

information to pixels on the screen.

After the image has gone through these four stages, but before the image is drawn on to the

screen, the pixel data can be manipulated [1] [9]. Before the data is finally written it undergoes

a series of tests or operations which determine if is to be written. If the fragment is eliminated

in an early test, none of the later tests take place on that particular fragment.

The tests are performed in the following sequence [9] :

1. Scissor test

2. Alpha Test

3. Stencil Test

4. Depth Test

5. Blending

6. Dithering

We are only going to discuss two of the tests which are of particular interest to this project,

namely the alpha test and the stencil test. More detail about these tests can be found in any

OpenGL handbook.

3.2.5.1 Alpha Test

The alpha test compares the incoming fragment’s alpha value to a constant. The comparison

function used can be set to always accept the fragment, never accept the fragment, or to accept

it depending on the value of the fragment’s alpha compared to the reference value. [26]. If the

fragment passes the test then it will be processed by subsequent fragment tests, otherwise it will

be discarded. The alpha test provides a means to reject the fragment as early as possible in order

to reduce the memory traffic due to stencil, depth and colour buffer reads and writes [4].

CHAPTER 3. BACKGROUND MATERIAL 11

3.2.5.2 Stencil Test

The stencil test compares a reference value with the value stored at a pixel in the stencil buffer.

The value in the stencil buffer is modified depending on the result of the test. The comparison

function, reference value and new value or mask can be set [9] using:

glStencilFunc(func, ref, mask)

where func sets the comparison function, ref is the reference value and mask is used in the

stencil test.

The stencil value for the target pixel is first masked against the current stencil mask, then com-

pared against the current stencil reference value, using the current stencil comparison function

[17].

The function:

glStencilOp(fail, zfail, zpass)

specifies what happens to the data if the test is passed or failed. fail occurs when the fragment

fails the stencil test. If it passes the stencil test the depth test is then applied. If the depth test

passes then zpass is applied, and if the depth test fails then the zfail is applied.

If the test fails, then the fragment for the pixel is discarded, and the colour and depth values

remain unchanged.

The alpha test and stencil tests are used in the rendering method discussed in Chapter 5 Section

5.2.2

Chapter 4

Design and implementation

VRFish has to be "plug and play". We do not want the user to have to create or obtain a 3D

model of a fish before using VRFish. But we also want to be able to allow for variety. So we

create the 3D model procedurally instead of creating it using 3D modeling software or using

data from someone else’s work. In order to allow for variety, there are many parameters which

are specified by the user. These parameters are stored in a ASCII file, which we will refer to as

the parameter file. An example of a complete parameter file can be found in Appendix A.

In this chapter we will explain what values are required and why they are required. Most values

in the parameter files are expected to be double values. Currently the user is required to set

up the values in the parameter file, using a trial-and-error method, in order to create the fish

he/she desires. We believe that it would not be difficult to set up a GUI application to aid in this

process.

The design, motivations and some relevant implementation details are covered in this chapter

for the construction of the fish model.

4.1 Body

The body is represented by a rigid model, which currently does not allow any deformations. It

is constructed by rotating a mathematical function around the x-axis to obtain a closed surface.

Any a mathematical function which is closed in the region 0 � x � 1 can be used. There is

an abstract FishShapeFunction class which the classes in VRFish use. The name of the actual

implementation of this class is specified in the parameter file, to allow for the user to select

which mathematical function best describes their choice of body shape.

We have only implemented one child class of FishShapeFunction at this stage. FishShapeSin

12

CHAPTER 4. DESIGN AND IMPLEMENTATION 13

(a) Graph of Body Shape (b) Hawk Fish

Figure 4.1: Body Shape for the Hawk fish

(a) Angel Fish

Figure 4.2: Body Shape for the Angel fish

which implements a sine curve. We elected to use this function as it approximates the body

shape of a large number of fish.

There are many different types of fish body shapes and we want to allow the VRFish to be easily

extended to incorporate more of them. For example one can see the body shape for the Hawk

and Angel fish. The graph in Figure 4.1 could be used in order to get the shape for the Hawk

fish, similarly the graph in Figure 4.2 to achieve the top half of the body for the Angel fish.

One could use a cubic spline interpolation [2] to approximate the curve of the shape of the

body and to create additional subclasses of FishShapeFunction class. This would allow a wider

variety of different body shapes to be created using VRFish, within the same environment. We

feel that by implementing one, it is sufficient for proof of concept.

The user specifies two values which control the level of detail of the fish. The two values, which

we will called BodySections and CircleSections, control how many points are used in the cre-

CHAPTER 4. DESIGN AND IMPLEMENTATION 14

ation of the surface and therefore how closely the end shape approximates the true mathematical

surface which has been specified in the FishShapeFunction’s subclass. Figure 4.5 shows some

different levels of detail. The triangles are drawn on the body to show the level of detail.

Although we have not implemented a change in the level of detail during run-time, it is theoret-

ically possible to recalculate the body points during run-time to allow for fish of a lower level

of detail, when the fish is far away from the viewer. This will improve performance when the

fish is a large distance from the viewer.

The BodySection specifies the number of sections the function is divided into along the x-axis.

Each of these x-values are then used to calculate the height of the function at that x-value. This

height forms the radius of the circle as this point is rotated around the x-axis.

The CircleSections specify how many sections the circle is then divided into. The points on the

circumference of the circle at each circle section are then calculated. These points are used to

specify the vertices of the triangles which make up the surface of our fish in OpenGL. We will

call these points BodyPoints

To calculate the points for the body we use the following algorithm:

for (j = 0; j < BodySections; j++) {
x � = j / (BodySections-1);
y� = sin(x �);
for (i = 0; i<CircleSections; i++){

angle = (i)/(BodySections)
y � = sin(angle) * y �

z � = cos(angle) * y �

pointsList[j][i] = (x � , y � , z �)
}//i

}//j

Once all the points are calculated they need to be grouped to form triangles which can be used

in the rendering process (Figure 4.3).

CHAPTER 4. DESIGN AND IMPLEMENTATION 15

f(x) = sin(x)

y

x

Figure 4.3: Surface of Triangles

To create the triangles the following algorithm is used:

p = 0
q = 0
for (j=0;j<(BodySections-1);j++){

for (i=0;i<CircleSections;i++){
p=i+1
if (p >(CircleSections-1)) {

p=0
}

triangle � (pointsList[j+1][p],pointsList[j+1][i],pointsList[j][i])
q ++
triangle � (pointsList[j][i],pointsList[j][p],pointsList[j+1][p])

}//i

}//j

Once the triangles have been created, a surface normal needs to be calculated for each point

to ensure correct lighting in OpenGL. For a particular point all the surrounding triangles need

to have their surface normals calculated and then these surface normals are averaged to get the

surface normal at that point. To calculate the normal for a triangle, two vectors are found tangent

to the surface, the dot product of these two vectors is perpendicular to both, and is therefore

perpendicular to the triangle. Two sides of the triangle are tangent to the the surface [9] and are

therefore used. It is a good idea to normalize the resulting normal vector. Normalizing a vector

produces a vector parallel to the original, but of unit length.

In Figure 4.4 to calculate the normal at point A, the normal vectors are found for the triangles

1 through to 6, and then averaged.

CHAPTER 4. DESIGN AND IMPLEMENTATION 16

y

x

1

2

3

4

5

6

A

Figure 4.4: Calculation of Normals

We use a VRTriangle class which stores the BodyPoints, the corresponding normal vectors and

the matching texture points (discussed in Chapter 5, Section 5.1) for the triangles.

Each of the BodySections is circular, and the length of the body is between 0 and 1. This can

produce a very short, fat body. To adjust the proportions we have included 3 scaling factors,

one for the each of the x, y, and z directions. The user specifies these in the parameter file. (See

Figure 4.6)

There is also another scaling factor which affects the entire fish size. When registering the

VRFish with the GreatDane database, one includes an object world scale. We incorporate some

randomness at this point, and make this world scale using random numbers. This means that as

the fish are created within an environment their sizes will differ slightly.

(a) Body
Length
without
scaling

(b) Body Front without
scaling

(c) Body Length with scaling (d)
Body
Front
with
scaling

Figure 4.6: Body with and without scaling factors applied

CHAPTER 4. DESIGN AND IMPLEMENTATION 17

(a) BodySections-8;
CircleSections-6

(b) BodySections-8;
CircleSections-8

(c) BodySections-16;
CircleSections-12

(d) BodySections-32;
CircleSections-24

Figure 4.5: Body using different levels of details

4.2 Fins

Figure 4.7 shows the fins of a fish. In nature there is a wide variation in shape and placement

of these fins, as can be seen in Figure 4.8. The design of the fins allows for this wide diversity.

4.2.1 Caudal Fin

The caudal fin (the tail) is made up of two sets of triangles. The number of triangles, or level

of detail is specified by the user. The shape of the caudal fin is controlled by six user specified

values. These are: the length of the top, middle and bottom lines, the top angle which is the

angle the top makes with the middle line, the bottom angle which which is the angle the bottom

makes with the middle line. These can be seen in Figure 4.9.

The triangles are formed using linear interpolation to obtain the other two points on the line

formed by joining the end points of the top and middle line. (Similarly on the middle and

bottom line.)

We believe this allows for a great number of differently shaped caudal fins. (See Figure 4.10

for some variations).

Figure 4.10 shows some variations in the shape of the caudal fin, depending on the parameters.

CHAPTER 4. DESIGN AND IMPLEMENTATION 18

Anal Fin
Pelvic Fin

Dorsal Fin Adipose Fin

Caudal Fin
Pectoral Fin

Figure 4.7: Fish Anatomy

(a) Lampris guttatus (Spotted opah) (b) Beryx decadactylus
(Beryx)

(c) Monocentris Japonicus
(Pineapple fish)

Figure 4.8: Fin Shapes in Nature [18]

bottom length

middle length

top length

A

B

C

D

Figure 4.9: Caudal Fin Structure

CHAPTER 4. DESIGN AND IMPLEMENTATION 19

(a) 0.75; 0.13;
75.0; 3.0;
0.83; 78.0; 3.0

(b) 0.75; 0.77; 75.0; 3.0; 0.83; 78.0; 3.0

(c) 0.75; 0.2; 75.0; 3.0; 0.9; 58.0; 3.0 (d) 0.75; 0.2; 75.0; 5.0; 0.9;
58.0; 5.0

Figure 4.10: Caudal fin: Parameters in the following order: Bottom line; Middle line; Top
angle; Top triangles; Bottom line; Bottom angle; Bottom triangles.

CHAPTER 4. DESIGN AND IMPLEMENTATION 20

(a) (0.95; 0.0; 0.0) (b) (0.99; 0.0; 0.0)

(c) (0.90; 0.0; 0.0)

Figure 4.11: Caudal fin in different positions: Position given as (x; y; z)

The caudal fin is formed at the origin and then translated into position. The exact position is

specified by the user as a 3D point. This allows the user to vary the thickness of the body-tail

section. (Figure 4.11 shows some different locations for the caudal fin.)

4.2.2 Vertical Fins

The vertical fins, namely the dorsal, adipose and anal fins use the same design structure, but

each need their own specified values in the parameter file. When designing these fins we want

to allow for diversity, and to have an end shape which appears curved, angular or straight. The

fin is created in the position desired. The user chooses where along the body the fin is placed

by specifying the start and end BodySections the fin is to span. The level of detail of these fins

is therefore limited by the level of detail of the body.

The fin is vertical at the top or bottom of the fish, where z = 0. To control the shape the user

specifies the length of the start and end lines, and the angle made by the start line with the

horizontal line. The curve of the fin is controlled by a value we call the proportion, and is also

specified by the user. The proportion specifies how far up along the side of the previous triangle

CHAPTER 4. DESIGN AND IMPLEMENTATION 21

Figure 4.12: Vertical Fin Structure

the top vertex of the current triangle is placed. The end angle is always a ninety degree angle.

Figure 4.12 shows the structure of the vertical fin.

Using this structure the fins shape can be varied a great deal. The dorsal and adipose fins can

be placed so that they form one long fin if so desired. Figure 4.13 shows some variations of the

dorsal fin.

4.2.3 Pectoral Fin

The pectoral fin is designed along the same lines as the vertical fin, but is slightly less complex.

The level of detail is linked to the CircleSections but is specified as a number of triangles. As

each triangle spans a CircleSection the user needs to ensure that the CircleSection from the body

and the number of triangles the pectoral fin uses are related. At this stage there is no check — if

the user specifies a larger number of triangles then the fin will appear to wrap around the body.

The user controls where along the length of the body the fin is to be placed by specifying the

starting BodySection. The start of the fin is specified by the start CircleSection, and the curve

of the fin is controlled by the proportion where one triangle joins the next.

The other user dependent values are the length of the first side, and the angle which this line

makes with the horizontal.

The user enters only the values for the left fin as the right fin is a mirror image of the left fin.

Figure 4.14 shows the structure of the pectoral fin.

Figure 4.15 shows some variation in shape of the pectoral fin.

CHAPTER 4. DESIGN AND IMPLEMENTATION 22

(a) 6.0; 16.0; 1.5; 0.05; 95.0;
0.8

(b) 6.0; 16.0; 1.5; 0.7; 95.0; 0.9 (c) 6.0; 16.0; 1.0;
0.05; 85.0; 0.6

Figure 4.13: Vertical Fin: Parameters in the following order: Starting BodySection; End
BodySection; Starting line; End Line; Starting angle; Proportion

f(x) = sin(x)

Start angle Start line

Proportion

Figure 4.14: Structure of the pectoral fin

CHAPTER 4. DESIGN AND IMPLEMENTATION 23

(a) 10.0; 2.0; 6.0; 1.1; 30.0; 0.8 (b) 10.0; 2.0; 3.0;
1.5; 30.0; 0.8

(c) 10.0; 2.0; 3.0;
1.0; 15.0; 0.8

Figure 4.15: Pectoral fin: Parameters in the following order: Starting BodySection; Starting
CircleSection; No. of triangles; Starting length Starting angle; Proportion

4.2.4 Pelvic Fin

The pelvic fin needs a different structure as it shape seems to differ considerably from the other

fins. We want to allow for short fins, or long flowing ones.

The user specifies where along the body the fin it is placed, by giving the BodySection at which

it will start. The vertical placement is specified by which CircleSection it must be placed on,

and the level of detail is determined by the BodySection on which the fin terminates.

The shape and size is controlled by specifying the length of the line joining B and C in Figure

4.16, the length of the end line (line joining F and H in Figure 4.16) and the angle that the end

line makes with the horizontal.

If one uses this shape as the final product, the fin shapes which can be represented here are

fairly limited. However, when it is used in conjunction with the masking methods (discussed in

a later chapter), it provides a great flexibility for long, or unusually shaped pelvic fins.

Once again the user is only required to enter the values for the left fin.

4.2.5 Parameter file

Other parameters pertaining to the fish form which we have not yet mentioned are the starting

position of the fish, its default colour and various other parameters used for testing purposes

(these have been left in for historical reasons). In the Appendix A the test parameters have

the suffix _t behind their description to indicate that they fall into this category. The starting

CHAPTER 4. DESIGN AND IMPLEMENTATION 24

start length

end length

end angle

C

F

G

H

E

D B A

Front of fish.

Figure 4.16: Pelvic Fin Structure

(a) 18.0; 8.0; 14.0;
0.1; 0.6; 90.0

(b) 18.0; 8.0; 14.0;
0.5; 0.6; 90.0;

(c) 18.0; 8.0; 14.0;
0.5; 0.0; 90.0;

(d) 18.0;
8.0; 14.0;
0.5; 0.1;
90.0

(e) 18.0; 8.0; 14.0; 0.1; 0.5; 0.8; 40.0

Figure 4.17: Pelvic fin: Parameters in the following order: Start CircleSection; Start BodySec-
tion; End BodySection; Starting length; End length; End angle.

CHAPTER 4. DESIGN AND IMPLEMENTATION 25

position consists of three numbers for x, y, z. The default colour is stipulated in RGB, so it has

3 numbers, between and including 0 and 1.

There is a lot of information in the parameter file. Not all the different objects within VRFish

require all the information. VRFishInfo reads the parameter file and then creates a number of

Information objects. Each object therefore only has information pertaining to one area. For

example VRFishInfo creates several VRFinInfo objects, each VRFinInfo contains the parameter

values for one fin. This prevents redundancy of information allowing only the required infor-

mation to be passed to the objects which make up the fish.

4.2.6 Schools

To create a school of fish we have the VRSchool class. VRSchool uses VRFishInfo to read in the

parameter file as described above. The file is read in only once. VRSchool can then alter the

information objects created in VRFishInfo, to incorporate some variations for each of the fish

within a school. After each set of changes it creates a fish with the altered information object.

Although all of the user parameters can be changed we only change to the starting position of

the fish at this stage. We spread the fish out along a straight line within the environment.

We use the VRFishViewer class to display the fish for testing purposes. When starting VR-

FishViewer the number of fish per school is supplied, together with all parameter file names

required. Any number of parameter files can be included at this point, allowing any number of

different fish species to be included in the environment. All schools will have the same number

of fish within them. Fish only school with their own species.

4.2.7 Summary

The 3D fish model is procedural, with user-specified parameters controlling the shape, size and

level of detail of the body shape and fins. The design is such that it allows a great amount

of flexibility, without the user having to create the form in another package, or obtain a form

from somewhere else. Although the individual components which make up the body cannot

be deformed at present, this is not ruled out in theory. The points which make up the surface

are accessible and therefore, could be manipulated in some way to create deformations of the

structure.

The only animation of the fish form which is currently implement is the movement of the fins.

This is discussed in Chapter 7 Section 7.1.

Schools of these fish are created in VRSchool and viewed through VRFishViewer.

A simplified UML type model of VRFish can be found in the appendix C.

CHAPTER 4. DESIGN AND IMPLEMENTATION 26

Figure 4.18: Complete Fish Structure

Chapter 5

Rendering

VRFish is created and rendered in a default colour. We add texturing, and different rendering

effects to the fins in order to obtain a more interesting and realistic fish. We have implemented

four different rendering effects for the fins, but at this stage the fin method to be used has to

be decided on at compile time. There are various VRFin classes, which can be copied over the

VRFin.java file and then compiled into VRFish. It might be desirable to change this so that the

user can specify which which fin method to use at run-time by including a corresponding choice

variable in the parameter file.

We first discuss texturing, and then the different fin methods, namely blending, stencil, alpha,

and finally, the stencil and alpha method. The last two can grouped together as masking tech-

niques as both produce a “cutout” from the fin structure shape. Performance of these rendering

methods are presented in Chapter 8)

5.1 Texturing

An important point to remember when texturing is that the height and width of the texture image

must be a power of 2 (2, 4, 8, 16, ...).

In order to do texturing every point in the 3D form needs to be mapped to a corresponding 2D

point in the texture file. A stand alone application called Fixel aids in the calculation of these

points for VRFish. Fixel is discussed in more detail in Chapter 6. Fixel outputs the texture

points to an ASCII file. These points are then copied into the parameter file.

For the body we do not want the default body colour to influence, or to alter the texture

colour. The DECAL parameter is therefore used in setting the texture environment variable

for OpenGL. Initially we did the same for the fins, but then replaced this with other techniques

which are discussed in the section following this one.

27

CHAPTER 5. RENDERING 28

The algorithm used is as follows:

Load the texture
Enable texturing
Enable (GL_TEXTURE_2D);
Select the texture

BindTexture (GL_TEXTURE_2D, textureID);
Set the drawing mode so that the textured triangles are drawn
using the colours from the texture map. Use DECAL so that it
overwrites the colour the surface was originally drawn in.

TexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_DECAL);
Enable Gouraud Shading by setting the ShadeModel to GL_SMOOTH

ShadeModel(GL_SMOOTH);
Draw the shape setting the texture coordinates, normals and
vertices, in that order

TexCoord2f(tx,ty);
Normal3f(nx,ny,nz);
Vertex3f (x,y,z);

Disable the enabled modes to reset environment.

This texturing is adequate for the rendering of the body, but additional techniques are required

for the rendering of the fins.

5.2 Fin rendering techniques

To achieve more interesting fins, we implemented and test differented rendering techniques.

5.2.1 Blending

Our first method attempts to obtain semi-translucent fins. To achieve this we use the blending

function in OpenGL.

When setting the texture environmental variables in OpenGL we specify the way in which the

incoming texture colour must be combined with the colour which is already there.

When using the MODULATE parameter, together with specifying the colours of the texture in

RGB mode, we obtain

colour � ������� = colour �	��
������� * colour ��� ����� � � � ,

alpha � ������� = alpha �	��
������� * alpha ��� ����� � � � .

CHAPTER 5. RENDERING 29

Since we are using RGB mode we need to set the alpha value, which we set to 0.5.

If one attempts to use the RGBA mode for specifying the texture colours, it influences the

texturing of the body, and produces undesirable effects in the rendering of the body. This is due

to the fact that when using RGBA mode for the colour DECAL uses the following formulae

colour � ������� = (1-alpha �	��
�������)*Colour ��� ����� � � � + alpha �	��
������� *colour �	��
������� ,

alpha � ��� � � = alpha ��� ����� � � � ,

[9].

The algorithm used for blending is:

Set the alpha value to 0.5.
Set the texture environment values:

Tex-
Envf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
Enable Blending and set the blending function to

BlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);

The blending produces semi translucent fins. It does not have a performance impact, but the

visual effect does depend on how closely the shape structure of the fins can reflect the desired

fin shape.

Figure 5.1 shows the blended fins for two fish. in both pictures you can see that the pectoral

fins are translucent and the body can be seen through them. The front pelvic fin allows the fin

behind it to show through (Hence in (b) the pelvic fin looks out of focus.).

5.2.2 Non-triangular fin

Three different methods were attempted to achieve masking to “cutout” the fin shape from the

fin structure originally built. These methods have varying degrees of success.

5.2.2.1 Stencil Buffer

This method uses only the stencil buffer. We understood that we could use the stencil buffer to

create a stencil shape used to prevent drawing to certain sections of the screen. On attempting to

implement this method, we failed to realize that one does not draw directly to the stencil buffer.

The values are written to the stencil buffer when drawing a shape to the colour buffer. Although

CHAPTER 5. RENDERING 30

(a) Bony Bream fish (b) Pineapple fish

Figure 5.1: Translucent Fins

the value written to the stencil buffer is dependent on the stencil test, it is not dependent on the

colour going into the colour buffer. We draw the shape of the fin structure to the colour buffer,

and therefore either the entire fin shape is drawn to the stencil, in which case no fin appears, or

nothing is drawn into the stencil buffer in which case the entire fin is drawn.

Although this attempt was a failure, much was gained through this exercise. It helped us to

obtain a better understanding of the use of the buffers and tests and how to correctly implement

them.

5.2.2.2 Alpha Test

This method is a two pass process. It requires two texture files, a black and white one and a

coloured one. The black and white version is simply a silhouette of the fish, with the fish in

white and the background in black. These need to be identical in all respects except the colour,

as the same texture points are used in both files. The black and white texture file is used to

create a stencil for masking, while the coloured one is used when applying the texture to the

fish model.

In the first pass the black and white texture is used to set the depth and alpha values, using the

depth test and the alpha test. In the second pass only the sections with the correct alpha and

depth values are drawn to the screen.

CHAPTER 5. RENDERING 31

The algorithm we use is as follows:

First Pass:
Disable ColorMask
Set texture environmental variables using

TexEnvf(GL_TEXTURE_ENV,GL_TEXTURE_ENV_MODE,GL_MODULATE)
Enable DepthMask and Alpha Testing
Set the AlphaFunction to LESS, some threshhold level
Enable 2D texturing, with the black and white picture
Draw the points. Remember to set the texture coordinates,
and normals
Disable 2D texturing

Second Pass
Enable ColorMask
Set the AlphaFunction to GREATER the same threshold level.
Enable 2D texturing, with the texture file this time
Draw the points. Remember to set the texture coordinates,
and normals

Disable texturing, and Alpha Testing

This produces shapely fins, but also produces unexpected artifacts.

When the fin shape is originally drawn, if it is behind another object, either a fin or another fish

then in the first pass the depth value will be set as usual, indicating the fin’s position along the

z-axis. However during the second pass the fin shape from the black and white texture file is

used. The black section of this shape is rejected by the alpha test, causing it to be discarded.

This means that no other tests are done on this section. When the fish is translated or rotated

the fin might now end up in front of the object it was originally behind, but its depth value will

not be re-set and the depth test is never done on this fragment. Therefore nothing gets drawn to

this section of the screen, leaving behind a white silhouette of the background section in the fin

shape.

This method has a slower performance than the blending method due to the fact that the fish has

to be rendered twice.

See Figure 5.2 a, b, c shows where the one pelvic fin is being obscured by the other fin, thereby

making one of the fins disappear at certain angles of view. Figure 5.2 d, e shows how the entire

fin shape shows up when fish swim in a school.

5.2.3 Stencil test and alpha test

This method uses both the stencil and the alpha test. As in the alpha test method, this is a two

pass process and uses both the black and white texture file and the colour texture file.

CHAPTER 5. RENDERING 32

(a) Pelvic fin totally obscured (b) Pelvic fin partially
obscured

(c) Anal fin obscuring
pelvic fin

(d) Pelvic fin obscur-
ing other fish

(e) Pelvic fin obscuring other
fish

Figure 5.2: Using the Alpha Test

CHAPTER 5. RENDERING 33

(a) Anal fin does not
obscure pelvic fin

(b) Pelvic fin not obscuring other pelvic fin

(c) Pelvic fin not being obscured

Figure 5.3: Using the Stencil and Alpha Tests

In the first pass the alpha test is used to create a stencil mask in the stencil buffer, using the black

and white texture. The fragment’s value is discarded if the colour is black, (i.e. the background

is discarded). The second pass then uses this stencil from the stencil buffer to determine what

is finally drawn to the screen.

This method creates the exact shape fin desired. It has no artifacts, as in the alpha test method.

But the disadvantage of this method is that it is lot slower due to the stencil buffer being cleared

each and every time the fin is drawn.

Figures 5.3 and 5.4 show the fish using this method.

CHAPTER 5. RENDERING 34

The algorithm we used is as follows:

First pass:
Enable depth test,
Set the DepthMask, ColorMask to false.
Set the colour to white with alpha of one
Disable lighting
Enable alpha test
Set the alpha function to GREATER, with a value of 0.97

AlphaFunc (GL_GREATER, 0.97f).
Set the value to clear the stencil buffer to 0, and clear
the stencil buffer.

ClearStencil(0);
Clear(GL_STENCIL_BUFFER_BIT);

Enable the stencil test
Set the stencil comparison function to ALWAYS, the
reference value to one and the mask value to one.

StencilFunc(GL_ALWAYS,1,1);
Set the stencil operation to always replace.

StencilOp(GL_REPLACE,GL_REPLACE,GL_REPLACE);
Set the Texture environment to GL_MODULATE

TexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,
GL_MODULATE);

Enable texturing, using the black and white texture.
Draw the fin, setting the texture coordinates and
the normals before defining the actual vertices.

Second pass:
Enable the DepthTest, set the DepthMask and
ColorMask to true.
Disable the alpha test.
Leave the stencil test enabled, change the stencil
comparison function to EQUAL and the reference value
and mask value to one.

StencilFunc(GL_EQUAL,1,1);
Change the stencil operation to not change.

StencilOp(GL_KEEP,GL_KEEP,GL_KEEP);
Enable lighting
Enable texturing, using the colour texture.
Set the texture environment to use DECAL

TexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE,
GL_DECAL);

Use the smooth shading model
Draw the fin, setting the texture coordinates and the

normals before defining the actual vertices.

CHAPTER 5. RENDERING 35

(a) Fins not obscuring
other fish

(b) Fish not being ob-
scured by other fins

Figure 5.4: Using Stencil and Alpha Tests

5.3 Summary

The body is textured and three of the four rendering techniques for the fins are successful. The

blended fin has the best performance. The alpha and stencil test method has the best visual

effect, producing exotic fin shapes, but it has the worst performance. The alpha method is faster

than the alpha and stencil method, but has some visual artifacts.

Chapter 6

Fixel

Fixel is a stand-alone program designed and implemented to aid in the calculations of the texture

points for VRFish. As has already been mentioned, each point which makes up the fish form

has to have a corresponding point in the texture file. Texture points are some times referred to

as Texels, hence the name for our application - FIsh teXELs.

Fixel is written in Java. It is not incorporated into the GreatDane system. Java has library classes

which handle graphics files, hence Fixel can use many Graphic file formats, but OpenGL uses

the GIF file format and therefore it is recommended that one uses this type of graphics file when

using Fixel.

OpenGL uses a different coordinate system for its graphics files to Java. OpenGL uses the

bottom left corner as (0,0), the top right corner is (1,1). On the other hand Java uses the top

left corner as (0,0) and the bottom right as (x,y) where x is the width of the picture and y is

the height. Because of this two texture files are required, one to be used as the texture file in

VRFish, and one which is used in Fixel for determining the texture points. They must be exact

mirror images of each other, reflection being in the horizontal axis. The one used for Fixel, has

the fish the right way up and the one supplied to VRFish has the fish upside down. This also

means that when Fixel calculates the texture points, the Java point is converted into a OpenGL

point by dividing the x value of the point by the width, and the y value of the point by the height.

(Fixel could do the inverting, but this has not been implemented yet.)

The Fixel window consists of a menu bar, which contains 3 menus (File, Values and Draw), a

graphics area (where the graphics file is displayed) and an instruction bar. The instruction bar

has comments, hints or instructions to give the user some indication of what is happening, and

what is required at any stage. (See Figure 6.1 for a screen shot)

At this time Fixel is very functional and not exceptionally user friendly.

There are a number of different stages of operation, one per fish body part, namely for the body,

36

CHAPTER 6. FIXEL 37

Figure 6.1: Fixel Application Screen shot

and for the dorsal, adipose, caudal, anal, pectoral and pelvic fins. Each stage can be started by

selecting it from the Draw menu.

Fixel requires information based on the values in the parameter file for the fish. The values for

each body section must be entered through the Values menu, before that specific stage is started.

Once the user has completed the stages of his/her choice the information can be saved. Fixel

saves the calculated points in a ASCII file with the extension .FXL. Each body part saves its

texture points in a list which is preceded by two lines. The first contains a comment starting

with //, which specified which body part the texture points are for, and the second the number

of actual texture points to follow.

Within each stage there are steps which have to be followed in strict sequential order, in order

to obtain the correct points. If a mistake has been made there are no means to correct, add or

delete an individual point. The stage must be restarted. Although the steps within each stage

are strictly sequential, the stages can be done in any order, or not done at all.

Each stage is a reflection of the algorithm used in VRFish to construct that particular body part.

For the body a middle line is drawn across the fish body picture from its nose to the start of

its caudal fin. This means that the fish in the picture can have any orientation and placement

— it does not have to be perfectly horizontal in this file. The required number of vertical lines

are drawn by Fixel, evenly distributed across this line. These vertical lines correspond to the

BodySections. The user adjusts the length of these lines, so that they just cover the body, starting

with the line at the nose and ending with the line at the caudal fin. This is simple way of doing

edge detection for the body! Fixel then draws the calculated points on the vertical lines. There

is always a point on the intersection of the horizontal line and the vertical line (this is point

CHAPTER 6. FIXEL 38

number 0 in VRFish). When the points for the body are saved, each point is saved on a new line

in the ASCII file. Preceding the x and y value in the ASCII file is the vertical line number and

the point number. The vertical line number corresponds to the BodySection number in VRFish,

and the point number corresponds to the CircleSection. Fixel determines the points for the back

half of the fish body and then saves them in the correct order corresponding to the points created

in VRFish.

For the fins the user has to click on the picture to set certain points. The points have to cor-

respond to specified points of the fin shape constructed by VRFish and these points must be

done in a certain order. The required points and their order can be found in the user manual

in appendix B. Once the initial points have been set, Fixel calculates the remaining points, and

draws them in. The user is then required to either click on the point, or to adjust its location by

clicking where he/she wants it to be. Again the order of the points is very important.

The texture points for use with the blended fins should have as little background as possible

included, preferably none. However, when creating the texture points for the masking methods

the background is of little consequence, the points are placed to reflect the constructed fin shape,

including the entire fin in the texture file.

We have found that some trial and error is often required in obtaining the texture points for the

fins to give the best visual appearance.

Although more work can be done on Fixel and its user interface, it is successful in aiding in the

calculation of the texture points required for VRFish.

Chapter 7

Animation

The animation of the fish is divided into two sections. First there is the animation of the fish

form, which at this stage comprises only the movement of the fins. The second section is the

behaviour of the fish which determines the way in which the fish moves around the environment.

This is achieved by implementing a simple flocking algorithm. Although these two sections are

discussed separately they are not mutually exclusive in the rendering process: as fish move

around the environment they move their fins, producing a realistic swimming motion.

7.1 Fin Motion

A very simple movement model for the fin motion has been implemented. There is no defor-

mation of the body area at this stage, although this is theoretically possible, nor are the fins

deformable. The only movement is due to certain of the fins moving back and forth. The dorsal,

adipose and anal fins do not move at all in relation to the body (See Figure 7.1for a summary).

The caudal fin moves back and forth, up to a certain maximum angle, we will call this maxi-

mum angle the movement angle of the fin. The movement angle is specified by the user in the

Side View
Top View

Figure 7.1: Fish structure showing fin movements.

39

CHAPTER 7. ANIMATION 40

parameter file together with a step value. The step value specifies how many degrees the fin

moves at a time.

The caudal fin is created at the origin and therefore can just be rotated around the y-axis.

To rotate the pelvic fin one of the points in the fin is used to determine the point about which

it is to be rotated. The point which attaches the fin to the body, and is the the furthest up the y

axis is used. The fin is translated so that this point is at the origin, then it is rotated, and then it

is translated back into position.

The pectoral fins are handled similarly, with the exception that the point used is the one furthest

out along the z-axis.

Although this is a very simple animation model, rotating the fins back and forth produces a fish

which appears to be swimming through the water.

7.2 Behaviour

We want to achieve autonomous fish creatures. This means that the swimming behaviour is not

scripted. We use a basic flocking algorithm based on Reynolds’ flocking algorithm [15] and

Conrad Parker’s [10] extension to the Reynolds flocking algorithm as discussed in the chapter

on related works.

To obtain the swimming behaviour we use the fish’s current velocity in conjunction with the

three rules specified by Reynolds, namely:

� Avoid collisions with nearby neighbours,

� Attempt to match velocity with neighbours,

� Attempt to stay close to the center of the school,

and a fourth rule which involves the following of a random path, created using a spline. This

random path rule allows the single fish in isolation to swim on a random path in the virtual

reality environment, but as soon as there are other fish species present, the schooling behaviour

manifests. Each rule is weighted differently to create the final direction the fish moves in. These

weightings are stored in the parameter text file. Although the weightings reflect the importance

of the rule, they are determined using a trial and error method. One of the reasons for this is

that the rules do not take into account the fish’s size, and therefore if one changes the size of the

fish, the weighting values often have to be adjusted slightly to obtain the correct visual effect.

CHAPTER 7. ANIMATION 41

When the VRSchool class adjusts the parameters in the information objects it could vary the

weightings by a small random amount to create fish which have slightly different behaviour

patterns.

To implement the rules, the fish has to obtain information about the state and location of the

other fish in the school. As has been already been mentioned, GreatDane contains a database

of the objects within the environment. Each object is checked to see if it is the same species of

fish as the current fish. If the object is a fish of interest, then the relevant properties of that fish

can be used.

Each rule calculates a directional vector which is returned to the “brain”. The brain uses the

weightings specified in the parameter text file to obtain a vector for each rule which is a certain

proportion of the vector originally calculated for the rule. These are added together to obtain a

final directional vector which is used to move the fish.

All the rules use the state of the school, as perceived by the current fish. Therefore the current

fish’s state is never included in the results. Any distance between the fish is the distance between

their center points, not between the outside of the fish.

The method for the rules in greater detail follows:

� To avoid the neighbouring fish, the closest fish is found. If it is within a certain specified

distance then the distance vector between the two gets returned. This vector corresponds

to movement required to avoid collision between the fish.

� To move towards the center, the average position of the school is determined. A vector

corresponding to the movement towards the center of the school is calculated by subtract-

ing the average position and the current fish’s position. This vector is returned.

� Thirdly the average direction of the school is found. The orientation of each fish is stored

as a quaternion. To calculate the directional vector for the orientation the quaternion

is multiplied by the original direction of the current fish, and then the average of these

directional vectors is found. This average vector is returned, and it corresponds to the

movement required of the fish in order for that fish to change its orientation to that of the

school.

� The velocity of the fish is taken into account and this is also weighted.

� The final rule is a random path. A spline is used to create this path. The points for the

spline are either set to a point straight ahead or to a random point. The frequency of using

a randomly selected point is specified in the parameter text file.

CHAPTER 7. ANIMATION 42

7.3 Summary

The schooling algorithm uses Reynolds’ flocking algorithm as a basis, but implements a sim-

plified version of his rules. To this we have added a random path rule. These rules do not take

the size of the fish form into account. This means that the fish sometimes swim through each

other, most often seen when the fish are changing orientation.

Chapter 8

Results

This chapter presents a number of results. Firstly we discuss the performance results and sec-

ondly the appearance. In the first section on performance results we show the different factors

which could influence performance, namely level of detail, the different fish species and the

rendering method used for the fins. In the second section on appearance we discuss the impact

of the level of detail, present the different species of fish we implemented, show the the visual

appearance using the different fin rendering methods and then finally we discuss the schooling

behaviour.

8.1 Performance

We have created a number of different fish species. (This means that we have a number of

different parameter files which the system can read in.)

All tests were done on a Pentium III, 500MHz, 128MB RAM, with a Voodoo 5 graphics card,

running Redhat Linux 7.2.

8.1.1 Level of Detail

First we did some experiments to measure the performance of fish with different levels of detail.

There is one swimming fish within the environment for these tests.

Figure 8.1 shows the performance of fish with different levels of detail. The results are as

expected: the quality of the the 3D fish form certainly improves as the level of detail gets

higher, but the performance speed decreases. The lowest level of detail, using BodySections =

8 and CircleSections = 6 has a frame rate of over 85 frames per second. The fish with the highest

43

CHAPTER 8. RESULTS 44

Figure 8.1: Graph of performance for different levels of detail

level of detail, in our experiment, using BodySections = 32 and CircleSections = 24 has a frame

rate of 21 frames per second. This is much higher than the minimum frame rates required for

a real-time system, (the commonly accepted minimum real-time frame rate is about 10 frames

per second).

8.1.2 Different species

For the following experiments all fish are made up of 16 body sections, each of which are

divided into 12 points. The size, shape and placement of the fins, urge weightings and initial

velocity differ between fish types. In these experiments there are no other virtual objects within

the system besides the fish.

Figure 8.2 shows the graph for the results when comparing different fish species which have all

been rendered using the Alpha test method.

At the same level of detail, the differences in shape of fins, weightings and initial velocity do

not make a significant difference to the performance.

8.1.3 Fin rendering techniques

For the following experiments all fish are made up of 16 body sections, each of which are

divided into 12 points. The size, shape and placement of the fins, urge weightings and initial

CHAPTER 8. RESULTS 45

Figure 8.2: Different fish species using the alpha test method

velocity differ between fish types. In these experiments there are no other virtual objects within

the system besides the fish.

Figure 8.3 shows the graph which comparing the three different rendering techniques, using

only the Bony bream fish.

The different methods of rendering the fins do make a difference to the performance speed.

These results are as expected. The blending method is a single pass rendering process ans so

is very efficient. The method using only the alpha test uses a two-pass rendering process and

therefore is slower than the blending process. The method using the stencil and alpha test is a

two-pass rendering process, and the stencil buffer is cleared at each rendering making it slower

than the method using only the alpha test.

With ten fish in the environment, using the blending technique we are obtaining a frame rate of

just over 20 frames per second, double the requirements for real-time. For the slowest method,

using both alpha and stencil test we are obtaining 10 frames per second, still real-time.

8.2 Appearance

Figure 8.4 shows the texture files used. (a) is a scanned photo of a Monocentris Japonicus

(Pineapple fish) from J.L.B. Smith’s Sea Fishes [18], and (b) is a black and white version of the

texture file.

CHAPTER 8. RESULTS 46

Figure 8.3: The same fish species using the different fin methods

(a) Colour Texture (b) Black and White texture

Figure 8.4: Pineapple texture files

CHAPTER 8. RESULTS 47

(a) BodySections-8; CircleSections-6 (b) BodySections-16; CircleSections-12

(c) BodySections-8;
CircleSections-6

(d) BodySections-16;
CircleSections-12

Figure 8.5: Different levels of detail

8.2.1 Level of detail

The appearance is affected by the level of detail. With the simplest level of detail used in the

experiments, using BodySections = 8 and CircleSections = 6, we obtain a very triangular fish

body, with little flexibility in the shape of the fins. The fins are placed on the true curve and

therefore there is a gap between the dorsal fin and the body (see Figure 8.5 (a)). But simply

doubling these values produces a rounded body, with a great amount of fin shape flexibility and

no gap between the dorsal fin and the body.

8.2.2 Different Species

Figure 8.6 shows a sample of all four fish species created using the stencil and alpha tests.

CHAPTER 8. RESULTS 48

(a) Pineapple fish (b) Bonybream fish

(c) Centroberyx fish (d) Threadfin Goldie fish

Figure 8.6: Four species using VRFish (created with the stencil and alpha tests).

CHAPTER 8. RESULTS 49

(a) Blended fins

(b) Using Alpha test only (c) Using Stencil and Alpha tests

Figure 8.7: The final product

8.2.3 Fin rendering techniques

Figure 8.7 is the end result for the Pineapple fish created using VRFish, showing the 3 different

fin methods, with level of detail of BodySections = 16 and CircleSections = 12.

8.2.4 Schooling behaviour

The schooling behaviour which has been implemented is simple, but produces a reasonably

cohesive schooling behaviour pattern, with fish fins animating as they move around the envi-

ronment. The schooling behaviour can be seen on the CD in the video clips directory or on the

web page (http://www.cs.ru.ac.za/research/g90f2972).

Chapter 9

Conclusions

In this project we have taken the first step towards establishing a library of objects which could

be used by virtual reality programmers, to create a world populated with interesting creatures

and objects.

� VRFish is a fish library object which is non CPU intensive. On a Pentium III, 500MHz,

128MB RAM, with a Voodoo 5 graphics card, running Redhat Linux 7.2, 10 fish of a

single species are rendered in between 9.8 and 21.4 frames per second.

� VRFish creates the 3D fish form procedurally. The user/programmer is only required to

setup the parameter file before usage. This allows many different species to be created

using VRFish. We have produced 4 prototypes namely Bony Bream, Pineapple, Cen-

troberyx and Threadfin Goldie. Currently the fish all have the same basic body shape,

as only one body shape has been implemented. But it has been shown that VRFish can

easily be extended to allow for different body shapes. The basic fin shape used allows

for a wide range of structures, and placements of fins. A number of different techniques

have been implemented to obtain more realistic and interesting fins. These include semi

translucent fins of the original shape, and two different methods of creating a fin “cut

out” to the desired shape. The one method using only the alpha test, has some artifacts

but has a better frame rate than the method using both stencil and alpha tests which does

not produce the artifacts.

� The fish’s form sufficiently approximates the true form of the fish to be realistic in ap-

pearance.

� VRFish produces body animation by rotating the caudal, pelvic and pectoral fins back and

forth.

50

CHAPTER 9. CONCLUSIONS 51

� VRFish implements a flocking algorithm to produce fish with realistic, non-scripted swim-

ming patterns. When fish of the same species are within the environment, they will swim

together, acting as a cohesive whole, closely resembling a school of fish.

We have succeeded in creating a fish model which is self contained and can be used with ease

by virtual reality programmers to create diverse and interesting underwater environments.

Bibliography

[1] Bangay S., 2001, Computer Graphics version 2.00, Rhodes University Honours course

notes.

[2] Burden R. L., Faires J.D., Numerical Analysis, Third Edition, Prindle, Weber and Schmidt,

Boston, 1985, pp 118-130

[3] Chadwick J. E., Haumann D. R., Parent R. E., Layered Construction for Deformable An-

imated Characters, ACM SIGGRAPH 1989, Computer Graphics, Volume 23, Number 3,

July 1989, pp 243-252

[4] Dominé S. Alpha Test Tricks, NVIDIA Corporation, [on-line]

http://developer.nvidia..com/docs/IO/1313/ATT/Alphatest_tricks.pdf, [Accessed on

17 October 2002]

[5] Ebert D. S., Advanced Modeling Techniques for Computer Graphics, ACM Computer

Surveys, Volumne 28, Number 1, March 1996, pp 153-156

[6] Frôhlich T, The Virtual Oceanarium, Communications of the ACM, July 2000, Volume

43, Number 7, pp 95-101

[7] Miller G. S. P., The Motion Dynamics of Snakes and Worms, Computer Graphics, Volume

22, Number 4, August 1988, pp 169-178

[8] Molofee J. Lesson 20, [On-line]

Available: http://nehe.gamedev.net/tutorials/Lesson20.asp [Accessed on 12 December

2001].

[9] Neider J. Davis T. Woo M., 1993, OpenGL Programming Guide, Addison-Wesley Pub-

lishing Company, pp 291-324.

[10] Parker C. 2002, Boids, [On-line].

Available : http://www.vergenet.net/~Conrad/Boids/ [Accessed on 2 November 2001].

52

BIBLIOGRAPHY 53

[11] Partridge B. L., The Structure and Function of Fish Schools, Scientific American, June

1982, pp 114-123

[12] ProudFoot K., Mark W. R., Tzvetkov S., Hanrahan P., A Real-Time Procedural Shading

System for Programmable Graphics Hardware, ACM SIGGRAPH 2001, August 2001

[13] Platt J. C., Barr A. H., Constraint Methods for Flexible Models, ACM SIGGRAPH 1988,

Computer Graphics, Volume 22, Number 4, August 1988, pp 279-288

[14] Reeves, W. T., Particle Systems-A technique for Modeling a Class of Fuzzy Objects, ACM

Transactions on Graphics, V2 #2, April 1983. and reprinted in Computer Graphics. Vol-

ume 17, Number 3, July 1983, (ACM SIGGRAPH 1983), pp 359-376.

[15] Reynolds C. W., Flocks, Herds, and Schools: A Distributed Behavioural Model, ACM

SIGGRAPH 1987, Computer Graphics 21(4), July 1987.

[16] Sederberg T. W., Parry S. R., Free-from Deformation of Solid Geometric Models, ACM

SIGGRAPH 1986, Computer Graphics, Volumne 20, Number 4, 1986, pp 151-160

[17] SGI, Using the Stencil Buffer, [on-line]. Available:

http://www.sgi.com/software/opengl/advanced96/node29.html, [Accessed on 12 De-

cember 2001]

[18] Smith J.L.B, 1986, Smiths’ Sea Fishes, ed. Smith M.M. Heemstra P.C., South Book Pub-

lishers (Pty) Ltd.

[19] Scheffer, V. B., Spires of Form. Glimpses of Evolution, Harcourt Brace Jovanovich, San

Diagio, 1983 (reprinted 1985 by Harvest/HBJ), p64

[20] Terzopoulos D., Visual Modeling for Computer Animations: Graphics with a Vision, Com-

puter Graphics, Nov 1999, pp 42-45

[21] Terzopoulos D., Platt J. C. , Barr A. H., Fleischer K., Elastically Deformable Models,

ACM SIGGRAPH 1987, Computer Graphics, Volume 21, Number 4, July 1987, pp 205-

214

[22] Terzopoulos D., Rabie T., Grzeszczuk R., Perception and Learning in Artificial Animals,

Artificial Life V: Proc. Fifth Inter. Conf. on the Synthesis and Simulation of Living Sys-

tems, Nara, Japan, May 1996, pp 313-320

[23] Terzopoulos D., Tu X., Grzeszczuk R., Artificial Fishes: Autonomous Locomotion, Per-

ception, Behavior, and Learning in a Simulated Physical World, Artificial Life, Volume 4,

Number 1, 1994, pp 327-351.

BIBLIOGRAPHY 54

[24] Turner R., Gobbetti E., Interactive Construction and Animation of Layered Elastically

Deformable Characters, Computer Graphics Forum, Volume 17, Number 2, June 1998,

pp135-152

[25] Travel Egypt, [On-line].

Available: http://www.touregypt.net/vdc/Rsfish.html, [Accessed on 3 September 2002].

[26] UBC, University of British Columbia, Fragment Operations, [on-line] Available:

http://www.ugrad.cs.ubc.ca/~cs414/handouts/lecfrag.pdf [Accessed on 17 October 2002].

[27] Wang F., Mckenzie E. Virtual Life in Virtual Environments, Technical Report ECS-CSG-

44-98, Department of Computer Science, University of Edinburgh, September 1998.

[28] Weiler A., Modeling and Texturing a Photorealistic Fish, {on-line]

http://www.digitalproducer.com/pages/photorealistc_fish.htm, [Accessed on 4 November

2002]

Appendix A

Format of parameter file: BonyBream.txt

//all comments must start with two for-

ward slashes, and must take up the entire line.

//any description ending with _T was used for testing

//description world_scale urgeFactor start_position_3D_point cube-

size_t

bonybream 25.5 0.009 0.0 4.0 -9.3 10.0

//fish_colours_RGB

1.0 1.0 0.0

//fishshape_subclass BodySections CircleSections tex-

tured masked turn_T catchfish_T

FishShapeSin 16 12 true true false false

//Compression_ratio_of_fish_ body: scaleX scaleY scaleZ

0.26 0.1 0.04

//Caudal Fin

//top_line middle_line top_angel no._of_top_triangles connec-

tion_point_3d_point_x y z rotation_angle bottom_line bot-

tom_angle no._of bottom_triangles movement_angle step_size

0.75 0.13 75.0 3.0 0.95 0.0 0.0 0.0 0.83 78.0 3.0 10.0 1.0

//adiposeFin

//startBodySection endBodySection startLength endLength startan-

gle_in_degrees proportion

13.0 15.0 0.01 0.01 0.0 0.5

//dorsalFin

//startBodySection endBodySection startLength endLength startan-

gle_in_degrees proportion

7.0 10.0 0.6 0.05 70.0 0.98

//pelvicFin

//startCircleSection startBodySection endBodySec-

tion start_length end_length end_angle movement_angle step_size

11.0 4.0 7.0 0.1 0.6 90.0 6.0 1.0

//analfin

55

APPENDIX A. FORMAT OF PARAMETER FILE: BONYBREAM.TXT 56

startBodySection endBodySection startLength endLength startan-

gle_in_degrees proportion

12.0 15.0 0.18 0.01 -55.0 0.9

//pectoralfin

//startBodySection startCircleSec-

tion no_of_triangles startLength startAngle proportion version_t

6.0 2.0 3.0 0.95 5.0 0.75 0.0 4.0 1.0

//texture_file_ name black_and_white_version_file_name

./textures/bonybream.gif ./textures/bbshape.gif

//texture point follow.

//number_of_ points_body_points

192

//bodySection_no. circleSection_no body_texture_points_2D

0 0 0.015625 0.3046875

0 1 0.015625 0.3046875

0 2 0.015625 0.3046875

0 3 0.015625 0.3046875

0 4 0.015625 0.3046875

0 5 0.015625 0.3046875

0 6 0.015625 0.3046875

0 7 0.015625 0.3046875

0 8 0.015625 0.3046875

0 9 0.015625 0.3046875

0 10 0.015625 0.3046875

0 11 0.015625 0.3046875

1 0 0.064453125 0.32421875

1 1 0.064453125 0.296875

1 2 0.064453125 0.26953125

1 3 0.064453125 0.23828125

1 4 0.064453125 0.26953125

1 5 0.064453125 0.296875

1 6 0.064453125 0.32421875

1 7 0.064453125 0.36328125

1 8 0.064453125 0.40234375

1 9 0.064453125 0.44140625

1 10 0.064453125 0.40234375

1 11 0.064453125 0.36328125

2 0 0.115234375 0.34375

2 1 0.115234375 0.3046875

2 2 0.115234375 0.265625

2 3 0.115234375 0.2265625

2 4 0.115234375 0.265625

2 5 0.115234375 0.3046875

2 6 0.115234375 0.34375

2 7 0.115234375 0.40234375

APPENDIX A. FORMAT OF PARAMETER FILE: BONYBREAM.TXT 57

2 8 0.115234375 0.4609375

2 9 0.115234375 0.5234375

2 10 0.115234375 0.4609375

2 11 0.115234375 0.40234375

3 0 0.1640625 0.36328125

3 1 0.1640625 0.30859375

3 2 0.1640625 0.25

3 3 0.1640625 0.19140625

3 4 0.1640625 0.25 3

5 0.1640625 0.30859375

3 6 0.1640625 0.36328125

3 7 0.1640625 0.4453125

3 8 0.1640625 0.53125

3 9 0.1640625 0.6171875

3 10 0.1640625 0.53125

3 11 0.1640625 0.4453125

4 0 0.21484375 0.3828125

4 1 0.21484375 0.30859375

4 2 0.21484375 0.234375

4 3 0.21484375 0.15625

4 4 0.21484375 0.234375

4 5 0.21484375 0.30859375

4 6 0.21484375 0.3828125

4 7 0.21484375 0.484375

4 8 0.21484375 0.5859375

4 9 0.21484375 0.69140625

4 10 0.21484375 0.5859375

4 11 0.21484375 0.484375

5 0 0.263671875 0.40234375

5 1 0.263671875 0.3125

5 2 0.263671875 0.22265625

5 3 0.263671875 0.1328125

5 4 0.263671875 0.22265625

5 5 0.263671875 0.3125

5 6 0.263671875 0.40234375

5 7 0.263671875 0.51171875

5 8 0.263671875 0.625

5 9 0.263671875 0.73828125

5 10 0.263671875 0.625

5 11 0.263671875 0.51171875

6 0 0.314453125 0.421875

6 1 0.314453125 0.32421875

6 2 0.314453125 0.2265625

6 3 0.314453125 0.12890625

6 4 0.314453125 0.2265625

APPENDIX A. FORMAT OF PARAMETER FILE: BONYBREAM.TXT 58

6 5 0.314453125 0.32421875

6 6 0.314453125 0.421875

6 7 0.314453125 0.53515625

6 8 0.314453125 0.65234375

6 9 0.314453125 0.76953125

6 10 0.314453125 0.65234375

6 11 0.314453125 0.53515625

7 0 0.36328125 0.44140625

7 1 0.36328125 0.33984375

7 2 0.36328125 0.23828125

7 3 0.36328125 0.1328125

7 4 0.36328125 0.23828125

7 5 0.36328125 0.33984375

7 6 0.36328125 0.44140625

7 7 0.36328125 0.55078125

7 8 0.36328125 0.66015625

7 9 0.36328125 0.7734375

7 10 0.36328125 0.66015625

7 11 0.36328125 0.55078125

8 0 0.4140625 0.4609375

8 1 0.4140625 0.359375

8 2 0.4140625 0.25390625

8 3 0.4140625 0.1484375

8 4 0.4140625 0.25390625

8 5 0.4140625 0.359375

8 6 0.4140625 0.4609375

8 7 0.4140625 0.5703125

8 8 0.4140625 0.6796875

8 9 0.4140625 0.7890625

8 10 0.4140625 0.6796875

8 11 0.4140625 0.5703125

9 0 0.462890625 0.48046875

9 1 0.462890625 0.38671875

9 2 0.462890625 0.2890625

9 3 0.462890625 0.19140625

9 4 0.462890625 0.2890625

9 5 0.462890625 0.38671875

9 6 0.462890625 0.48046875

9 7 0.462890625 0.58203125

9 8 0.462890625 0.68359375

9 9 0.462890625 0.78515625

9 10 0.462890625 0.68359375

9 11 0.462890625 0.58203125

10 0 0.513671875 0.5

10 1 0.513671875 0.41796875

APPENDIX A. FORMAT OF PARAMETER FILE: BONYBREAM.TXT 59

10 2 0.513671875 0.3359375

10 3 0.513671875 0.25390625

10 4 0.513671875 0.3359375

10 5 0.513671875 0.41796875

10 6 0.513671875 0.5

10 7 0.513671875 0.59375

10 8 0.513671875 0.69140625

10 9 0.513671875 0.7890625

10 10 0.513671875 0.69140625

10 11 0.513671875 0.59375

11 0 0.5625 0.51953125

11 1 0.5625 0.44921875

11 2 0.5625 0.37890625

11 3 0.5625 0.30859375

11 4 0.5625 0.37890625

11 5 0.5625 0.44921875

11 6 0.5625 0.51953125

11 7 0.5625 0.59765625

11 8 0.5625 0.6796875

11 9 0.5625 0.76171875

11 10 0.5625 0.6796875

11 11 0.5625 0.59765625

12 0 0.61328125 0.5390625

12 1 0.61328125 0.48046875

12 2 0.61328125 0.421875

12 3 0.61328125 0.359375

12 4 0.61328125 0.421875

12 5 0.61328125 0.48046875

12 6 0.61328125 0.5390625

12 7 0.61328125 0.6015625

12 8 0.61328125 0.6640625

12 9 0.61328125 0.7265625

12 10 0.61328125 0.6640625

12 11 0.61328125 0.6015625

13 0 0.662109375 0.55859375

13 1 0.662109375 0.515625

13 2 0.662109375 0.46875

13 3 0.662109375 0.421875

13 4 0.662109375 0.46875

13 5 0.662109375 0.515625

13 6 0.662109375 0.55859375

13 7 0.662109375 0.59765625

13 8 0.662109375 0.63671875

13 9 0.662109375 0.6796875

13 10 0.662109375 0.63671875

APPENDIX A. FORMAT OF PARAMETER FILE: BONYBREAM.TXT 60

13 11 0.662109375 0.59765625

14 0 0.712890625 0.578125

14 1 0.712890625 0.546875

14 2 0.712890625 0.515625

14 3 0.712890625 0.48046875

14 4 0.712890625 0.515625

14 5 0.712890625 0.546875

14 6 0.712890625 0.578125

14 7 0.712890625 0.6015625

14 8 0.712890625 0.625

14 9 0.712890625 0.65234375

14 10 0.712890625 0.625

14 11 0.712890625 0.6015625

15 0 0.763671875 0.59765625

15 1 0.763671875 0.59765625

15 2 0.763671875 0.59765625

15 3 0.763671875 0.59765625

15 4 0.763671875 0.59765625

15 5 0.763671875 0.59765625

15 6 0.763671875 0.59765625

15 7 0.763671875 0.59765625

15 8 0.763671875 0.59765625

15 9 0.763671875 0.59765625

15 10 0.763671875 0.59765625

15 11 0.763671875 0.59765625

//number_of_texture_points_for_caudal_fin

9

//texture_points_2D

0.708984375 0.57421875

0.99609375 0.4375

0.966796875 0.5234375

0.91015625 0.59765625

0.85546875 0.65234375

0.966796875 0.96484375

0.94140625 0.85546875

0.90625 0.74609375

0.85546875 0.65234375

//transparency_t

1.0

//no_of_dorsal_texture_points

8

//texture_points_2D

0.646484375 0.015625

0.404296875 0.1328125

0.552734375 0.29296875

APPENDIX A. FORMAT OF PARAMETER FILE: BONYBREAM.TXT 61

0.57421875 0.23828125

0.455078125 0.1796875

0.501953125 0.2421875

0.64453125 0.015625

0.638671875 0.01953125

//no_of_adipose_texture_points

6

//texture_points_2D

0.619140625 0.046875

0.43359375 0.14453125

0.5390625 0.25390625

0.556640625 0.21875

0.48828125 0.203125

0.494140625 0.1953125

//no_of_anal_texture_points

8

//texture_points_2d

0.576171875 0.875

0.54296875 0.78515625

0.708984375 0.6640625

0.705078125 0.66796875

0.59765625 0.7421875

0.654296875 0.69921875

0.578125 0.85546875

0.5859375 0.84375

//no_of_pectoral_texture_points

7

//texture_points_2D

0.619140625 0.046875

0.431640625 0.14453125

0.546875 0.26171875

0.46875 0.18359375

0.509765625 0.2265625

0.61328125 0.0546875

0.607421875 0.0625

//no_of_pelvic_texture_points

8

//texture_points_2D

0.43359375 0.15234375

0.47265625 0.1953125

0.46484375 0.11328125

0.51171875 0.234375

0.548828125 0.26953125

0.521484375 0.07421875

0.583984375 0.046875

APPENDIX A. FORMAT OF PARAMETER FILE: BONYBREAM.TXT 62

0.62109375 0.046875

//movement of fish

//initVelocity_vector

0.000009 0.0000075 0.0000071

//urge_weightings

//random center keepaway repelDistance speed changeRate direction

0.04 0.35 0.01 0.15 0.7 50.0 0.0015

//flee_info

0.04 10.0

Appendix B

Fixel user manual

B.1 Introduction

Fixel is a program designed to aid in the obtaining of the texels (texture points) for VRFish.

Two copies of the texture are required. The one used in VRFish should be the inverse of the

one used in Fixel.(Fixel uses the one with the correct orientation, VRFish uses a GIF which is

flipped. See Chapter 6.)

The Fixel window contains a menu bar at the top, this contains three menus:

� File menu, from which you can save, open and exit the program.

� Values menu - all values are set or changed from here.

� Draw menu - to start any set of points.

The center will contain the texture file. At the bottom of the window is the Instruction Bar. This

contains context sensitive instructions to aid you with the next step. These are not step-by-step

instructions but hints to help with ease of use. See Figure B.1

The File menu has three options, (FigureB.2) Open - to open a picture file (GIF, JPG), Save -

to save all points that have been calculated into a text file with the extension .FXL and the Exit

option which will close the Fixel application.

The Values Menu (Figure B.2) has options to allow the user to enter the relevant parameters that

VRFish will use when creating this particular fish. (Figure B.3 shows the value dialog boxes).

For example Change Body Values displays a dialog box where the user can input the number

of body sections, and the number of divisions at each of these are divided into (circle sections /

angular resolution). In order to create the caudal fin, we need to know how many triangles are

63

APPENDIX B. FIXEL USER MANUAL 64

Figure B.1: Fixel application window

in the top half and how many are in the bottom half. Similarly, in order to create the dorsal fin

we need to know the number of body sections the fin spans, and the proportion parameter.

The Draw Menu (Figure B.2) has options to start the process of each set of texture point calcu-

lation. Each of these options sets the state of Fixel appropriately.

B.2 Open a texture file.

The texture file used by VRFish has to be a GIF file. But the file for Fixel can be any picture

format. (GIF, jpg etc). Click on the File Menu. Select Open.

B.3 Body

To do the Fixel (Fish Texel) points for the body follow these steps:

1. Set up the values for the body by clicking the Values menu, select "Change body values".

The first requirement is the number of divisions the body will be divided into. The 2nd

requirement is the number of points each section will be divided into when it is rotated to

obtain the body. Click in the Body Sections box , delete the current value, and enter the

new value. Click in the Circle sections box (or press tab). Delete the current value and

enter the new value. Once these are correct click the OK button.

2. Start setting the body points by clicking on the Draw menu. Select "Draw body grid"

APPENDIX B. FIXEL USER MANUAL 65

(a) File Menu (b) Values Menu (c) Draw Menu

Figure B.2: Fixel Menus

(a) Body Values (b) Caudal Values

(c) Pelvic Values

Figure B.3: Fixel: Value Dialog Boxes

APPENDIX B. FIXEL USER MANUAL 66

Figure B.4: Vertical lines on the body

3. Draw the middle line. From the "nose" to the tail point of the body. This should be in

down the center of the fish. The vertical lines dividing the fish are then drawn.

4. Resize each line, starting at the "nose" end of the fish. First click the top, then the bottom

of each line. See Figure B.4. Once all the lines are resized, the points are calculated and

drawn. See Figure B.5.

B.4 Caudal fin

1. Set the Caudal values: (Values, Set Caudal Values: See Body for method)

Requirement: The number of triangles in the top half, and the bottom half of the tail

2. Start setting the points (Draw, Do Caudal Points).

3. Click on points 0,1,2,3. (These are always in these positions, and must be done in the

correct order). The rest of the points will be drawn, as a guide line of where the points

should be. See Figure B.6.

4. Click to confirm, or to adjust the point starting with point 4 and work up to point 1. (in

Figure B.7, it would be points 4, and 5 in that order.) Then start at the point closest to

point 3 and move up to point 2. (in Figure B.7 it would be points 6, 7, and 8, in that

order)

APPENDIX B. FIXEL USER MANUAL 67

Figure B.5: Body points drawn

bottom length

middle length

top length

4

5

0

1

2

3

6

7

8

(a) Point order

Figure B.6: Caudal Points

APPENDIX B. FIXEL USER MANUAL 68

0

1 2

3

4 5 6

7

8
9

(a) Point order

Figure B.7: Dorsal fin points

B.5 Dorsal fin

1. Set Values (Values, Change Dorsal Values)

The values required: The number of body sections that the dorsal fin will span (in the

Figure B.7 span is 4). The proportion the next triangle’s third point is placed on the side

of the triangle.

2. Start setting the points (Draw, Do Dorsal Points).

3. Click the top point of the dorsal fin first (point 0), then points 1,2, and 3 - in that order.

The other points are drawn in, as a guide. See Figure B.7.

4. Click each point, to confirm or correct it, in order starting from point 4, moving across to

point 2. (In the Figure B.7 it is the points 4,5, and 6). Then click at the point closest to

point 0 and move down to point 3. (In Figure B.7 it is points 7,8, and 9).

B.6 Adipose fin

The structure is the same as the Dorsal fin

1. Set the values for the adipose fins. (Values, Change Adipose values: see dorsal fin for

method).

APPENDIX B. FIXEL USER MANUAL 69

1 2

3

0

4 5 6

9
8

7

Figure B.8: Anal point order

2. Start setting the points. (Draw, Do Adipose Points)

3. Do the points as for the dorsal fin.

B.7 Anal fin

The structure is the same as the Dorsal fin but it is inverted.

1. Set the values for the anal fins. (Values, Change Anal values)

2. Start setting the points. (Draw, Do Anal Points)

3. Do the points the same way as the dorsal fin. See Figure B.8 for the point order.

B.8 Pectoral fin

Structure is the same as the dorsal fin The dorsal fin can be used as the texture if the pectoral fin

cannot be clearly seen

1. Set the values: (Values, Change Pectoral Values).

2. Start setting the points. (Draw, Do Pectoral Points)

3. Do the points the same way as the dorsal fin

APPENDIX B. FIXEL USER MANUAL 70

4 5

6

7

0
1

2

3

Figure B.9: Pelvic fin points

B.9 Pelvic fin

1. Do Pelvic values (Values, Change Pelvic Values).The number of sections the pelvic fin

will span. (In the Figure B.9 the span is 3)

2. Start setting the points (Draw, Do Pelvic Points).

3. Click on points 0,1,2, and 3. The rest of the points are drawn as a guide line, click one

each point to confirm or to change that point. Start with point 4, the point on the base line

next to point 0, and move towards point 1. (In Figure B.9 points 4, and 5 - in that order.)

Then click the point closest to point 2 working towards point 3. (In the Figure B.9 points

6, and 7 - in that order.)

B.10 Save file

Once you have set all the texture points you require, you can save these points to a text file with

the extension FXL.

Below is a sample of a FXL file showing points for the Dorsal and Anal fins. Each list of points

is preceded by a comment to indicate what the points are for, and on the following lines the

number of points there are for that specific structure.

//dorsal

14

0.228515625 0.00390625

0.13671875 0.31640625

APPENDIX B. FIXEL USER MANUAL 71

0.396484375 0.328125

0.439453125 0.1796875

0.181640625 0.29296875

0.22265625 0.2890625

0.263671875 0.29296875

0.3125 0.30078125

0.353515625 0.30859375

0.2265625 0.01953125

0.23046875 0.02734375

0.234375 0.0390625

0.244140625 0.046875

0.25 0.05859375

//anal

8

0.40625 0.875

0.37890625 0.71875

0.5390625 0.65625

0.59765625 0.76171875

0.431640625 0.69921875

0.486328125 0.6796875

0.41015625 0.84765625

0.41796875 0.83203125

Appendix C

UML Diagram

An UML type diagram to give an overview of the VRFish.

VRFTriangle

Point2D

Vector3D

Point3D

VRFSurfacePoint Texel

FishShapeSin

VRPelvicFinR

VRPectoralBLFin

VRPectoralBRFin
VRFin

VRPelvicFinL

VRVerticalFin
VRPectoralBFin

VRFish

VRFishBody

VRCadualFin
VRPelvicFin

VRFishInfo
VRBodyInfo

VRFinInfo

VRMoveInfo

VRGenInfo

FishShapeFunction

Abstract super
Class

Reads in text file
Creates info.
Objects

Abstract super
Class

Primitive Classes

Information

All fish classes

Classes

use these

Fish classes

Figure C.1: UML type diagram to show the classes, and their relationships, which make up
VRFish

72

APPENDIX C. UML DIAGRAM 73

