
Cooperation through Reinforcement
Learning

By Philip Sterne

Computer Science Honours

2002

Rhodes University

Submitted in partial fulfilment of the requirements for the degree of
Bachelor of Science (Honours) of Rhodes University.

2

Abstract:

Can cooperation be learnt through reinforcement learning? This is the central question

we pose in this paper. To answer it first requires an examination of what constitutes

reinforcement learning. We also examine some of the issues associated with the design

of a reinforcement learning system; these include: the choice of an update rule, whether

or not to implement an eligibility trace.

In this paper we set ourselves four tasks that need solving, each task shows us certain

aspects of reinforcement learning. Each task is of increasing complexity, the first two

allow us to explore reinforcement learning on its own, while the last two allow us to

examine reinforcement learning in a multi−agent setting. We begin with a system that

learns to play blackjack; it allows us to examine how robust reinforcement learning

algorithms are. The second system learns to run through a maze; here we learn how to

correctly implement an eligibility trace, and explore different updating rules.

The two multi−agent systems involve a traffic simulation, as well as a cellular

simulation. The traffic simulation shows the weaknesses in reinforcement learning that

show up when applying it to a multi−agent setting. In our cellular simulation, we show

that it is possible to implement a reinforcement learning algorithm in continuous state−

space.

We reach the conclusion that while reinforcement learning does show great promise; it

does suffer in performance when extending it to the multi−agent case. In particular the

quality of solutions arrived at by a reinforcement learning system are suboptimal in the

multi−agent case. We also show that the algorithm used for continuous state−space, does

not achieve optimal performance either.

Acknowledgements:
This paper has single−handedly quadrupled the number of words I have submitted to

Rhodes University in my quest for an honours degree. As such it came as a great shock

to my system, and without the suggestions of my supervisor Prof. Shaun Bangay, or the

insights provided by Prof. Mike Burton, this paper would have drastically diminished in

quality. I must also thank the National Research Foundation for providing funding

which made this research possible.

And last, but certainly not least I wish to thank Kerry Kyd, whose support through

frustrating times (?’they just won’t learn!?!’?), as well as invaluable proof−reading skills

have eased the long marathon that has been my project.

4

Table of Contents:
1Introduction...8

2Background...9

2.1Justification...9

2.2A brief history of Reinforcement Learning...9
2.2.1The Pole Balancing task..10
2.2.2Maze Solving task...10
2.2.3Traffic Lights..10

2.3Definitions...11
2.3.1State..11
2.3.2Actions...11
2.3.3Reinforcement Function..11
2.3.4Value mapping..12
2.3.5Policy..12
2.3.6The Markov Property..12
2.3.7Dynamic Programming...13

2.4Fitting it all together...13
2.4.1State values vs. State−action pairs...13
2.4.2Generalized Policy Iteration..14
2.4.3Exploitation vs. Exploration...15
2.4.4Optimism..15
2.4.5Temporal Difference Learning..15
2.4.6SARSA...17
2.4.7Q−Learning..18
2.4.8The importance of ?..18
2.4.9Eligibility Traces..19
2.4.10Monte−Carlo control...20
2.4.11Summary..21

2.5Continuous state−spaces...21

2.6Related Work...22
2.6.1Feudal Reinforcement learning...22
2.6.2Sharing sensation in Multi−agent systems...22
2.6.3Robot World Cup..22
2.6.4Imitation in multi−agent systems..23
2.6.5RHINO...23
2.6.6Markov games..23
2.6.7Skinnerbots...23

3Blackjack..25

3.1Simplified Blackjack rules...25
3.1.1The dealer...25
3.1.2Hybrid SARSA and Monte−Carlo...25

3.2Performance..26
3.2.1Different update rules...28
3.2.2Initialising the Q−table...30

5

3.2.3Different values of ?...31

3.3Conclusions...32

4Maze World..34

4.1Maze Generation...34

4.2The Reinforcement Learning Framework..36
4.2.1The Q−table..37
4.2.2Eligibility Traces..38

4.3Example of Maze−Learning..39

4.4Different values of ?..43

4.5Another updating rule...44

4.6Conclusions...45

5The theory of cooperation..46

5.1Introduction...46

5.2Computer tournaments..48

5.3Analysis of Competitions...48
5.3.1Niceness..48
5.3.2Forgiveness...49
5.3.3 Responsiveness..49
5.3.4Conclusion..49

5.4Applicability in the real world...49

5.5Assumptions required..50

5.6Chicken...51

6The Traffic Simulation...53

6.1Description..53

6.2Analysis of the problem...53
6.2.1Is it achievable?..55
6.2.2Traffic Lights..56
6.2.3Exploration...58
6.2.4Conclusions..59

6.3Multi−agent systems..60

6.4Conclusions...61

7Cellular Simulation..62

7.1A successful strategy..63

7.2Using the Neural network..63
7.2.1Obtaining the action..64
7.2.2Implicit levels of cooperation..65

7.3Results obtained..66

7.4Conclusions...67

6

8Conclusions...68

9References...71

7

1 Introduction

Can cooperation be learnt through reinforcement learning? Reinforcement learning is a

relatively new field in artificial intelligence, and we use it to find out if it is possible for

two reinforcement learning agents to learn to cooperate with each other.

We first explore reinforcement learning as a theory in itself. We assume no prior

knowledge of reinforcement learning and introduce the topic gently. We examine two

tasks in detail; the first is a simplified blackjack player, which we use as a means of

putting the theory into practice. Most reinforcement learning algorithms contain

constants and we examine the effects of different values for these constants on the

performance of the reinforcement learning algorithms.

Our second task is an agent that learns to run through a maze. This task is somewhat

harder than the first as it has a larger number of states, and possible actions. It also

requires us to implement a full reinforcement learning algorithm.

Assuming that we now understand some aspects of reinforcement learning, we now turn

to the problem of cooperation. In some instances having multiple simple agents perform

a task is preferable to having a single complex agent. However this requires that the

agents are able to cooperate with each other. We first examine some of the work done in

theoretical work done in game theory, after which we examine two tasks in detail.

In our traffic simulation we explore the feasibility of learning cooperation between

multiple agents, as well as any side−effects of having multiple agents learning form each

other.

The final task is a cellular simulation. Initially we had hoped to explore the issues of

cooperation, in this task as well, however we found the complexity involved in

continuous state−spaces hindered us. Instead we discuss some of the issues involved

with extending the state−space from the discrete case to a continuous case, showing that

it is possible to do in a straight−forward manner, yet there are performance penalties that

affect the learning rate.

8

2 Background

2.1 Justification

Much of the project presented in this paper relies heavily on the framework of

Reinforcement Learning. To the reader that is unfamiliar with Reinforcement Learning

this chapter should prove invaluable to the understanding of the project.

2.2 A brief history of Reinforcement Learning

The earliest beginnings of reinforcement learning are in psychology, one of the most well

known examples of which is Pavlov’s dogs. In his experiment he rings a bell, and then

proceeds to feed the dogs. In time the dogs begin to associate the ringing of the bell with

the feeding. This is proved when Pavlov rings the bell but doesn’t feed the dogs. The

dogs show great expectations of being feed and are clearly confused when the meal isn’t

served.

From there, experiments have became more focused on showing that animals can learn

new behaviours if they are suitably rewarded. The work of B.F. Skinner in Operant

Behaviour using mainly pigeons and rats set up a fairly standard framework. He showed

that these animals could learn from a ’three−term contingency’, namely an event in an

environment lead the creature to a response, and subsequently a consequence. By

changing the consequences we are able to teach these animals new behaviour

(O’Donohue and Ferguson, 2001).

In time this method of learning has been seized upon by Artificial Intelligence

researchers they have developed a formal framework through which reinforcement

learning could be studied. One of the main advantages of Reinforcement Learning is that

there is no requirement of understanding the dynamics of the system. For example to

play Backgammon we simply have to define all the valid states of the game, as well as

the necessary reinforcement signal (Barto and Sutton, 1998:261). The reinforcement

signal is quite simple to define, for example +1 for a win, 0 for a draw and −1 for a loss.

The system can then study previously played games, or experiment by playing against

another system. All this experience is then used to improve how well it can play

Backgammon. This sort of black−box modelling can prove very powerful, as Tesauro’s

9

Backgammon system has even discovered strategies that some of the world’s best

Backgammon players are now adopting. Before we give formal definitions we will

provide some more examples of reinforcement learning tasks.

These examples are designed to give one a feel for what constitutes a reinforcement

learning problem, as well as providing examples with which we can refer back to in the

rest of this chapter. To this end we have provided three different examples so that the

more common variations of a reinforcement learning task are present.

2.2.1 The Pole Balancing task

A cart is placed in the middle of a track, with an upright pole on it. The task at hand is

too learn how to balance the pole by either moving the cart left or right on the track. The

task ends when the cart hits the end of either side of the track, or when the pole falls

over. Here we are interested in making the experiment last as long possible. (Taken

from Harmon, 1996).

2.2.2 Maze Solving task

Here an agent is placed in a maze, with one or more exit points. The agent must learn to

navigate through the maze if the agent is given only its current location. The only

actions available to the agent are ’North’, ’South’, ’East’ and ’West’. After exploring the

maze the agent must then be able to find as short an exit path as possible. (We cover this

example in depth in chapter Maze World.

2.2.3 Traffic Lights

Suppose we have to control a traffic light, with the aim of making traffic flow as

smoothly as possible (Thorpe, 1997). For optimal results we should also take into

account a traffic light’s position, as some positions would require different timings from

others. This means that a general algorithm is not optimal for traffic control in an

arbitrary position. It is possible to accurately simulate the intersection’s traffic flow on a

computer. Every time traffic gets stopped in the simulation then the controller gets a

penalty. The controller must then try to minimize the penalties it receives.

10

2.3 Definitions

Formally we may divide the reinforcement learning task into several distinct objects. At

a high−level the task consists of an agent interacting with an environment. The feedback

of the agent’s performance is given in the form of a reinforcement function. The agent

must have some perception of the environment. The agent can try to create a model of

the environment. But in most cases it learns simply the best action in each state.

2.3.1 State

An environment consists of several states. In the maze−learning task the states would

consist of positions in the maze. In a certain state only some actions may be available,

e.g. − There may be a wall blocking the north action in some states. In the Pole−

balancing task the states could consist of the interval [−1 ... 1], with each number

representing a position on the track, together with a number representing the angle

between the Pole and vertical. However it turns out that continuous state variables are

very difficult to deal with so instead the continuous variable is changed into a large

number of discrete states. There are methods available for dealing with continuous state

variables and those will be dealt later on in this paper.

2.3.2 Actions

Rather intuitively an action has some effect on the state and once an action is performed

a new state is observed. However after an action has been taken then reinforcement is

provided. These actions need not be deterministic, i.e. they are allowed to have

probabilistic outcomes. In other words if we are in state S1, when we perform action A1,

70% of the time we might end up in State S2 and 30% of the time we might end up in

state S3. For example in a game of cards, one might ask for another card, and then a

wide range of possible cards might be dealt. Each of these possibilities will lead us to a

new state.

2.3.3 Reinforcement Function

This is a mapping that accepts a state and action pair (S, A) which then gets mapped to a

real number. Very often the only a subset of real numbers are used, e.g. in the Pole−

Balancing task each step might result in a reinforcement of zero being given, with a

reinforcement of −1 being given for the terminal states (i.e. the pole falls over or the cart

hits the end of the track).

11

For the maze learning task a reinforcement of zero could be given for every non−

terminal move, with a reward of +1 being given when an agent moves into an exit.

2.3.4 Value mapping

This represents the agent’s attempt to predict the expected output of the reinforcement

function. This value mapping gets more accurate as more information is obtained.

However since the transition from state to state may be stochastic we may only be able to

obtain an average of the reinforcement obtained. Increasing the accuracy of the value

mapping is the crux of the problem as if one obtains a perfectly accurate value function

(so that it predicts the reinforcement function with 0% error), then it is an easy task to

obtain the optimal action in any state. As an example the value of the maze−solving task,

for states near the exit will be considerably higher than for states far from the exits. In

this way an agent choosing between an action that will take them to a low−valued state

(i.e. far from the exit) or a state with a high−value (i.e. closer to the exit) they can pick

the correct action, by simply choosing the higher valued state.

Now this sounds as if all the actions that will be taken are greedy, i.e. they consider only

one step in advance. However as we shall see tasks for which greedy solutions are non−

optimal can still be solved near optimally through reinforcement learning. Moreover the

final result will produce the same results and we will only need to do a greedy search.

2.3.5 Policy

This is inextricably bound to the value mapping. One can generate a policy from the

value mapping quite easily. A policy dictates what action should be taken in any given

state. The optimal policy of an agent is defined as the mapping of states to actions that

maximize the long term reinforcement signal. The optimal value mapping can also be

defined. Generally we perform the action that is predicted by the value mapping as being

the optimal one in a given state.

2.3.6 The Markov Property

The Markov property is an important assumption that simplifies many calculations in

approximating the optimal policy. A system has the Markov property if past histories

aren’t important. This means that the reinforcement function doesn’t depend on anything

other than the current state. A really good example of a task that has the Markov

property is chess, to consider the best move for a given chess position we don’t have to

know anything about the preceding moves, we can instead focus on the current position.
12

An example of a task that isn’t Markov is Poker (Sutton et al. 1998), here knowing

previous histories of players can prove important, for example knowing if someone has a

history of bluffing can prove very useful.

2.3.7 Dynamic Programming

Before we define what Dynamic Programming is, we need to define the term Markov

Decision process as it is a central part of Dynamic Programming. This allows several

simplifications, in that to determine the optimal policy we need only to consider the

current actions and policies. A Markov Decision Process (MDP) consists of an

environment with a finite number of states, and a clearly defined reinforcement function

with the Markov property. Then Dynamic Programming can be defined as:

’The term ‘‘Dynamic Programming" (DP) refers to a collection of algorithms that can be used to

compute optimal policies given a perfect model of the environment as a Markov decision process

(MDP).’ (Barto and Sutton, 1998).

Many of the algorithms used in DP can be transferred to reinforcement learning tasks

with some modification. The biggest difference between DP and RL is that Dynamic

Programming considers the environment as a whole (Bellman, 1962:297 − 319). It

assumes that all the information concerning rewards and transitions are available

beforehand, without requiring any agent to interact with the unknown environment.

Reinforcement Learning owes a lot to dynamic programming and in particular to Richard

Bellman. It is his optimality equation, which has been used throughout the theory of

reinforcement learning to derive the various convergence proofs, and update rules.

(Bellman, 1962:301)

2.4 Fitting it all together

Here we cover several aspects and approaches common to many reinforcement learning

algorithms.

2.4.1 State values vs. State−action pairs

When we are modelling the system, we might have a fairly good view of how the system

works but not a detailed complete description, or in most cases the complete description

is far too complex and detailed to be coded efficiently. By a complete description we

13

mean that if there is any randomness in the system that the probability distributions for

each random element can be given.

For example if we are playing blackjack, and we know which cards we hold, as well as

the card that is displayed by the dealer, then that knowledge affects the probability

distribution associated with the next card that will be dealt. In this way we would be able

to work out the optimal behaviour from expected values, the best action in each state

would be the one the maximises the expected value of the next state.

More often though rather than requiring such a complete description of the environment

it is easier to simply keep track of state−action pairs denoted by),(asQ . By state−action

pairs we mean the Cartesian product of all legal states with all of the legal actions. Thus

rather than maintaining values associated with each state and then working out the

optimal policy by working out the estimated value of the successor state for each action

and each state, we can simply maintain separate estimates for each state−action pair.

Notice that we then do not require any probability distributions since a simple average

would give us the expected values. In fact if we maintain a Q−table then the amount of

knowledge about the environment is minimal, since we only need to know the legal

states, as well as the legal actions associated with each state. Effectively then we have a

black−box modelling tool, where we can treat the environment as a black−box, and we

should still obtain near−optimal solutions. (Near optimal only because in the

convergence proofs we require that each state, and action be tested an infinite number of

times, which clearly isn’t practically possible)

Because of these strengths associated with Q−tables we will use them extensively, rather

than maintaining value tables.

2.4.2 Generalized Policy Iteration

Generalized Policy Iteration refers to the process of starting off with a fairly random Q−

table. The values that we would choose would be rather small so that there isn’t a

significant bias towards any actions. This Q−table can then generate a (random) policy.

By following this random policy we then obtain new values for our Q−table. Once we

have updated our Q−table then we can generate a new policy from it. Obviously we can

repeat this as many times as we like.

14

This iterative process, will continue until the Bellman optimality equation is satisfied,

after which any more policy iterations will not be able to improve things (Bellman, 1962:

304)

2.4.3 Exploitation vs. Exploration

Initially we start off knowing very little about our environment, thus our Q−table is

almost useless in the beginning. Thus it pays not to follow it too closely, but rather to try

actions that do not have any information about them (Thrun, 1992). In this way we can

gather new information which leads to a better understanding of the environment.

However after many interactions with the environment such an exploratory move is

unlikely to be an optimal move, so we would rather follow the existing policy. This

plasticity is rather similar to simulated annealing, and can be implemented by simply

picking a random action with probability ?, add then reducing ? over time. It is one of

the necessary requirements for convergence to an optimal policy that this exploration be

present since every state−action pair be tested an infinite number of times.

2.4.4 Optimism

An easy way to ensure that lots of exploratory moves are taken in the beginning is to set

the Q−table for those moves to be high. As new experience comes in the value functions

are then set to a more realistic level, however the other states are still optimistic, so the

next time the state is encountered another untested optimistic action will be taken

(Kaelbling, Littman and Moore, 1996:10)

One problem with this is that as we shall see in Chapter Maze World there are some

situations in which there is only one solution, so once this solution is found then the next

time we deliberately favour untested solutions, however since the only solution has

already been we effectively trap ourselves. One way to avoid this is to update the Q−

table as we gain new experience, this will lead us to experience all other possible states

repeatedly until we can conclude that no other path is available. However in this

situation we rather avoid using an optimistic Q−table.

2.4.5 Temporal Difference Learning

A large problem associated the learning of complex multi−stage tasks is that many of the

actions that occur are all responsible for the success of the task. E.g. in a maze a whole

sequence of actions are necessary to reach an exit. However when one doesn’t have
15

perfect knowledge of the environment then how does one determine which moves were

responsible for the completion of the task, and which moves actually hindered the

completion of the task?

This is called ’the problem of credit assignment’ and there aren’t any algorithms that

remove this problem totally, however one of the ideas that best deals with it is temporal

difference learning − TD(λ) (Sutton, 1988). Here one uses a simple yet very powerful

idea, when one receives a reward it shouldn’t just be associated with the previous state;

action pair, but rather it should be distributed (in some way) among the all previous

actions. In this way actions that lead to good states (i.e. states where potential rewards

are high) are also rewarded. Before we can give the full description of this distribution

we need to talk about discounting.

Discounting makes sense on an intuitive level, since we should prefer an immediate

reward over a delayed reward. To give an example if we were offered R100,000 rand

today or R120,000 tomorrow which would we take? Obviously most of us would wait

an extra day for R20,000. However if we were offered R100,000 either today or

tomorrow then we should all choose to receive the money today. Mathematically we can

define a discounting factor ? as the value in the range [0...1] for which there is no

difference between an immediate reward of ?, and a delayed reward of 1 after 1 time−

step.

Now one can define a 2−step reward or a 3−step reward, or an n−step reward. A n−step

reward is simply: n
n RRRR ηη +++=′ K10 . Where R0 is the current reward and Ri

represents the i’th reward received in the future. Since we do not know what rewards we

will receive then we have to maintain an eligibility trace which we will discuss further in

Eligibility Traces.

Temporal difference learning then goes a step further and weights these rewards further,

multiplying by a factor of λ , where)1..0[∈λ . This then is known as TD (λ) learning.

Since we deal exclusively with TD (0) methods, this extra λ factor simply disappears,

and we will leave general TD (λ) learning out of this discussion.

16

This represents a slight shift, from trying to predict the immediate reinforcement; we are

instead trying to predict the long term reinforcement that we will receive. Notice that

once we have a reasonably accurate Q−table then the choices we make are based only on

local information (i.e. we act greedily) however the behaviour that we produce is optimal

for long−term solutions. As such it is one of the more powerful methods available.

2.4.6 SARSA

We now present a method of control that is widely used for its good performance and

easy implementation. It is from (Sutton, 1988) and can be used as a TD (0) method, or

as a TD (?) method. The TD (0) updating equation is given below:

Eq 2.2.0 SARSA update rule

)],(),([),(),(asQasQrasQasQ ′′+−+← ηα

Where:

Q(s,a) − is the previous state−action value

r − is the reward given

? − is the discounting factor (in the range [01])

? − is the weighting factor (in the range [0...1])

Q(s’,a’)− is the successive state−action value

The name SARSA is derived from the fact that the equation depends on the quintuple

(s,a,r,s’,a’), which we found amusing. It is an on−policy form of learning, which means

that the updates are obtained from direct experience, and are dependent on the policy

being followed. There are off−policy methods, which do not depend on the policy being

followed, most notably Q−learning which will be discussed in the next section.

The form of the equation is quite interesting and can be explained on an intuitive level.

If we manipulate Eq 2.2.0 then we can obtain:

Eq 2.2.0 − Manipulation of SARSA

)],([)1)(,(),(asQrasQasQ ′′++−← ηαα

From this we can see that the equation is weighted average of the old Q−value (which is

an estimate of long−term reward) with the new reward received as well as an estimate of

the discounted future rewards to be received.

17

In section Different update rules, we compare the performance of a similar update rule

(Monte Carlo) with the performance of such a weighted rule against the performance of a

normal average.

2.4.7 Q−Learning

Here we present an algorithm that is noticeably similar to SARSA. The difference is that

while SARSA is heavily dependent on the policy being followed, Q−learning attempts to

learn independently of the policy being followed. The TD (0) update is as follows:

Eq 2.2.0 Q−learning update rule

)],(),(max[),(),(’ asQasQrasQasQ a −′′++← ηα

Its name derives from the fact that it attempts to learn from the Q−table, rather than the

experience. It tries to be policy independent since it looks at the maximum value for all

possible actions in the current state. While we might want to explore and take an action

for which the state−action pair is less than the maximum, we should still update the

previous action with the maximum value, since it represents the best we could achieve.

This means that both SARSA and Q−learning converge to maximums, however they

represent different optimal behaviours.

However this might not necessarily be accurate since it doesn’t take into account the

likely consequences, only the best consequences. Barto and Sutton (1998:149) present a

fairly detailed description of the difference in performance between SARSA and Q−

learning, by examining a task where the best possible outcome is ’dangerous’ (there is

also a good probability of a large penalty). In this case SARSA learns to be safe, since it

maximises expected reward, while Q−learning still takes the dangerous route, and its

performance is worse than that of SARSA’s.

In light of this susceptibility we do not to use Q−learning, but rather other methods.

2.4.8 The importance of ?

Both Temporal Difference learning and Q−learning use ? in their update rules. What is

the significance of ?? ? represents the value we place on new experience. If we know

that we are in a static environment then we can decrease the value of ?, in effect

lessening the value of new experience, as we feel that we understand a significant amount

of the environment. However there is a trade−off as one decreases ?. As ? decreases we

18

are able to estimate the value of a state−action pair to a higher accuracy. However as a

result of the increased accuracy the policy becomes more inflexible, and unable to adapt

to new changes in the environment.

Moreover if ? is decreased too quickly then the agent’s estimates of rarely encountered

states will have little or no meaning as they might have been encountered once or twice,

but updated using a very low ? value, so that the value doesn’t reflect the true values.

On a conceptual level though we feel that by keeping this responsiveness in the agent’s

policy that the agent will not fall into sub−optimal policies, but will be able to find the

true optimal policy. As such, we choose not to decrease ?, although it might improve

performance, through the increased accuracy of the state−action value estimation.

2.4.9 Eligibility Traces

As we mentioned in section Temporal Difference Learning, the updating rule requires

that we have the future rewards so that we are able to reinforce correctly. A much

simpler, yet equivalent, way of doing things would be to distribute the rewards

backwards. If we receive a large positive reward the we can say that all those actions

leading up to this reward should be reinforced. An eligibility trace is simply keeping

track of which state−action pairs have been visited.

However there are two different types of eligibility traces, and they differ in what action

to take after a state−action pair is repeated.

Accumulating traces: if the same state−action is encountered then the eligibility trace has

one added to it.

Replacing traces: if the same state−action is encountered then the eligibility trace for that

state−action is reset to one.

We also need to maintain how long ago it was visited, and that is simply done using

discounting. If ? represents a table the same size as the Q−table, then

;λδδ ←

19

Eq 2.2.0 Replacing Trace updates

1),(),(+← asas δδ

Eq 2.2.0 Accumulating Trace updates

1),(←asδ

When a reward is received:

Eq 2.2.0 Updating the Q−table

)],(),([),(),(0),(|),(asQasrasQasQasas δαδ −+←⇒≠∀

If we maintain an eligibility trace with decay factor λ then SARSA, becomes a TD (λ)

method. λ as a parameter controls how far−sighted one would want the agent to be. For

values close to 0 the agent attempts to maximise short−term gains, while for λ close to

1, the agent is more far−sighted and looks at long term gains.

The initial focus of early reinforcement learning research used accumulating traces.

Singh and Sutton (1996) give an extensive comparison of the performance of both types.

They conclude that in most cases a replacing trace has a better learning rate. So we have

used replacing traces in our work. In section The Reinforcement Learning Framework,

we give reasons why accumulating traces are inappropriate for that task.

2.4.10Monte−Carlo control

This is the final learning method we present. It is also forms a basis for the method we

use for most of the tasks in the forthcoming chapters. While SARSA, updates the Q−

tables after every action taken, in Monte−Carlo control we update the Q−tables after

every episode. (This means that it isn’t suitable for continual tasks, i.e. tasks for which

there is no clear end) Since the updating is done only once it means that we must

maintain an eligibility trace, for the whole episode. The updating rule is also based on

the more intuitive measure of maintaining an average.

However as we shall see in Different update rules this update rule doesn’t appear to

perform quite as well as the weighted average updates used in SARSA, and Q−Learning.

For this reason we modify our learning method and use a hybrid of SARSA and Monte−

Carlo control.

20

2.4.11Summary

We have presented several different forms of reinforcement learning. Each has its own

advantages and disadvantages in terms of learning rates and computational costs.

SARSA generally has an excellent learning rate, although it requires updates after every

action taken (which if an eligibility trace is implemented, can be computationally

expensive). Q−learning attempts to learn independently of the policy it is following, but

that can lead it away from the desired behaviour (optimizing the average reward).

Monte−Carlo control has the advantage of updating only after an episode has passed, but

this appears to slow the learning rate slightly.

The update rules either average all the previous rewards, or they weight the new

experience by a fixed percentage. As we shall see this weighting appears to be more

responsive to our learning tasks.

We will then proceed by implementing an updating rule that updates only at the end of

an episode (from Monte−Carlo control) yet weights new experience by a fixed

percentage (from SARSA, and Q−learning). We feel that this hybrid rule will combine

the advantages of a low computational cost, while still keeping a fair learning rate.

2.5 Continuous state−spaces

A rather large jump in complexity occurs when we consider continuous state−spaces

(Thrun and Möller, 1991). In part this is due to the fact that our table based methods

cannot be directly used in continuous variables. Of course we can simply partition the

continuous variable into large discrete blocks, which has been done before, and quite

successfully (Keerthi and Ravindran, 1995: 12 − 13). Another option is to consider

function approximators, such as neural networks, or multi−dimensional splines.

In the final task that we consider we do attempt to use a neural network, although things

don’t quite go as planned. We also attempt to extend to continuous action spaces, and

then use some numerical methods from multi−variate calculus, to work out the optimal

actions predicted by the neural networks.

21

2.6 Related Work

While in the preceding few pages we gave extensive theory, in this section we show that

reinforcement learning is an active field of inquiry, with several new and promising ideas

being explored.

2.6.1 Feudal Reinforcement learning

Dayan and Hinton (1993) researched the possibility of having higher−order

reinforcement learning systems. They use the term mangers, for a reinforcement

learning system whose actions set goals for another reinforcement learning system. In

this way it is possible to create an agent that learns about a system at a more abstract

level, and then sets a goal for an agent that is working at a more concrete level.

They show that for certain tasks this abstraction can improve the performance

dramatically. However Schmidhuber attacks this strongly, saying that for certain tasks

the performance of a hierarchical based system can be lower than a normal system.

(Schmidhuber, 2000:2 − 3)

2.6.2 Sharing sensation in Multi−agent systems

Is it possible to share experience directly between two agents? This question is similar to

the questions on cooperation posed by our paper in chapter The theory of cooperation,

although here the communication isn’t learnt, instead we share direct experience from

one agent to another. Tan (1993) examines this and shows sharing direct experience, or

even just sharing information can lead to improvements in the learning rates, and final

performances of the agents.

2.6.3 Robot World Cup

An interesting competition is held regularly, to play robotic soccer. Here a number of

robots have to learn to coordinate their actions to play soccer correctly. Reinforcement

Learning is playing an influential part in this competition, as it allows one to define

performance simply in terms of possession or goals scored.

A wealth of papers has been written detailing experimental findings, as well as

experience, in this multiple robot domain. This research definitely includes the problem

of learning cooperative behaviours such as collision avoidance, and actual soccer

strategies. For a more detailed look at the Essex Wizards which have performed well at

22

these competitions see (Hu and Kostiadis, 1999) which focuses on the reinforcement

learning or (Hu, Kostiadis and Liu, 1999) which looks at the robotics involved.

2.6.4 Imitation in multi−agent systems

If an agent already has knowledge of the environment then it would pay a newcomer to

imitate the experienced agent. This imitation can give the newcomer a good idea about

how to behave in the environment. Boutilier and Price (1999) have shown that this

strategy can lead to a large improvement in the learning rate, as well as being extendible

to multiple mentors.

2.6.5 RHINO

RHINO (Bücken, Burgard et al. 1998) is mobile robotic unit that is capable of moving

around indoors and discovering its environment. It maintains an internal map as a means

to navigate from one point to another. This map is generated efficiently through

reinforcement learning methods. Moreover these reinforcement methods can encourage

the exploration of unknown areas. RHINO also needs to perform image recognition, so

that it is able to navigate through the environment without colliding into anything.

(Bücken, Burgard et al. 1998: 20) recommend using RHINO as a robotic tour guide,

although we feel that as time progresses this sort of technology will be more ambitious,

leading into things such as automated garbage cleanup, or exploration in hazardous areas.

2.6.6 Markov games

Some work has been done in applying reinforcement learning to Markov games

(Littman, 1994). A Markov game consists of two agents with mutually opposed

interests; this means that one agent’s loss is the other’s gain. This means that a Markov

game has no room for cooperation; it is only interested in competitive behaviour. We are

more interested in trying to learn cooperative behaviours. But this research could lead to

a fuller understanding of the work by Tesauro (Barto and Sutton, 1998:261) where

through self−play a system is able to play Backgammon at world−class standards.

2.6.7 Skinnerbots

Skinnerbots (Touretzky and Saksida, 1997) use a form of reinforcement learning similar

to the operant conditioning theory that has been postulated by B.F Skinner. Here we

provide a shifting reinforcement function. In the initial stages we reward only simple

behaviours, however after the agent has learnt these simple behaviours then the

reinforcement function is shifted, to reward slightly more complex behaviours. As the

23

agent senses this shift (from a large discrepancy in the expected and received

reinforcement) then it goes into a more exploratory phase, where it tries more random

actions. This learning (known as shaping) is used to train animals to perform tricks, and

it has been suggested that it is how humans acquire language (O’Donohue and Ferguson,

2001:119)

This represents an interesting change in the focus of a reinforcement learning task, as the

reinforcement function is normally constant, and the agent doesn’t have such clearly

defined exploration stages. However it has been shown that Skinnerbots can learn

complex behaviour (Touretzky and Saksida, 1997)

24

3 Blackjack

Here we examine the first reinforcement learning task. Blackjack represents a simple

reinforcement learning task as there is a very limited number of possible states that one

can be in. We also removed some of the rules for Blackjack so that our eventual game is

possibly too simplistic but it does make for an easy introduction as well as showing an

excellent learning rate. The inspiration for this task is drawn from example 5.1, of Barto

and Sutton (1998). We have chosen this task for its simplicity, as this allows us explore

in detail various aspects of a reinforcement learning implementation. We compare an

update rule that maintains an average, with an update rule that weights new experience.

There are various constants that must be chosen for a reinforcement learning task, we

also examine the effects of these constants on the performance of our blackjack agent.

3.1 Simplified Blackjack rules

In any given state there are always two possible actions − Hit and Stick. We remove the

possibility of a split. A split in Blackjack occurs when one has two cards with the same

value, which are then split into two separate hands. We have removed this action

because we feel that splitting one’s hand is simply repeating the same learning task twice.

It then gives us the benefit of storing a state simply as a single number and. Also an ace

only has value one. This removes the need to consider an ace as an eleven. We feel that

these changes do not alter the spirit of the game.

3.1.1 The dealer

The dealer is quite simple in that it simply hits until it gets a total of 16 or more, then it

sticks. This is very similar to the Blackjack dealers found in casinos. However we do

place our agent at a disadvantage in that if it does exceed 21 then it is an automatic loss,

it doesn’t matter if the dealer would have exceeded 21 as well.

3.1.2 Hybrid SARSA and Monte−Carlo

We approach the problem by trying to learn the (State, Action) values. Since in a hand

of Blackjack there are merely 20 legal states − all the values range from 2 to 21.

Moreover from the simplifications there are only 2 possible actions. Therefore we only

need to maintain a table of 40 entries.

25

The reinforcement function is defined as follows: if the player wins then a reward of +1

is given, if there is a draw then no reinforcement is given and if the player loses then a

penalty of −1 is given.

Since there is only one reward for each hand of blackjack, this task is naturally an

episodic task and the updating is done at the end of each hand, as per Monte−Carlo

control. However the updating rule is drawn from SARSA. Thus the reinforcement

algorithm we follow is a hybrid between SARSA (Barto and Sutton, 1998) and Monte−

Carlo Control.

Eq 3.3.0 SARSA − algorithm

)],(),([),(),(asQasQrasQasQ −′′++← γα

Where:

r − is the reward received,

? − is the discounting factor.

? − is the weighting of new experience.

Q(s,a) − is the state−action value of the previous state

Q(s’,a’) − is the state−action value of the new state

Eq 3.3.0 Our Modified algorithm

)],([),(),(0),(|),(asQrasQasQasas −+←⇒≠∀ αδ

As one can see we have removed the discounting factor, instead we maintain an

eligibility trace of the states encountered, and update them as a whole at the end of the

game, as we shall see we still obtain the optimal policy. The eligibility trace has a

discounting factor equal to one. In this way all actions are considered to contribute

equally to the final reward.

3.2 Performance

We attach the code for this experiment as an appendix. Here are the results of 50

separate experiments of 1000 games, which have been averaged. The graph plotted is

not average reward, but rather cumulative gains (i.e. the sum of all previous rewards).

For comparative purposes we show the average performance of a player that simply plays

randomly.

26

0 100 200 300 400 500 600 700 800 900 1000
−900

−800

−700

−600

−500

−400

−300

−200

−100

0
Comparison of Blackjack Player and random player

C
um

ul
at

iv
e

re
w

ar
d

Games played

Blackjack Player
Random Player

Figure 3.3.1 − Performance of R.L Blackjack player (Averaged over 50 trials)

Notice that from 400 trials the performance is almost approximately a straight line. (The

learning can be seen from the slight curve in games 0 to 400) This indicates that after

400 games the average reward is constant and there is no more to learn. The seemingly

poor performance of the player is in part due to the slight asymmetry in that if the player

exceeds 21 then the dealer doesn’t even play, it is counted as a loss, even though there is

a fair possibility the dealer would also exceed 21 thus resulting in a draw. This slight

asymmetry is suggested by Barto and Sutton (1998) and is followed here. The other

contributing factor to the poor performance is that the player must take exploratory

moves a certain percentage of the time, since the player seems to have completely learnt

the game after 400 trials these exploratory moves simply hinder the performance.

After analysing the table obtained at the end of the experiments one can see that the

optimal play is to hit until one’s total reaches 16 or above, then one should stick. This

means that the dealer has been using the optimal policy. What is impressive is that even

playing against such a tough opponent we have still managed to obtain optimal results.

However it is would interesting to know how well we would have performed if we had

reduced the number of exploratory moves as the experiment progressed. This is given

below in Figure 3.3.2.

27

0 500 1000 1500 2000 2500 3000
−450

−400

−350

−300

−250

−200

−150

−100

−50

0
Performance of Blackjack Player

Games Played

C
um

ul
at

iv
e

R
ew

ar
ds

No Reduction in Epsilon
Reducing epsilon over time

Figure 3.3.2 − Reducing exploratory moves during the experiment (Averaged over 30 trials)

At the beginning both players take exploratory moves with equal probability. However

for the red player we linearly decrease this probability to zero as the experiment nears

completion. The increase in performance is clearly visible, and represents the true

performance of the agent.

3.2.1 Different update rules

The form of our update rule (Eq 3.3.0) is at first a little strange.

Eq 3.3.0)],([),(),(asQrasQasQ −+← α

One of the reasons for this update rule is the assumption that the value of the State−

Action pair is dependent on the policy. This implies that we should weight new

information more heavily than old information. However we felt that the value of

Blackjack states doesn’t vary too much with the policy followed so we investigated

another updating method. This is the much more intuitive updating rule of maintaining

an average, as suggested by Monte−Carlo control (Barto and Sutton, 1998). Notice that

this does make the policy a lot more inflexible as if something in the environment does

change then it will take a long time before the policy is changed. However this might

28

also help, e.g. if we decide to stick on 6 and the dealer exceeds 21 then we win. The

normal updating rule will then update the state−action value a lot, even though this is not

a good action. An average−based updating rule will be a lot more resistant to such

statistical anomalies.

0 10 20 30 40 50 60 70 80 90 100
−30

−25

−20

−15

−10

−5

0
Different update methods

C
um

ul
at

iv
e

R
ew

ar
ds

Games Played

SARSA−like update rule
Monte−Carlo update

Figure 3.3.3 Comparing SARSA and Monte−Carlo update methods

As one can see the SARSA updating method is superior to maintaining an average,

although not by much, which we found counter−intuitive. However this can be taken to

show that the value of a state−action is dependent on the policy followed. This does

make sense, for example hitting when one has a total of 3, will have a value greater for

an optimal policy than for a random policy. Thus as the true values of the states change,

we should weight new experience more heavily than old experience, this is what happens

in the SARSA updating rule.

For the Monte−Carlo rule we assume that the value of a state−action pair is independent

of the policy being followed. Under this assumption the estimate with the least variance

is the simple average, of all previous experience. Thus one can see that the assumption

made by Monte−Carlo control is an invalid one, since it is outperformed by the SARSA

updating rule.

29

3.2.2 Initialising the Q−table

Another issue of concern is whether or not to initialise the whole table to zeros, or small

random entries. One concern is that by initialising them to zeros then the first action in

the table would be taken for every state in the beginning of the experiment, one could

overcome this by choosing an ?−soft policy (i.e. choosing randomly among state−action

pairs that differ by no more than ?). Or we could simply initialise the table randomly

(with small numbers to ensure the policy is still sensitive to new experience). We choose

to compare randomly initialised table performance with the zero−initialised table

performance.

0 500 1000 1500 2000 2500 3000
−450

−400

−350

−300

−250

−200

−150

−100

−50

0
Performance for different initialisations

Games Played

C
um

ul
at

iv
e

R
ew

ar
ds

Initialising to zero
Small Random values

Figure 3.3.4 − Different Initialisations of the Q−table (Averaged over 100 trials)

30

As one can plainly see there is no significant difference on the rate of learning, nor on the

final performance of the agents.

3.2.3 Different values of ?

In (Eq 3.3.0) the value of ? is chosen arbitrarily and it does appear to have a pivotal role

in updating the Q−values. How important is the value of ?? Can a badly chosen value of

?, slow the learning rate tremendously? To find out we varied ? in the range [0..1].

When ? = 0 then new experience has no bearing on the Q−table, and when ? = 1 then the

Q−table is based only on the last experience. Obviously one would expect the best

performance would be somewhere in the middle.

00.20.40.60.81 020406080100

−35

−30

−25

−20

−15

−10

−5

0

5

Games Played

Performance for multiple values of Alpha

Alpha−values

C
um

ul
at

iv
e

R
ew

ar
ds

Figure 3.3.5 − Surface showing performance with multiple values of ? (Averaged over 30 trials)

31

Here the surface shows how the games progress. (Red shows initial performance, blue

showing final performance) What is most clear from this graph is that the worst

performing value for ? is ? = 0. This is to be expected, for no learning has occurred.

What is encouraging though is that the performance for a large interval of ? [0.10.7] the

performance, while not constant is almost uniformly good. Moreover the learning rate

seems to also have little variance for this range of ?. To illustrate this more clearly we

show the final performance in Figure 3.3.6.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−34

−33

−32

−31

−30

−29

−28

−27

−26

−25

−24

Alpha−values

P
er

fo
rm

an
ce

 a
fte

r
10

0
tr

ia
ls

Performance as affected by Alpha−values

Figure 3.3.6 − Final performance of player for multiple ? values (Averaged over 30 trials)

3.3 Conclusions

In this simplistic environment we have tested the effects of various constants, update

rules and initialization procedures. From the data we have gathered we can see that

while some optimisations are possible, these do not contribute significantly to the overall

performance of the player. This is good, since it means that the performance is robust

(consistently good, over most choices of parameters). Of the two update rules that we

examined, the SARSA−like update consistently performed better than maintaining an

average (although this increase was marginal). As a result we have chosen it rather than

32

maintaining an average, since to compute the average we also have to maintain a table

counting how many times each state−action is visited.

33

4 Maze World

In this task an agent is placed in an approximately 20×20 grid. There are several

obstacles in this environment and also there are now more actions − {North, South, East

and West}. This means that not only is the size of the task is considerably larger, but

also that rewards are received only after many iterations. Thus the problem of credit

assignment is also introduced.

We have chosen this task as it represents a natural increase in the complexity of the

reinforcement learning required. Not only are the optimal solutions many times longer

than in the blackjack task (which means we have to implement an eligibility trace

correctly) but we are also faced with more available actions at each step.

Once again there are similar questions that we can ask, about the parameters involved

4.1 Maze Generation

To generate the mazes we use the following algorithm. We initialise the maze to a grid

consisting of alternating walls and empty cells. We then randomly pick a wall that

separates two empty cells that aren’t connected. This wall is removed and the two empty

cells are updated to reflect that they are now connected. We repeat this procedure until

every empty cell is connected to every other empty cell. This generates what is known as

a labyrinth. A labyrinth has as its defining property that between any two points there is

only one path joining those two points. Obviously this implies that there are no cycles in

a labyrinth.

34

Figure 4.4.1 − The initial labyrinth Figure 4.4.2 − The maze that has to be learnt

However if there are no cycles in a labyrinth then learning a labyrinth is a very easy task,

since there is only one path that can be learnt. To increase the difficulty of the task we

then proceed to remove a percentage of the blocks. After some experimentation we

settled on removing a quarter of the blocks. Thus we have a maze that has multiple

paths.

4.2 The Reinforcement Learning Framework

To fully define the task we still need to decide on a goal state. For this task we simply

picked a random eligible state. Notice that we need to perform a further check to see

which states are eligible. There is a slight problem when we randomly remove blocks

since we can remove a block that is bordered on all four sides by other blocks. These

empty blocks are defined as not eligible because if we try to define a goal or starting

position in one of these blocks then the task is impossible. All occupied blocks are also

defined as not eligible. Any other block is eligible.

The reinforcement function is defined as 0 for all transitions that do not lead to a goal

state, and a value of one is returned when we transition to a goal state. Notice here the

flexibility of this framework. We are able to define multiple goals if we wish, without

creating any difficulties. Also in this case we have decided that a move of north

transports the agent one block up, while south transports the agent one block down etc.

This need not be the case in general; we may also define special blocks where a move of

north transports the agent to any fixed position. (Barto and Sutton, 1998) cover various

examples of this. Here we can start to see the trade−off’s quantified: while

Reinforcement Learning will not be anywhere as efficient as an A* search, or even a

simple breadth−first search. Reinforcement Learning can however deal with many more

arbitrary restrictions without having to fundamentally change any part of the algorithm.

This is because part of the agent’s energy is directed towards discovering the

environment it is in. It is the position of this author that method’s of this type are the

most likely to be used in creating artificial life. We feel that only these methods possess

the flexibility required to deal with the outside world.

However this flexibility comes at a price of not just more computation required, but also

we cannot guarantee the optimality of the solutions we derive. This is in part due to the

fact that the convergence proofs require that each state and action be tested an infinite

number of times, while we gradually reduce the learning rate. The Maze world provides

the best evidence of non−optimal solutions. In some mazes even after a significant

amount of training the paths derived from the Q−values have some unnecessary twists

and turns. However, in general, these non−optimal choices haven’t been experienced

often, which means that the policy we can extract will be optimal for the most frequently

visited states.

4.2.1 The Q−table

In our implementation we use a large table to store the Q−values for each (State, Action)

pair. We give moves that would result in a collision a value of −1. This identified them

as illegal, and they are not selected. Initially since nothing is known about the Q−values

we set the legal entries to a pessimistic value of zero. Here if we use an optimistic value

then when the agent encounters a path that has already been experienced the agent ends

up trying to find a totally different path that doesn’t follow the known route. However in

quite a few situations the only path is the known one. Thus the agent is effectively

trapped as it is actively ignoring the only solution!

In a SARSA implementation this would not have been a problem since, the updating

occurs between interactions with the environment, as opposed to once, only at the end of

the episode. This means that the agent would behave nicely, actively exploring the

unknown paths and reducing their estimated values all the time until the best action is the

previously found exit path.

To begin the learning process we would begin by starting the agent off in a random

position. Note that the only input provided is the position in (x, y) coordinates, but that

this state information does have the Markov property, since we are not interested in how

we got to that point, all we need to know is which point we are at. With the (x, y)

coordinates we can reference the Q−table and find which action has the maximum Q−

value. To maintain exploration we also select a random action a fixed percentage of the

37

time. We do however reduce this percentage linearly so that the agent does also

experience any possible side−effects of following the policy exactly.

4.2.2 Eligibility Traces

Another important aspect in learning the Maze World task, is correctly applying

Temporal Difference Learning. To this end we maintain an eligibility trace, the trace

keeps a record of the past history so that when one reaches the goal state not just a single

state is rewarded but the whole history of past states are rewarded. Notice that since we

only reinforce at the end of the experiment, an eligibility trace is essential, otherwise,

only the state that transported the agent to the goal would get reinforcement. Moreover

we need to decay the trace away, or else every action will appear as beneficial as the last

action. This means that the agent would not be able to distinguish between following the

solution forwards or backwards!

The eligibility traces must have a discounting factor less than one and not too close to

zero. If the discounting factor is made to be one then the agent makes no distinction

between states that lead him towards the goal and states that lead him away from the

goal, since after a while he will eventually reach the goal, and all visited Q−entries will

appear to have contributed the same amount to reaching the goal. On the other hand if ?

is close to zero then ?n will round off to zero for sufficiently large n. This means that any

solutions that require longer than n steps will be ignored, which is not what we want.

Another point to mention is that the traces are replacing traces and not accumulating

traces, this means that when a previously visited eligibility trace is encountered then it is

reset to one, rather than simply adding one. The benefits of this can be seen in the

following example: if an agent moving randomly as it would in the beginning then it

might move between two blocks repeatedly, thus an accumulating trace could then have

values well above one even though those actions are not helping in the solution of the

Maze, when the agent finally does solve the maze then those actions are unduly

reinforced. This perpetuates the problem as the next time the trial is run then the agent

might simply choose to alternate between those two states, which would again give them

undue reinforcement when the maze is finally solved (by taking a random action).

38

4.3 Example of Maze−Learning

Here we present a detailed description of the progress of a single trial.

Figure 4.4.3 − Initial Policy Figure 4.4.4 − Policy after single run through
Maze

39

Figure 4.4.5 − Policy after 20 runs Figure 4.4.6 − Policy after 2000 runs

40

In each of these figures the arrows indicate which direction our agent will choose if they

are placed in that block, viewed collectively the arrows represent the agent’s policy. If

there are two or more arrows in a block it indicates uncertainty and if the state is

encountered one of those actions will be chosen at random. In Figure 3.3.1 we can see

that the Policy starts off having no idea as what an optimal policy should look like.

When the agent enters the maze it has no idea of what constitutes a good move, thus it

simply moves randomly until it finds the exit. After the first run though it does have

some idea of how to reach the exit, however if one examines Figure 4.4.4 then one sees

that some of the paths are tortuous and convoluted. This is to be expected since the

movement was random. Thus we don’t pay too much attention to the information we

have attained, we still choose a random move 75% of the time. In time however the

agent’s random moves build up a fairly accurate picture of the maze, and the agent

slowly reduces the chance of a random move. In this way the performance increases and

the values of the Q−table approach their true optimal value.

Since the maze is consistent − there are no blocks that behave randomly, or blocks with

unknown behaviour it is easy enough to compute what would constitute an optimal

policy, shown in Figure 4.4.7. The number of times that the policy of our agent differs

from the optimal policy is an intuitive statistic of performance. In Figure 4.4.6 the

performance of our agent stands at 7. Moreover in these 7 cases where there is such a

difference are normally far from the goal state and do not contribute significantly to what

would be a fairly efficient run through the Maze.

Figure 4.4.7 − Optimal Policy

0 50 100 150 200 250 300 350 400
20

30

40

50

60

70

80

90

100

Runs through the Maze

D
iff

er
en

ce
s

fr
om

 th
e

op
tim

al
 p

ol
ic

y

Average Performance of Maze Runner

Figure 4.4.8 − Learning curve for runs through the maze (Average over 30 trials)

42

From this figure we can see that the bulk of the learning occurs before 100 runs, after

that the learning is almost negligible, however it does still occur, as one can see from the

fact that after 2000 trials our example had a much better performance of 7.

4.4 Different values of ?

Once again we might ask the same questions about ? − How sensitive is the performance

of our agent dependent on our choice of ?? Can we fine−tune ? so that the learning rate

is optimal? Figure 4.4.9 gives the results. From this we can see that as long as we

discard ? = 0 (which implies that no learning takes place) then we appear to get little

variation in the performance statistic. On closer inspection there is a slight improvement

for ?−values close to 1, but it doesn’t appear considerable.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
20

40

60

80

100

120

140

160
Performance for different values of Alpha

P
er

fo
rm

an
ce

 a
fte

r
10

0
ru

ns

Alpha−Values

Figure 4.4.9 − Performance after 100 runs for different values of Alpha (averaged over 30 trials)

43

4.5 Another updating rule

After some thought over the required task we thought that we might be able to derive a better

updating rule for this task. Here we attempt to remember the shortest path that we have found,

updating a path only when a new shortest path has been found. This can be done quite simply if

one initialises the Q−table to zero. Then whenever the end of an episode is reached we update the

Q−table as follows:

Eq 4.4.0 Alternative updating method

),max(δQQ ←

(For all legal state−action pairs)

In this way it is impossible to forget a good solution, and it only updates with better solutions. This

is a very inflexible policy and if the environment were to change midway through an experiment

this update rule would not be able to adapt at all. That said though it would appear as if this is

tailor−made for a maze−learning agent. We plot the performance graphs for both update rules in

Figure 4.4.10.

0 50 100 150 200 250 300 350 400
10

20

30

40

50

60

70

80

90

100
Performance for different update rules

Runs through the maze

D
iff

er
en

ce
s

fr
om

 th
e

op
tim

al
 p

ol
ic

y

SARSA−like update rule
Max update rule

Figure 4.4.10 Different performances for different updating rules (Averaged over 30 trials)

44

Our intuition is correct and we can see that our ’max’ update rule does perform better

than the SARSA−like update rule. It should still be pointed out that this rule will lead to

very poor performance in other tasks, and as such the usefulness of this rule is very

limited.

4.6 Conclusions

It does appear that reinforcement learning is able to perform very well, learning most of

the optimal actions in a short space of time; moreover this performance is not dependent

on the choice of ?. We have also shown that a tailor−made update rule can be

constructed whose performance is better than the hybrid updating rule that we use.

However this update rule is of limited applicability and so we won’t consider it in the

following chapters, where we now consider the issues associated with multi−agent

systems.

45

5 The theory of cooperation

In this chapter we explore the second theme of this paper: cooperation. We explore the

work done in game theory and state some of the conditions necessary for cooperation to

be a viable strategy. Thereafter we examine critically examine the tasks we are to

present in chapters The Traffic Simulation and 7. Is it plausible to expect cooperation to

be a strategy which can be learnt?

5.1 Introduction

Robert Axelrod poses the following question in ’The evolution of cooperation’,

"In situations where each individual has an incentive to be selfish, how can cooperation ever

develop?" (Axelrod, 1984: 3),

This is of great relevance to our work here. If we examine civilisation we can see

numerous examples of people cooperating for the greater good. But is our cooperation a

sign of people simply submitting to a greater authority such as government?

If we examine nature we are also able to identify numerous examples of cooperation. A

very nimble plover is able to fly into a crocodile’s mouth, and peck food out from

between the crocodiles teeth. Here the crocodile is almost offered a tasty meal, and yet

refuses to eat. Moreover if the crocodile did choose to commit the traitorous act then

other plovers wouldn’t be aware of this traitorous action, and the crocodile would still be

covered in the dental plan. Surely that the crocodile does not eat is an example of

cooperation. But if cooperation can evolve then it is necessary to know under what

conditions it would evolve. This is especially so if we are interested in creating an

environment suitable for cooperation to be learnt.

Most situations in life can be modelled in the form of a game (Sigmund, 1993). The

trickiest game that involves cooperation is called the Prisoner’s dilemma. It represents

the trickiest form of cooperation since both parties are tempted to not cooperate, but

rather to defect on each other. The following standard description that accompanies this

game accounts for this game’s title:

46

You and a friend are have committed a crime, both of you have been arrested, and are

not allowed to communicate with each other. The police have some evidence, but not

enough to convict both of you for the crime. If both of you keep quiet then the police

will only be able to send both of you to jail for a year only. If one keeps quiet and the

other tells all then for keeping quiet they will go to jail for 3 years, and the other will get

off scot−free. If however you both confess about each other then you will both go to jail

for 2 years (Poundstone, 1992:117−118).

If one examines this rationally then one could construct the following argument:

• I cannot know what the other person is going to do.

• If he is going to ’rat’ on me then I should rat on him. (Jail time reduced from 3 to 2 years)

• If he is gong to keep quiet then I should rat on him. (Jail time reduced from 1 year to

nothing)

Therefore I should rat on him.

However if your partner in crime is also using this argument then he will also rat on you,

with the net result that both of you end up spending 8 years in jail. In this way

rationality doesn’t seem to work very well.

This problem can also be put in a matrix form as follows:

Player 1 − Cooperates Defects

Player 2 − Cooperates (1,1) (0,3)

Defects (3,0) (2,2)

Here cooperation means keeping quiet, and defection means ratting on the other person.

Now the problem of cooperation, is starting to seem a lot harder, since one is sorely

tempted by the temptation payoff (doing no time in jail), yet for this to happen someone

else must suffer.

Obviously, if you know that you will never see your partner again, then on an intuitive

sense the rational argument starts to make sense. However what if there is a good chance

that you will interact again? This repeated interaction changes the nature of the

prisoner’s dilemma. Axelrod refers to this as the shadow of the future, and to examine

its effects he hosts several computer tournaments.

47

5.2 Computer tournaments

Axelrod let anyone to enter a possible strategy as a solution to this iterated prisoner’s

dilemma. For a strategy to count as valid it must base its decisions only on the past

actions that have occurred. It is not allowed to enquire as to whether or not the other

strategy is going to cooperate or defect. The strategies were then paired off in a round−

robin style tournament. Strategies were also paired against themselves, as an extra

round.

Surprisingly the entry that won the first tournament was also the shortest entry. It was

called TIT FOR TAT. It chooses to cooperate on the first move, and then on all

subsequent moves it chooses to do whatever the opponent has done in the previous move.

The results of the first tournament were published along with some detailed analysis of

TIT FOR TAT. The second tournament was then held with entrants specifically

attempting to beat TIT FOR TAT. The format was the same, and there were more

entries. Again TIT FOR TAT won, although in both tournaments there are possible

strategies that could have won, but were not entered. However none of the strategies are

as robust in their performance as TIT FOR TAT.

5.3 Analysis of Competitions

Why does TIT FOR TAT do so well? Axelrod (1984) examines this in detail and derives

three basic properties that any strategy for the iterated prisoner’s dilemma should

possess.

5.3.1 Niceness

Axelrod finds that almost all the top−placed rules are nice. They are never the first to

defect. This property helps their score when they meet each other. Both of the rules

cooperate with each other and since neither will defect first, eliminating costly retaliatory

defections, they both get a high score.

48

5.3.2 Forgiveness

Of the nice strategies the strategies that perform the worst are also the least forgiving.

Generally these unforgiving strategies cannot cope with the occasional defection. Instead

they start an unending pattern of mutual defection.

5.3.3 Responsiveness

Again the rules that do well, generally assume that the other player is interested in

cooperation. So they make an effort to extract it. If it fails then they haven’t lost too

much, however if they do manage to establish cooperation they will have gained a lot.

5.3.4 Conclusion

All of these characteristics are positive; they seem not to belong to a game where the

highest payoff involves defection. However this illustrates that for long−term

performance one must seek a solution that is equitable for both sides concerned, in spite

of the obvious temptations posed by defecting.

In fact all these positive characteristics show that future interactions have a significant

effect on what we should do at present. But this sounds very similar to temporal

difference learning, where future rewards are also attributed to previous actions. This

would seem to suggest that temporal difference learning can learn to cooperate, since it

would take future interactions into account.

5.4 Applicability in the real world

As far as an abstract game theory, this seems fair enough, but how applicable is it in the

real world? A prime example of a real scenario fitting the prisoner’s dilemma occurs in

OPEC (or any other similar cartel). Here the oil−producing countries collaborate on

setting a price to sell oil. If one of the countries though, were to break this agreement

and sell the oil at a slightly lower price then its profits would increase dramatically as the

whole world would rather purchase the cheaper oil. The country would make a lot more

money since, it does not have to compete against other countries; they are no longer

competitive. Thus there is a large incentive to undercut each other and yet they seldom

do this.

49

Another example occurs in the trench warfare of World War I (Axelrod, 1984). Here the

soldiers would face each other for weeks on end, with each side being able to incur heavy

casualties. Yet each side would rather show off this ability, rather than exercising it.

How did such cooperation between antagonists come into being? The answer is that this

environment is correctly modelled by the prisoner’s dilemma. Cooperation here involves

not shooting to kill. If a side chooses to cooperate then there is a great temptation for the

other side to defect and try to win some land. However if one side tries this then the

other side will return the lethal fire soon after, with many people dying. This is not ideal

for either side, so both sides prefer not to attack too accurately for fear of accurate

reprisals. Axelrod (1984) details how difficult it was to get the troops to fight properly,

since both sides tended to favour cooperative behaviour.

5.5 Assumptions required

While we have detailed the many examples occurring in real life that fit the iterated

prisoner’s dilemma, and shown that TIT FOR TAT is a successful strategy in such a

game, we still need to state the implicit assumptions that are made in modelling this

game.

Central to the success of TIT FOR TAT is the ability to remember the previous action

dealt to it by its opponent. This has in it two implicit assumptions. The first is that the

opponent’s moves are easily interpreted as a defection or as cooperation. In many

reinforcement learning tasks this requirement is not met, for example in chapter The

Traffic Simulation we explore the task of learning to cross an intersection. If a collision

occurs then it is unclear who has defected or even if both have defected. How is a

reinforcement learning system then to apportion blame, or credit?

The second implicit assumption is that the opponent is identifiable. As obvious as this

seems, it is not trivial for the implementation of a reinforcement learning system. If a

multi−agent system is to remember which agents are being cooperative towards which

other agents then an extra degree of complexity is introduced. Moreover since we would

need to maintain this cooperation as a state variable it implies we would need to at least

double the size of our Q−table. However this is assuming that only one other agent is

50

encountered in any possible state, if it is possible to encounter n agents, then the Q−table

would increase in size by 2n.

If we try to remove the identifiability requirement, then any strategy should defect since

any cooperation can be taken advantage of with impunity. This problem is known as the

tragedy of the commons. In medieval Europe, many towns had a communal grazing

area. One could choose to graze one’s flock on one’s own land, or one could choose to

graze the communal land. Since it was a big advantage for a single person to use the

communal land (or defect) and only a small disadvantage to the community, everyone

would tend to use the communal land as much as possible. As no−one monitored the

communal land it was unlikely that one would be identified as a defector. This resulted

in the ruin of the communal grazing area, and is a problem faced today with over−fishing

in international waters. Only through the strict monitoring of these common areas, can

cooperation once again be established.

In this way we can’t remove the identifiability requirement, however many problems it

may introduce for a multi−agent system, since cooperation wouldn’t be learnt.

Obviously one could enforce that the agents must cooperate, but this paper is interested

with systems where the cooperation is learnt.

5.6 Chicken

Fortunately if we examine the tasks that we wish to solve we find out that the situations

are more accurately modelled as a game of chicken (Sigmund, 1993). In this game the

payoff is slightly different, and as we shall see this makes a large difference.

The name of this game is derived from a reckless game where two antagonists drive

towards each other, with the first to swerve being labelled the ’chicken’, and they have to

pay some bet. If neither swerves then an accident occurs and both are worse off, since

they have to pay for repairs (Poundstone, 1992:197). In fact this example is very apt

since in both chapters The Traffic Simulation and 7, we are interested in collision

avoidance.

The payoff matrix is as follows (assuming a bet of R10):

51

Swerve Drive straight

Swerve (0,0) (10,−10)

Drive Straight (−10,10) (−100,−100)

This is different from the payoff table in Introduction, since driving straight is not the

best choice in both cases. What now emerges is that we are trying to predict the

behaviour of our opponent and do the opposite. While in the prisoner’s dilemma if we

know the opponent is going to defect then we defect as well.

Real world scenarios of chicken occur all the time. One of the best examples to give is

the Cuban Missile crisis. Here both America and the Soviet Union needed to appear to

each other as being willing to go to war if necessary, even though that was the worst

outcome possible. Whoever seemed most willing to go to war would then win and the

other would back down (or chicken out). Eliciting cooperation is then not necessarily as

straight−forward as one might think.

For us this slight change means that instead of trying to elicit cooperation, we must

obtain some form of coordination, or protocol, which can be learnt, or communicated.

Obeying a protocol is still a form of cooperation, yet it doesn’t have the associated

difficulties of the prisoner’s dilemma, but can it be implemented in a reinforcement

learning system?

52

6 The Traffic Simulation

In this chapter we explore the possibility of learning cooperation between independent

reinforcement learning systems. We explore whether reinforcement learning always

leads to the optimal protocol, for such coordination. The task that we have chosen for

this is a traffic simulation. However it is significantly different from Thomas Thorpe

(1997).

Here we are not interested in optimising the traffic lights, but rather we are interested in

learning a global policy of negotiating intersections. For us this problem may not be

entirely obvious, but at one stage there must have been no rules of the road. Then as

congestion became a problem (as well as increased speed) a clearly defined set of rules

(or protocol) was needed. While in real life these rules probably evolved as was needed

and then declared as law, it is interesting to see if they would arise solely through

reinforcement learning.

6.1 Description

We borrow from the maze task and use the same algorithms to produce a city grid.

Moreover we repeatedly train a few cars, with different goals, to navigate through the

city to their respective goals. This leaves us with a traffic simulation, namely several

cars, each travelling through the city, thus creating the risk of a collision. This collision

avoidance is the task to be learnt.

As the cars arrive they are then given a picture of the intersection. This picture includes

how many cars are at the intersection, as well as a traffic light. This traffic light is used

as an arbitrator, and all the cars receive the same signal, it simply alternates between one

or zero in the simulation, which signifies red or green.

6.2 Analysis of the problem

The definition of a collision is simplified slightly to the following: a collision does not

occur if both cars proceed straight at the intersection, nor does it occur when both cars

turn at the intersection, it only occurs when a car is turning and another is proceeding
53

straight. This definition implies that if four cars proceed straight in an intersection then

there is no collision, however if one car does turn then all cars are involved in a collision.

This definition allows a great deal of efficiency to be potentially achieved if the

coordination is properly done. It also simplifies the required collision detection code.

With the simplifications of the collisions, as well as the fact that the traffic light is the

same for everyone, it means that it is quite easy to derive an optimal policy. If the traffic

light is red then cars that are turning can proceed, if the traffic light is green then the cars

that are driving straight can proceed. Moreover a car that is at an empty intersection can

proceed. However our reinforcement learning method does not achieve this optimal

policy and it is instructive to see why. Notice also that this policy does not depend on

any of the positions of the other cars, this extra information is given effectively to

complicate the protocol, and the system needs to learn that in all states we only need to

pay attention to the traffic light.

We consider events to be independent of each other. This isn’t quite true since if a car

decides to wait at a busy intersection then the next step in simulation time will see the car

at the same busy intersection. As we shall later see this decision does introduce several

problems.

Initially we test to see whether or not this problem is satisfiable. We check this by

allowing cars to share the same Q−table. In effect then all the cars are trying to find a

policy that is consistent (i.e. if all cars adopt this policy then there are no collisions). We

then extend this naturally by allowing different Q−tables, for different cars. Another

interesting experiment is to test whether or not the traffic light helps the coordination of

the cars, or if they can manage by themselves.

Another factor to be explored is that of exploration. Is it necessary? If a protocol is

being sought then surely exploration simply disrupts any potential solutions. If there is

an emerging protocol, and a car takes an exploratory move, thus creating a collision. It

will make the potential protocol appear as unviable since the collision will lead to a high

penalty awarded for all the cars following the protocol.

54

6.2.1 Is it achievable?

A concern is that there is no guarantee that a group of agents, each presented with a view

of each other, are able to arbitrate fairly. If this is the case then the cars that are

receiving the short end of the stick will have more incentive to disobey this protocol and

will ruin the protocol for everyone concerned.

55

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14
Collisions (Shared Q−tables)

Simulation steps

C
ol

lis
io

ns
Figure 6.6.1 Number of collisions. (Averaged
over 30 trials)

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60
Policy efficiency (Shared Q−tables)

Simulation Steps

C
ar

s
M

ov
in

g

Figure 6.6.2 Number of Cars Moving.
(Averaged over 30 trials)

0 100 200 300 400 500 600 700 800 900 1000
30

40

50

60

70

80

90

100

110
Congestion (Separate Q−tables)

Simulation Steps

C
ar

s
at

 in
te

rs
ec

tio
ns

Figure 6.6.3 Congestion (Total number of cars at intersections)

At first view Figure 6.6.1 appears encouraging; the cars are definitely reducing the

number of collisions that are occurring. Nevertheless Figure 6.6.2 and Figure 6.6.3

show that the number of cars waiting at an intersection increases while simultaneously

the number of cars moving decreases. The policy thus doesn’t appear to be maximally

efficient. This is however due to the experiment parameters. For the city that the

experiment was run there were only 54 free blocks and 120 cars. This means that the

city was already in an extremely congested state. Considering this it seems reasonable

that the policy is cautious, in entering an intersection.

6.2.2 Traffic Lights

The traffic light is represented as a binary red or green. The state of the traffic light is

the same for all cars concerned. In this way one would expect it to play a significant role

in coordination.

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

Simulation Steps

Collisions (Shared Q−tables)

C
ol

lis
io

ns
Figure 6.6.4 Number of Collisions (without a
traffic light)

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

40

45

50
Policy Efficiency (Shared Q−tables)

Simulation Steps

C
ar

s
M

ov
in

g

Figure 6.6.5 Number of Cars moving (without
a traffic light)

57

0 100 200 300 400 500 600 700 800 900 1000
40

50

60

70

80

90

100

110

120
Congestion

C
ar

s
at

 In
te

rs
ec

tio
n

Simulation Steps

Figure 6.6.6 Congestion (without a traffic light)

As is clear from the graphs the reinforcement learning system quickly observes that the

best way to avoid a collision is not to proceed at all. Notice that the system could have

reached the opposite conclusion if we distributed the rewards over previous decisions as

well, and gave a high enough weighting factor. The system would then learn that

stopping at an intersection leads to a continual penalty, so it is probably best to proceed,

no matter what the congestion is like.

6.2.3 Exploration

The theme of exploration, which is central to reinforcement learning, might disrupt any

emerging protocol enough to make it look like an unsuitable alternative. In a simple task

as this (i.e. with only two possible actions) is exploration necessary, or do protocols

emerge quicker without it?

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10
Collisions (with Random Moves)

C
ol

lis
io

ns

Simulation Steps

Figure 6.6.7 Collisions

0 100 200 300 400 500 600 700 800 900 1000
5

10

15

20

25

30

35

40

45

50

55
Policy Efficiency

Simulation Steps

C
ar

s
M

ov
in

g

Figure 6.6.8 Cars Moving

0 100 200 300 400 500 600 700 800 900 1000
40

50

60

70

80

90

100
Congestion

C
ar

s
at

 in
te

rs
ec

tio
n

Simulation steps

Figure 6.6.9 Congestion

0 100 200 300 400 500 600 700 800 900 1000
−15

−10

−5

0

5

10
Total reward per step

Simulation Steps

R
ei

nf
or

ce
m

en
t G

iv
en

Figure 6.6.10 Reinforcement given

The increased variation from the exploratory steps is evident in the much ’fuzzier’ line.

Initially an exploratory move was taken with probability 0.2, we linearly decreased this

until two−thirds of the way through the experiment, when the probability reached zero.

Once there are no more exploratory moves a very interesting change occurs in the

behaviour of the system.

While we are exploring, the traffic appears to be flowing well, with a slightly higher

collision rate than in other experiments. However as we stop exploring, we immediately

become more cautious, and the collision rate drops dramatically, however the congestion

also increases as fewer cars are proceeding as before. Overall the total reinforcement

given per simulation also decreases.

This startling behaviour can be accounted for, if we consider what happens when a

collision does occur. This would change the value of the state considerably, possibly

making it unattractive when compared to waiting at the intersection. If this happens, and

we never make exploratory moves then we will never enter an intersection from that

state, instead we accept the small penalty for waiting. This leads us to conclude that

exploration is necessary for the learning of a protocol, since if it doesn’t occur the

protocol will probably be sub−optimal.

6.2.4 Conclusions

It does appear that the problem is suitable for a single−agent system. However it still

does not achieve the levels of performance we might have hoped for. This appears to be

symptomatic of the system learning against itself. When a collision occurs the system

must arbitrate between the two cars, however it is not able to do this, and penalises both
59

at the same level, thus if the same scenario is encountered both cars tend to still display

the same behaviour. In this way learning an efficient, consistent policy is difficult. Is it

easier in a multi−agent system?

6.3 Multi−agent systems

The experiments we have been looking at are concerned with the viability of this

experiment. Since we can say that it does appear to be viable, we can now focus on

multi−agent systems. For us this entails maintaining separate Q−tables for different cars.

Due to its computational cost we restrict ourselves to experiments with four independent

Q−tables, but we feel certain that the results we obtain extend to any number.

0 100 200 300 400 500 600 700 800 900 1000
2

3

4

5

6

7

8
Collisions (with separate Q−tables)

Simulation Steps

C
ol

lis
io

ns

Figure 6.6.11 Collisions (Separate Q−tables)

0 100 200 300 400 500 600 700 800 900 1000
5

10

15

20

25

30

35

40

45

50
Policy Efficiency (Separate Q−tables)

C
ar

s
M

ov
in

g

Simulation steps

Figure 6.6.12 Cars moving (Separate Q−
tables)

60

0 100 200 300 400 500 600 700 800 900 1000
40

50

60

70

80

90

100

110
Congestion (Separate Q−tables)

Simulation steps

C
ar

s
at

 in
te

rs
ec

tio
n

Figure 6.6.13 Congestion (separate Q−tables)

There is visibly less variation in the figures if one compares them to figures in section Is

it achievable?. This is due to the fact that the reinforcement is being distributed over a

few systems. Surprisingly enough there is no appreciable difference in the learning rate.

We initially felt that the learning rate should be slower as a consequence of having four

times the entries in Q−tables to update, however this was not the case.

6.4 Conclusions

In hind−sight we can see that our decision to consider the events as independent appears

costly, it has hindered learning significantly since the system is not able to accurately

include the cost of waiting.

However despite the fact that our system has not been well designed we are still able to

see that having multiple agents interact is a feasible idea. Yet there are still difficulties in

that the systems were not able to learn the optimal policy, instead they learnt a

suboptimal one. This sub−optimality is a direct result of the reinforcement learning

system being unable to differentiate between penalties from the environment and

penalties from other reinforcement learning agents. It is therefore unable to tell if the

policy is performing badly because it is ignoring environmental effects, or if the policy is

performing badly because other agents are still learning the policy. This does suggest

that more research is necessary as it does not seem that current single agent

reinforcement learning algorithms converge to optimal policies.

61

7 Cellular Simulation

This is the final reinforcement learning task we present. Our central goal is to explore

the complexities of extending a reinforcement learning task from discrete states to

continuous states. This prevents us from using a Q−table, and instead we now use

standard back−propagation neural networks. We initially also wished to explore the

possibilities of cooperation being learnt, in a simulated biological system. Robert

Axelrod devotes a chapter to the ’cooperation without friendship or foresight’ that occurs

in biological systems (Axelrod, 1984:88).

This simulation is inspired by Conway’s game of life (Sigmund, 1993). In that

simulation there are only two states − occupied and empty. The simulation is discrete

and no movement of the cells is possible, instead they reproduce once a certain density is

achieved. If the density is too high then the cells die from overcrowding. If one watches

a simulation of the game of life it displays seemingly random, and yet life−like behaviour

with population growth and shrinkage for a long time before the system settles down.

Figure 7.7.1Example environment

In our simulation, there are several types of objects in the environment. First and

foremost is the animal, it is the only type that is capable of movement. Necessary to the

animal’s existence are food and water. There are also obstacles that need to be avoided,

as they do not provide sustenance and incur large penalties if hit.

In Figure 7.7.1, the blue circles represent water; the green represent food and the purple

represent obstacles. There are two animal species, in orange and red, and their sight

inputs are shown as lines.

If an animal does not eat for a long time it does not die as in an evolutionary experiment.

Instead it is punished for not eating. In a similar way if an animal collides into an

obstacle or another animal then it is also punished. Collisions with food and water are

reinforced with a large reward. Balch has researched various reinforcement functions

and found that a local reinforcement function (rewarding an individual’s behaviour,

62

rather than a species’ behaviour) leads to more homogenous agents (i.e. they use similar

strategies) and, for a foraging task such as this one, better performance (Balch, 1999)

7.1 A successful strategy

What does solving this task require the animals to learn? A reasonable policy would

have an efficient searching pattern, in which the animals might travel in a large circle

looking for food. It also requires that once food is sighted then it is efficiently reached

and eaten. As we have mentioned there are obstacles in this world which need to be

avoided. We expect that the most difficult part of the policy would be to learn collision

avoidance of each other. This collision avoidance is similar to the traffic simulation

covered in chapter The Traffic Simulation.

7.2 Using the Neural network

What is a neural network? A neural network is essentially a collection of functions and a

table of weights. It matches input patterns to output patterns by transforming the inputs.

It achieves this through multiplying the inputs with the weights and applying the

functions to this product. This is known as a layer of the network. A network can have

several layers, to give it extra flexibility in matching the outputs.

Initially the weights are initialised randomly, but after we have some input−output pairs,

we are able to adjust the weights so that the network is able to closely reproduce the

outputs if we give it the inputs. We do this by calculating the error at the outputs and

propagating it backwards through the different layers. This gives rise to the term back−

propagation network.

This type of learning is called supervised learning as there is a teacher, which provides

the model answers. However in reinforcement learning we only have a single number

that indicates our performance, we are not given any model answers.

So a neural network is very useful for supervised machine learning. However this

doesn’t match the reinforcement learning framework. In reinforcement learning we

don’t have any model answers, we are supposed to discover them ourselves.

63

A rather straightforward way to use a neural network in a reinforcement learning

problem is to predict the Q−table. If we have the state and the action we can try to

predict the reinforcement we will receive. The reinforcement is given to us as a model

answer which we can use to train the network. Of course this approach is still rather

myopic, we should be trying to maximise long−term rewards, not short−term. To get

around this we perform batch learning. We let the creatures experience the environment

for multiple steps, long enough to build up a significant amount of experience. Then we

distribute the rewards back into the past. In this way, we can create a long−term

planning agent. Once the rewards have been distributed backwards we are then able to

train the neural network. After a long simulation we should be able to predict the

reinforcement for a state−action pair with a high degree of accuracy.

7.2.1 Obtaining the action

However we are still avoiding a crucial topic; how do we use this neural network to

predict which action to take? We can do this through a numerical technique known as

gradient descent (Burden and Faires, 1997:614). Starting at a random point in the action

space we can evaluate the estimated reinforcement for the given state and random action.

Since the functions used in a back−propagation neural network are required to be

differentiable we can also work out the gradient for the random action. This gradient

tells us the direction in which the estimated action would increase the most.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Forward

Predicted Reinforcement fo the action space

Turning

E
xp

ec
te

d
re

in
fo

rc
em

en
t

Figure 7.7.2 Surface for predicted
reinforcement

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0.25

0.3

0.35

0.4

0.45

Forward

Path of gradient descent method

Turn

P
re

di
ct

ed
 r

ei
nf

or
ce

m
en

t

Figure 7.7.3 Path followed by gradient
descent

64

This algorithm is analogous to climbing a hill. We start in a random place and try to

climb as fast as we can. However we do not always reach the global maximum, if we

had started in an unusual spot then we might climb towards some local maximum, but

not the global maximum. In Figure 7.7.2 we can see the surface has a definite maximum

on the left−hand side, however if we were to have started on the right hand side, then we

would have been lead towards the right hand corner which has a slight local maximum,

however this action appears far from optimal according to the network.

There are other ways of using neural networks to learn an environment, and predict the

best action to take; some of these methods require new architectures such as radial basis

functions (Barto and Sutton, 1998:208). Another method includes solving the Hamilton−

Jacobi−Bellman equation involving partial derivatives (Nikovski, 1998). One can also

use multiple neural networks; one to build a model of the environment, and one to try

and learn the reinforcement function. By combining both of these networks complex

tasks have been successfully learnt (Thrun and Möller, 1991)

7.2.2 Implicit levels of cooperation

Similar to chapter The Traffic Simulation we are able to achieve different levels of

cooperation. We could have a single network which learnt the different state−action

values, although this is suboptimal if different species have different reward values for

different items. As an example we also attempted to introduce a predator species that

receives a reward for collisions with animals. If we were to use a single network for both

species then it would perform badly as the network would not be able to differentiate

between penalties for animals bumping into each other and rewards for the predators

making a kill. It is very natural to have a neural network for each species, and we would

expect the best performance, using this setup, since the networks are given a large

amount of experience, in a short amount of time.

If we were to maintain a separate network for each animal, it would require a lot of space

and computation. Moreover the simulation would have to be run for a long time before

sufficient experience has been obtained for meaningful training to occur. However an

interesting option that is available to us if we use individual networks, is to periodically

compare each network’s performance within a species. If a particular individual is

performing well, then it is not difficult to copy the network weights across from the

superior network to other inferior networks. This is in effect introducing an evolutionary

aspect to reinforcement learning. Some authors maintain that reinforcement learning and

evolutionary computation, work well in conjunction with each other (Grefenstette,

Moriarty and Schultz, 1999), (Mclean, 2001).

7.3 Results obtained

To effectively compare how well our learning algorithm works we constructed a random

species that chooses its moves randomly. We gave this species the same rewards as the

animals. We only trained the networks after every 50 simulation steps; we also kept the

experience of the previous 50 simulation steps to prevent the networks from forgetting

recent information.

In Figure 7.7.4 we can see that for the first 50 simulation steps the performance is

comparable with the random strategy; however this is to be expected, since the neural

network has been initialised randomly. After the 50 steps, training is performed and the

performance begins to increase. We were disappointed that at no point is a strategy

learnt that manages to obtain a positive average reward. However we can see the

cumulative reward does fluctuate as the training progresses. These fluctuations are

caused by the fact that the neural network does forget previous experience; it is trained

only on recent experience. While the neural network approach does consistently do

better than a random strategy, if one watches the simulation then there is no discernable

evidence of learning taking place, both species appear to move around randomly.

66

0 50 100 150 200 250 300 350 400 450 500
−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

0
Performance of Collective vs Random

Simulation time

C
um

ul
at

iv
e

av
er

ag
e

re
w

ar
d

Collective Neural network
Random strategy

Averaged over 10 trials

Figure 7.7.4 Comparative performance between random animals and collective animals.

7.4 Conclusions

While using a neural network to estimate the Q−table, and then performing a gradient−

descent method on the neural network is the simplest extension from discrete to

continuous state−spaces, it does not appear to have achieve very good results. This may

in part be due to a particular network architecture chosen (although we have repeated the

experiment with numerous architectures and the performance is consistently low).

This suggests that other more complex methods are needed if we are to achieve

reinforcement learning in continuous state−spaces.

67

8 Conclusions

This paper provides an introduction to the theory of reinforcement learning. If we wish

to use reinforcement to control an agent, then we maintain a table of all possible states, as

well as all possible actions. This is called the Q−table. The Q−table estimates the

reinforcement an agent will receive if it takes a particular action in a particular state.

This gives rise to a greedy agent, which seeks to maximise short−term reinforcement. By

distributing the rewards over previous actions using an eligibility trace, we are able to

create long−term optimising agents, as is demonstrated in section Example of Maze−

Learning where our maze−running agents learn near−optimal policies.

In chapter Blackjack we explore a simplified Blackjack. This simple task allows us to

examine some of the effects of using different update rules, as well as the effects on the

learning rate of the different constants in an update rule. We find the effects of these

constants are minimal, and as such reinforcement learning is robust.

We then attempt the slightly more complex task of maze−running. In this task a solution

might take many more steps before the completion of the task; again we examine the

choice of different constants in solving this task. Again we find that if we exclude some

obviously bad choices of constants, then the reinforcement learning algorithms perform

well over a broad range of constants.

This robustness should prove instrumental to reinforcement learning’s success in real

world applications. Moreover solving a reinforcement learning task does not require an

understanding of what a good strategy should consist of. This makes it possible to use

reinforcement learning algorithms as a black−box tool. Neither a full understanding of

the environment, nor of reinforcement learning is required to implement a workable

solution. However specific knowledge, of the environment or reinforcement learning,

can be used to fine−tune solutions to produce better results as we did in section Another

updating rule, where we devise a custom updating rule that performs better than the

standard rule in learning a maze.

68

After examining the theory of cooperation, and how it relates to a reinforcement learning

system, we then extended reinforcement learning to multi−agent systems. As a possible

extension it would be worthwhile to explore how a reinforcement learning system

performs on the iterated prisoner’s dilemma, not only against itself, but also against other

strategies such as TIT FOR TAT.

Chapter The Traffic Simulation presents an examination of the intricacies associated with

multi−agent systems. We do this by analysing our traffic simulations. In particular we

note that such systems are feasible, but their performance is sub−optimal. This sub−

optimality is introduced as the reinforcement learning system is unable to differentiate

between penalties from the environment and penalties from other reinforcement learning

agents. A possible extension could be to explore giving a different form of

reinforcement depending on the origin of the reinforcement (environmental

reinforcement or peer reinforcement).

In the final task we present a cellular simulation. This simulation uses a continuous state

and action space; however because of this we can not make use of the standard

reinforcement learning algorithms which use Q−tables. To overcome this we instead use

a neural network which we train on the state and action to predict the reinforcement. By

making use of a numerical technique known as gradient descent we are able to use the

reinforcement learning framework in a continuous state−space. This solution places no

extra constraints on the reinforcement learning framework, so that it is applicable to any

continuous state−space for a reinforcement learning algorithm.

However, the performance of this technique was only marginally better than a random

strategy, so while it is feasible it is certainly not an optimal way to solve these types of

tasks. An obvious extension of this paper would be to then investigate other methods,

mentioned in Obtaining the action. Another option is to turn the continuous state−space

into discrete blocks, and use the table methods in the preceding tasks.

Our investigation into using reinforcement learning to learn implicit cooperation has

been met with only mild success, since we have shown that it is possible, but not optimal.

However research into reinforcement learning is still very active and the problems we

have encountered will, no doubt, be dealt with in the near future. As such we feel that

69

the answer to the central question of our paper "Can cooperation be learnt through

reinforcement learning?" is a qualified "yes".

70

9 References

(Most of these papers are available at www.citeseer.com)

Axelrod R. (1984) The Evolution of Cooperation. Basic Books − New York

Baird L. and Moore A. (1999) Gradient Descent for general reinforcement learning. In

Kearns, Solla and Cohn − Advances in Neural Information Processing systems 11. MIT

Press, Cambridge MA.

Balch T. (1999) Reward and diversity in Multirobot Foraging. In IJCAI−99 Workshop

on Agents Learning About, From and With other Agents (1999)

Barto A.G. and Sutton RS. (1998) Reinforcement Learning: An Introduction. MIT

Press − Cambridge MA.

Bellman R.E. (1962) Applied Dynamic Programming. Princeton University Press −

Princeton NJ.

Boutilier C. and Price B. (1999) Implicit Imitation in Multiagent Reinforcement

Learning Proceedings in the 16th International Conference on Machine Learning (325 −

334)

Bücken, Burgard, Fox, Fröhlinghaus, Hennig, Hofmann, Krell, Schimdt and Thrun

(1998) Map Learning and High−speed Navigation in RHINO. MIT Press − Cambridge

MA

Burden R.L. and Faires J.D (1997) Numerical Analysis (Sixth Edition) Brooks/Cole

Publishing − California

Dayan P. and Hinton G. E. (1993) Feudal Reinforcement Learning. In Lippman D.S.,

Moody J.E, and Touretzky D.S. (editors) Advances in Neural information Processing

Systems 5 (1993: 271−278) San Mateo CA.

71

Giles C.L and Jim K. (2000) Talking Helps: Evolving Communicating Agents for the

Predator−Prey Pursuit Problem. Artificial Life (2000 vol 6−3) 237 − 254.

Grefenstette J.J Moriarty D.E. and Schultz A.C. (1999) Evolutionary Algorithms for

Reinforcement Learning. In Journal of Artificial Intelligence Research. (1999−11) :

211−276

Harmon M.E. (1996) Reinforcement Learning: A Tutorial. Avionics Circle Wright

Laboratory − Wright−Patterson OH

Hu H. and Kostiadis K. (1999) Reinforcement Learning and Co−operation in a

simulated Multi−agent System. In Proceedings of IROS’99. Korea

Hu H., Kostiadis K. and Liu Z. (1999) Coordination and learning in a team of mobile

robots. In Proceedings of IASTED Robotics and Applications Conference. California

CA

Kaelbling L.P., Littman M.L. and Moore A.W. (1996) Reinforcement Learning: A

Survey. In Journal of Artificial Intelligence Research (1996:4) 237−255

Keerthi S.S. and Ravindran B. (1995) A Tutorial Survey of Reinforcement Learning.

Sadhana (published by the Indian Academy of Sciences)

Littman M.L. (1994) Markov Games as a frame−work for multi−agent reinforcement

learning. In Proceedings of the 11th International Conference on Machine Learning.

(157 − 163) Morgan Kaufman publishers − New Brunswick NJ

Matari? M.J., Østergaard E.H. and Sukhatme G.S. (2001) Emergent Bucket

Brigading. In Proceedings of the 5th International Conference on Autonomous Agents.

Canada

72

Mclean C.B (2001) Design, evaluation and comparison of evolution and reinforcement

learning models. Masters Thesis, Computer Science Department, Rhodes University.

Möller K. and Thrun S.B. (1991) On Planning and Exploration in non−discrete

environments. Technical Report 528, GMD, Sankt Agustin

Nikovski D.N. (1998) Fast Reinforcement Learning in continuous action spaces.

Robotics Institute Carnegie Mellon University, Pittsburgh PA

O’Donohue W and Ferguson K.E (2001) The Psychology of B.F. Skinner Sage

Publications − California CA.

Poundstone W (1992) Prisoner’s dilemma. Anchor Books − New York.

Schaerf A., Shoham Y. and Tennenholtz M. (1995) Adaptive Load Balancing: a study

in Multi−agent Learning. In Journal of Artificial Intelligence Research (1995:2) 475−

500.

Schmidhuber J. (2000) Evolutionary Computation versus Reinforcement Learning In

Proceedings of 3rd Asia−Pacific Conference on Simulated Evolution and Learning

(SEAL2000), Nagoya, Japan.

Sigmund K. (1993) Games of Life: Explorations in Ecology, Evolution and behaviour.

Oxford University Press − Oxford

Singh S.P and Sutton R.S. (1996). Reinforcement Learning with Replacing Eligibility

Traces. In Machine Learning 22:123−158

Skapura D.M. (1996) Building Neural Networks. ACM Press − New York NY

Sutton R.S (1988) Learning to Predict by the Methods of Temporal Differences. In

Machine Learning (1988:3) 9−44

73

Tan M. (1993) Multi−agent Reinforcement Learning: Independent vs. Cooperative

agents. In Proceedings, Tenth International Conference on Machine Learning. 330 − 337

Amherst MA

Thorpe T.L (1997). Vehicle Traffic Light Control using SARSA. Colorado State

University

Thrun S.B (1992). The role of exploration in learning control. In Handbook of

intelligent control: Neural, fuzzy and Adaptive approaches. Van Nostrand Reinhold

Publishers− New York NY

Thrun S.B and Möller K (1991) On Planning and exploration in non−discrete

environments. . In Lippman D.S., Moody J.E, and Touretzky D.S. (editors) Advances

in Neural information Processing Systems 3 (1991:450−456) San Mateo CA

Touretzky D.S. and Saksida L.M. (1997) Operant conditioning in Skinnerbots. In

Adaptive Behaviour 5 (1997)

Tumer K. and Wolpert D.H. (2001) An Introduction to Collective Intelligence. NASA

technical report: NASA−ARC−IC−99−63

Tumer K. Wheeler D.H. and Wolpert D.H. (2001) General principles of learning−

based Multi−agent systems. NASA Ames Research Center

74

