
 A LightWave 3D Plug-in for Modeling Long Hair on Virtual Humans

Deborah Patrick
Department of Computer Science

Rhodes University, Grahamstown, 6140
g9750082@campus.ru.ac.za

Shaun Bangay
Department of Computer Science

Rhodes University, Grahamstown, 6140
S.Bangay@ru.ac.za

Abstract
Multimedia applications today make use of virtual humans.
Generating realistic virtual humans is a challenging problem
owing to a number of factors, one being the simulation of realistic
hair. The difficulty in simulating hair is due to the physical
properties of hair. The average human head holds thousands of
hairs, with the width of each hair often smaller than the size of a
pixel. There are also complex lighting effects that occur within
hair. This paper presents a LightWave 3D plug-in for modeling
thousands of individual hairs on virtual humans. The plug-in
allows the user to specify the length, thickness and distribution of
the hair, as well as the number of segments a hair is made up of.
The plug-in is able to add hairs to a head model, which the user
then modifies to define a hairstyle. The hairs are then multiplied
by the plug-in to produce many hairs. By providing a plug-in that
does most of the work and produces realistic results, the user is
able to produce a hairstyle without modeling each individual
strand of hair. This greatly reduces the time spent on hair
modeling, and makes the possibility of adding realistic long hair
to virtual humans reasonable.

Keywords: Hair Modeling, Explicit Model, Plug-in, LightWave

1. Introduction
This paper presents a plug-in that allows users to add long hair to
models in LightWave 3D1, a graphics program used for creating
objects and animations. Various applications today make use of
virtual humans that are created in LightWave, or a similar
program. Virtual humans are often needed as agents or avatars in
virtual worlds, characters in computer games, or computer
generated people in films and advertisements. In many of these
applications the virtual humans need to appear realistic in order to
be believable. Unfortunately generating realistic humans is still a
challenging problem owing to a number of factors, one being the
simulation of realistic hair. Because of this, computer generated
people are often bald, or have a hat placed on their head.

The difficulty in simulating hair is due to the physical
properties of hair. The average human head holds thousands of
individual hairs that vary in colour, length and shape. It is far too
time-consuming and impractical to model each and every hair. In
addition, the width of a single strand of hair is usually smaller
than the size of a pixel. This leads to aliasing problems as a single
colour is calculated for a pixel shared by a number of hairs.

1 LightWave 3D version seven is developed by NewTek Inc. © Copyright,
NewTek 2001.

Complex lighting effects also occur among the hairs. These need
to be taken into account when rendering hair in order for it to
appear realistic. The most noticeable effects, which play a vital
role in the appearance of the hair, are the shadows cast by hairs
onto other hairs and the anisotropic reflection of light off hair.
Without shadows the hair does not look realistic, and the general
lighting models available do not provide good approximations of
anisotropic reflection. Because of the anisotropic property of hair,
from a distance you do not see the individual hairs, but rather a
region of hair that has a distinct pattern or texture. Hair is also
slightly transparent, which results in a haloing effect when
backlighting is used. Due to these factors hair is time-consuming
to model and expensive to render.

This paper investigates hair modeling and the problem of
creating thousands of individual hairs, focusing on modeling long
hair, rather than short hair or fur. Several researchers have
developed methods for modeling hair. These can be divided into
three main categories: explicit models, cluster models, and
volumetric models. Each category has advantages and
disadvantages. The different models with their advantages and
disadvantages are discussed in Section 2.

In this paper an explicit model is used because it is the most
intuitive and appropriate method for modeling long hair. The
explicit model allows explicit manipulation of individual hairs. It
also allows hair to be rendered realistically using conventional
shaders and lighting models. Because each individual hair is
modeled, the anisotropic reflection of light off hair does not need
to be considered. The explicit model is often avoided due to the
large number of polygons needed. This paper investigates the
efficiency of the explicit model, and discusses the time it takes to
model and render a hairstyle.

2. Related Work
There are three important aspects in hair simulation: hair
modeling, hair rendering and hair animation. Hair modeling deals
with the geometry and distribution of the hair strands, hair
rendering involves the lighting and shading of hair, and hair
animation looks at hair movement and collision detection
[Magnenat-Thalmann et al. 2000]. Previous research has been
done on all three of these aspects, and several models have been
developed. The models, together with their strengths and
weaknesses, are summarized by Magnenat-Thalmann et al..
[2000] in a paper that reviews the state of the art in hair
simulation. The models can be divided into three main categories:
those that model hair explicitly, those that model hair in clusters,
and those that model hair as volumetric textures.

2.1 Explicit models
The explicit hair models generate the geometry of each individual
hair strand. They are brute force methods that are suitable for
modeling long hair or simulating hair dynamics. In these models,
each hair strand is modeled using some sort of primitive such as a
curve, cylinder, or group of connected lines [Kim and Neumann
2000].

Anjyo et al. [1992] define each hair strand as a set of
connected lines and animate the hair as a cantilever beam.
Daldegan et al. [1993] produce ‘HairStyler’, a framework that
allows the user to interactively model strands of hair. The user
defines a few hair strands, which are then multiplied to produce a
hairstyle. The hair strands are represented as “straight cylindrical
segments connected by points”.

The explicit model is simple and intuitive; unfortunately it is
also time consuming. Several researchers have therefore
considered a cluster or group of hairs at a time to reduce the time
taken in simulating a hairstyle. These models are called cluster or
wisp models.

2.2 Cluster models
Cluster models, also known as wisp models, group hair into
clusters of hair strands. They make use of the observation that real
hair strands tend to form clumps due to adhesive and cohesive
forces [Magnenat-Thalmann et al. 2000], making it appropriate to
model hair in groups. The geometry of a cluster is modeled, and
detail is added by rendering the hair strands or volume density
[Kim and Neumann 2002].

Chen et al. [1999] model groups of hair using trigonal prisms.
A 2D hair distribution map is then added to the prisms for the
detail of the individual hairs.

Kim et al. [2000] present a method for modeling long hair,
and the interaction between hairs. Groups of hair strands are
modeled as a “thin shell volume” created by offsetting a surface
along its normal. The individual hairs are represented as particles
inside the volume. The movement of the particles is restricted by
the properties of hair-to-hair interaction.

In a later paper, Kim et al. [2002] present an interactive
system that provides a user with visual feedback as they model
different hairstyles. In this system, clumps of hair are represented
as generalized cylinders.

Koh et al. [2001], model groups of hair strands in strips using
parametric surfaces. Texture maps are applied to the surfaces for
detail. This method is able to render hair quickly and is therefore
useful for real-time applications. Unfortunately, the method does
not simulate the complex shadowing and geometry of the hairs
and therefore does not produce very realistic hair.

These models are similar to explicit models, but often lack
variation between hairs in a cluster, and are more difficult to use
when simulating hair movement.

2.3 Volumetric models
These models do not explicitly model the geometry of each
individual hair strand. Instead, a mathematical function or
volumetric texture (volume density function) is used. Because the
user does not have much control over the shape of individual
hairs, and the hair must be analytically defined, these models are
more suited to short hair or fur.

Perlin et al. [1989] introduce hypertextures, which are able to
create the illusion of fur by evaluating a density function in a
three-dimensional space. Kajiya et al. [1989] use hypertextures as
a piece of texture that is tiled onto complex surfaces. Lengyel et
al. [2001] then provide a method for real-time rendering of fur on
complex surfaces.

The volumetric texture approach models the complexity of
hair with a simple mathematical function (or functions).
Unfortunately this approach does not provide the user with much
control over individual hairs and is not suitable for modeling long
hair. Due to the need for realism in the modeling of long hair, the
explicit model is the most appropriate method to use.

3. Overview
In this paper a plug-in, for LightWave, that models long hair
explicitly is presented. The plug-in is divided into two parts:
HairDesign, which deals with adding hair to a head model and
designing a hairstyle; and HairClone, which deals with the
problem of modeling thousands of hairs.

In Sections 4 and 5 modeling hair explicitly and LightWave
plug-in development are looked at. The implementation of the
plug-in is discussed in Section 6, and some results are shown in
Section 7.

4. Modeling Hair
Creating hair on a model of a head involves placing hair on the
head model, representing the hair in some way, and dealing with
the large number of individual hairs.

4.1 Growing hair from the scalp
An important task in modeling hair is attaching the hair to the
scalp of the head model and determining the distribution of the
individual hair strands.

There are two ways you can add hair to the scalp of the head
model. The first method makes the geometry of the hair part of
the head’s geometry. The advantage of this is that there will be no
holes or overlapping polygons in the mesh, and the hair will move
with the head. This method, however, is not practical. It requires
an algorithm to join the hair geometry to the head and results in an
unnecessarily large number of polygons for the scalp. The second
method is more practical. It involves placing the hair on the head,
but does not attach the hair geometry to the head. The advantage
is that no algorithm is required for attaching the hair, and the scalp
mesh remains the same. There are ways to move the hair with the
head, and if the ‘root’ of the hair is placed close to the surface,
overlapping the hairs on the head geometry will not cause unusual
effects.

Several methods have been used for distributing the hair on
the head. Lee et al. [2002] divide the area where hair should be
placed into ten regions. The hair is distributed in each region
using a growth map (probability density function) based on the
density of the hair. Hadap et al. [2000] also use a probability
density function, or growth map, but do not divide the head into
ten regions. Kim et al. [2002] do not model the hairs directly on
the surface of the head model. Instead they wrap a spline patch
over the area of the head model where hair can be placed. The
advantage of this method is that the hairs are distributed on a two-
dimensional plane, which is easier than trying to assign the hairs
to polygons on the head model. The disadvantage is that the scalp
is curved. This can cause hairs to be misaligned and results in
abnormal bending of the hair segments. Daldegan et al. [1993]
assign an individual hair to each triangle on the head model. This
hair defines the shape and size of the other hairs on the triangle.
The number of hairs on each triangle is proportional to the area of
the triangle.

This paper uses an approach similar to that taken by Daldegan
et al. [1993], but instead of distributing the hair according to the
areas of the triangles, the head mesh is divided into triangles of
similar size. The same numbers of hairs are then placed randomly
in each triangle. This is implemented in the plug-in, so that the
user does not have to manually place hair strands on the head.

4.2 Representing hair strands and the hairstyle
Because the hair is modeled explicitly, it is not represented by
mathematical functions, but rather by points, lines or polygons.
Physically, hairs are thin, curved cylinders. Close approximations

Figure 1: The modeling process to “grow” hair on the scalp using the HairDesign plug-in. A head model is designed or imported (left), the

user selects the polygons on which they want hair to be placed (middle), and run the HairDesign plug-in. The plug-in produces control
hairs (right).

to round bent cylinders require a large number of polygons, and
since hundreds or thousands of hairs have to be modeled, the
number of polygons required for each hair needs to be kept to a
minimum. One way is to represent the hairs as polylines, which is
one of the most widely used methods. Polylines are two-
dimensional and can only provide approximations of cylinders
when rendering. In this paper individual hairs are first represented
as curves, which are easy to use and bend. Each curve is then
extruded in two directions to produce a three-dimensional
approximation of a cylinder. Unfortunately this method produces
a ribbon effect, and is not the most effective method for producing
realistic results. A more appropriate technique is to represent
groups or individual hair strands as generalized cylinders.

As in the work undertaken by Daldegan et al. [1993], the hairstyle
is represented by a few ‘control’ hairs. The control hairs are
initially curves, therefore the user is able to easily modify them,
using tools in LightWave.

4.3 Multiplying hair
To overcome the problem of creating thousands of individual
hairs, a plug-in is designed that multiplies the individual control
hairs by a number specified by the user. Unlike the method in
[Daldegan et al. 1993], each triangle on the head model can have
more than one type of hair ‘growing’ from it, all the user has to do
is run the HairDesign plug-in more than once, and select the same
polygon each time. The number of hairs placed in each triangle is
user-defined rather than proportional to the area of the triangle.

5. LightWave 3D Plug-ins
A plug-in is a dynamically linked library (.dll) that extends the
functionality of a program. Plug-ins are imported into a system
and become commands that can be used like any other command
in the program. Most 3D graphics programs, whether commercial
or in-house, have an architecture that supports plug-in
development. In this paper the method for modeling long hair is
implemented as a plug-in for LightWave.

LightWave plug-ins are grouped into different categories,
called ‘classes’. The different classes perform different tasks and
are placed in LightWave at different points. The plug-ins
presented in this paper belong to the Modeler Command Sequence
class. Modeler Command Sequence plug-ins create and modify
geometry (The plug-in in this paper creates hair and modifies the

head geometry). They are able to issue commands2 and have
access to mesh editing functions [Wright 2001].

Mesh edits create, modify and obtain information about the
points and polygons of the geometry. Point and polygon scan
functions provide information or modify geometry by
enumerating all points and polygons. For each point or polygon,
they reference a callback function, which is supplied by the
programmer [Wright 2001].

Figure 2: The HairDesign (top) and HairClone (bottom) plug-in

interfaces.

6. Implementation
The hair modeling system consists of two plug-ins: HairDesign
and HairClone. These plug-ins alter a head model so that hair can
be placed on it, add control hairs to the head, and multiple the
control hairs to produce lots of hair. Together the plug-ins greatly
reduce the time required by a user to simulate a hairstyle.

6.1 Hair Design plug-in
The HairDesign plug-in creates control hairs and places them on
the scalp of the head model (See Figure 1). All the user is required
to do is select the polygons on the head model they would like
hair to be placed on, run the plug-in and enter the length and
number of segments they would like each hair to consist of. The
plug-in’s interface is programmed so that it appears to look like
LightWave’s interface (See Figure 2).

2 Commands perform tasks that the user could perform in LightWave’s
interface [Wright 2001].

6.1.1 Growing hair from the scalp

Polygons are selected using a selection tool included in the
program. LightWave has several tools for selecting groups or
individual polygons. Due to the fact that any head model may be
used, each selected polygon is checked for flatness, and all
polygons that have more than three sides are subdivided into a
number of smaller triangles. The result is a head with a selected
area made up of triangles.

Currently it is assumed that all the triangles are of similar
area. Alternative strategies would be to calculate the area of each
triangle, and subdivide those triangles whose areas are greater
than the average area. One could also combine triangles that are
too small or assign the same hair to more than one triangle.

A single control hair is then placed in the center of each
selected triangle using a mesh edit and enumerating the polygons.
This hair defines the length and shape of the other hairs on that
triangle. The center of each triangle is found, and this becomes the
start of the control hair. The hair is represented as a curve, which
is initially a straight line placed in the direction of the triangle’s
normal. The length of the curve and the number of segments on
the curve are specified by the user and obtained through the plug-
in’s interface. The curves and triangles are tagged, to keep track
of which hairs belong to which triangles. First the triangle is
checked to see if it has a hair tag, if it does the hair curve is tagged
with the same string as the triangle; otherwise the hair curve and
the triangle are given a tag (the same for each). Placing tags on
the triangles allows one to keep track of the triangle a hair is
placed on. This is necessary for placing copies of a control hair on
the same triangle. It may also be useful when animating the hair to
make sure that the hair curves move with the triangles they are
placed on since the hair curves are not part of the head geometry.

6.1.2 Designing a hair style with control hairs
The user is then able to bend and modify the control curves to

define the hairstyle they want using the tools available in
LightWave 3D (See Figure 3).

Figure 3: A hairstyle is designed with the control hairs (top), and
a second group of control hairs are added to the hairstyle for more

detail (bottom).

6.2 Hair Clone plug-in
After the user has designed the hairstyle, they select the control
hairs they would like to multiple and run the HairClone plug-in
(See Figure 4). To multiply different control hairs by different
amounts, the user can select the control hairs individually and run
the plug-in more than once.

Figure 4: Selected control hairs before they are multiplied.

6.2.1 Multiplying the control hairs
The HairClone plug-in asks the user how many times they would
like to duplicate each hair. The user is also asked for the thickness
they would like each hair. Again, the plug-in’s interface is
programmed so that it appears to look like LightWave’s interface
(See Figure 2). The plug-in randomly adds the specified number
of copies of the control hairs to each triangle. At the same time it
extrudes the curves so that they are no longer two-dimensional,
but rather three-dimensional approximations of a curved cylinder.

To add copies of a control hair, the control hair is checked to
see that it is a curve. The triangle on the head model, that the
control hair is attached to, is then found by matching the tags.
Once found, copies of the control hair are made and translated to a
random point on the triangle. This is done using Turk’s algorithm
[1990] for finding a random point in a triangle. The number of
new hairs to be made from each control hair is obtained from the
user interface.

Once all the new hairs have been added, all the hairs are
extruded so that they become three-dimensional objects. To do
this all geometry that is not hair geometry is hidden. A command
is then issued, which extrudes all geometry in a specified
direction. First the geometry is extruded along the X-axis and then
along the Y-axis. The LightWave extrude command only allows
geometry to be extruded along the X-, Y- and Z-axes. The amount
each curve is extruded is obtained from the user through the plug-
in’s interface. After extruding the hair curves, a command is
issued to unhide the hidden face and other geometry. Geometry
that is not part of the hair is hidden because the selected hairs do
not remain selected after the first extrusion. When the second
extrusion along the Y-axis is performed, all the geometry is
extruded including the polygons on the face. This causes
unwanted results.

After multiplying the control hairs the user is able to modify
newly created hairs using the tools provided by LightWave.

7. Results
Hair created using the proposed plug-in can be seen in Figure 5.
The hair is created using two sets of control hairs. The first set
contains 30 control hairs. Each of these control hairs has 4

segments and an initial length of 70mm (The length needed
depends on the size of the object and the units being used). The
second set of control hairs consists of 12 hairs. Each of these hairs
has 3 segments and an initial length of 30mm. The model of the
head is approximately 150mm wide and 255mm high. Each
control hair is multiplied 30 times. The hair curves are extruded
by 0.27mm (Again this depends on the size of the object and the
units being used).

The hair is rendered using the default lighting models and
rendering techniques provided by LightWave. The hair
transparency is achieved using the built-in raytracer, and shadows
are produced using shadow mapping. While other approaches to
hair modeling [4, 6] require development of specialised shaders
for approximating the illumination of hair, use of an explicit
model allows shading which is completely consistent with the
underlying geometry. This is particularly relevant for long hair
where the relative densities, and relationship to the surrounding
objects, changes substantially over the length of the hairs.

The hairstyle takes approximately 1 hour to model and 150
seconds to render. The system used is an 800 Mhz Intel Pentium
III system with 128 MB RAM.

In Figure 6 the same control hairs are used, with different hair
densities. The rendering times for each example can be seen in the
table below:

Control hairs Copies of each

control hair
Total number

of hairs
Rendering

time
30 10 330 42 seconds
30 20 630 90 seconds
30 30 930 150 seconds
30 40 1230 214 seconds

The hairstyles become similar in appearance as the density of

hair is increased. Thus, although use of the explicit model requires
large numbers of polygons to represent hair, there is an upper
bound on the amount of detail required to produce a realistic
appearance. Generating more hair strands than needed will
increase the time taken to render the hair without increasing the
visual quality of the hair. The number of hairs required is well
below the number actually present on the human head.

Figure 5: The same hairstyle rendered with different hair colour

values.

8. Conclusion
This paper describes the modeling and rendering of hair using an
explicit hair model. A process is devised that is suitable for the
creation of hairstyles containing thousands of hairs. This is
embodied in a plug-in for LightWave, which adds hair to an
arbitrary head model, allows a user to manipulate control hairs to

produce a skeleton structure of the desired hairstyle, and converts
the skeleton structure into a hairstyle with the desired hair density.
The plug-in allows the user to specify the thickness, length and
distribution of hairs, as well as the geometric complexity of each
hair strand. A number of limitations of the plug-in SDK for
LightWave are discussed, and methods for overcoming them are
described.

The results show that use of the explicit model for
representing hair can produce realistic results without excessive
storage or computational overheads. The number of polygons
required to produce quality hair models is bounded, and
increasing geometry detail beyond this point results in marginal
improvements in the appearance of the rendered hairstyles. The
benefits of using the explicit model are substantial: existing
rendering and shading techniques can be used, and reflection,
refraction and shadowing are all matched to the actual geometry.

By providing a plug-in that does most of the work and
produces realistic results the user is able to produce a hairstyle
without modeling each and every strand of hair. This greatly
reduces the time spent on hair modeling, and allows realistic long
hair for virtual humans to be modeled and rendered.

Figure 6: The same control hairs are multiplied 10, 20, 30, and 40

times (From left to right, top to bottom).

References
ANJYO, K., USAMI, Y., AND KURIHARA, T. 1992. A Simple

Method for Extracting the Natural Beauty of Hair. In Computer
Graphics (Proceedings of ACM SIGGRAPH 92), 26 (2), ACM,
111-120.

CHEN, L., SAEYOR, S., DOHI, H., AND ISHIZUKA, M. 1999. A

System of 3D Hair Style Synthesis Based on the Wisp Model.
The Visual Computer, 15 (4), 159-170.

DALDEGAN, A., MAGNENAT-THALMANN, N., KURIHARA, T., AND

THALMANN, D. 1993. An Integrated System for Modeling,
Animating and Rendering Hair. Computer Graphics Forum
(Eurographics 93), 12 (3), 211-221.

GOLDMAN, D. 1997. Fake Fur Rendering. In Proceedings of ACM

SIGGRAPH 97, ACM Press / ACM SIGGRAPH, 127-134.

HADAP, S., AND MAGNENAT-THALMANN, N. 2000. Interactive Hair

Styler based on Fluid Flow. Proceedings of Eurographics
Workshop on Computer Animation and Simulation 2000, 87-99.

KAJIYA, J., AND KAY, T. 1989. Rendering Fur with Three

Dimensional Textures. In Computer Graphics (Proceedings of
ACM SIGGRAPH 89) , 23 (3), ACM, 271-280.

KIM, T., AND NEUMANN, U. 2000. A Thin Shell Volume for

Modeling Human Hair. IEEE Computer Animation, 104-111.

KIM, T., AND NEUMANN, U. 2002. Interactive Multiresolution Hair

Modeling and Editing. ACM Transactions on Graphics, 21, 3,
620-629.

KOH, C.K., AND HUANG, Z. 2001. A Simple Physics Model to

Animate Human Hair Modeled in 2D Strips in Real Time.
Proceedings of Eurographics Workshop 2002, 127-138.

LEE, C., CHEN, W., LEU, E., AND OUHYOUNG, M. 2002. A Rotor

Platform Assisted System for 3D Hairstyles. Journal of WSCG,
10 (1-3), 271-278.

LENGYEL, J., PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2001.

Real-Time Fur over Arbitrary Surfaces, In Proceedings of
Interactive Symposium on 3D Graphics, 227-232.

MAGNENAT-THALMANN, N., HADAP, S., AND KALRA, P. 2000.

State of the Art in Hair Simulation. International Workshop on
Human Modeling and Animation, 3-9.

PERLIN, K., AND HOFFERT, E. 1989. Hypertexture. In Computer

Graphics (Proceedings of ACM SIGGRAPH 89), 23 (3), ACM,
253-262.

TURK, G. 1990. Generating random points in triangles. In A. S.

Glassner, editor, Graphics Gems. Academic Press, 24-28.

WRIGHT, E. 2001. LightWave Development Documentation.

Available online at: http://www.lightwave3d.com/developer/.

A LightWave 3D Plug-in for Modeling Long Hair on Virtual Humans: Deborah Patrick and Shaun Bangay

Figure 1: The modeling process to “grow” hair on the scalp using the HairDesign plug-in. A head model is designed or imported (left), the
user selects the polygons on which they want hair to be placed (middle), and run the HairDesign plug-in. The plug-in produces control

hairs (right).

Figure 3: A hairstyle is designed with the control hairs (top), and
a second group of control hairs are added to the hairstyle for more

detail (bottom).

Figure 4: Selected control hairs before they are multiplied.

Figure 5: The same hairstyle rendered with different hair colour

values.

Figure 6: The same control hairs are multiplied 10, 20, 30, and 40

times (From left to right, top to bottom).

	Abstract
	1. Introduction
	2. Related Work
	2.1 Explicit models
	2.2 Cluster models
	2.3 Volumetric models

	3. Overview
	4. Modeling Hair
	4.1 Growing hair from the scalp
	4.2 Representing hair strands and the hairstyle
	4.3 Multiplying hair

	5. LightWave 3D Plug-ins
	6. Implementation
	6.1 Hair Design plug-in
	6.1.1 Growing hair from the scalp
	6.1.2 Designing a hair style with control hairs
	6.2 Hair Clone plug-in
	6.2.1 Multiplying the control hairs

	7. Results
	8. Conclusion
	References

