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Figure 1: Dynamic simulation of bouncing spheres.

Abstract

This paper examines a number of broad-phase optimisations which
can be used to improve the performance of collision detection in dy-
namic simulations. Specific focus is placed on hierarchical spatial
partitioning techniques such as the octree,k-d tree and binary space
partitioning (BSP) tree. A number of experiments are conducted us-
ing this subset of partitioning methods in order to evaluate their com-
parative performances in a controlled simulation. A generic struc-
ture is created and described which is able to implement each of the
tree-based partitioning methods as well as a number of variations
on some of the methods. This structure is generic in that the parti-
tioning method implemented depends only on the initial hyperplanes
passed to it as a parameter. The results of these tests are analysed in
order to identify factors which may affect the extent to which each
scheme optimises the collision detection process. Factors identified
include allowable tree depth and branching factor, the choice of new
partitioners in the recursion process, and the application domain of
the partitioning scheme.

CR Categories: I.3.15 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Object Hierarchies

Keywords: Collision detection, optimisation, hierarchical parti-
tioning, octree,k-d tree, BSP-tree

1 Introduction

1.1 Problem Statement

This paper investigates the problem of broad-phase collision de-
tection in dynamic simulations. This includes the analysis of dif-
ferent spatial partitioning techniques, specifically quad/octrees,k-d
trees and BSP-trees. The analysis includes a number of experiments
which are designed to expose factors which affect the performance
of each partitioning technique.

1.2 Background

Real time collision detection is an essential feature of many types
of application including dynamic simulations, ray-tracing, robotics,
engineering simulations, molecular modeling and electronic proto-
typing [Lin 1999]. Simplistically defined,collision detectionis the
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process of discovering when two or more objects intersect.Colli-
sion responsegenerally refers to the calculation of new linear and
angular velocities for colliding objects [Moore and Wilhelms 1988].
A dynamic simulation of bouncing balls, for example employs colli-
sion detection between each ball in the simulation, and if collisions
are detected, employs some collision response algorithm to calcu-
late the subsequent bounce, based on physical phenomena such as
momentum.

Realistic dynamic simulation, however, is complicated by a variety
of factors. For instance, the more complex the shape of an object, the
more difficult it becomes to calculate whether two such objects in-
tersect. Additionally, the number of collision tests increase quadrat-
ically in relation to the number of dynamic objects in the simulation.
Finally, the deformation of objects as they collide presents further
challenges to a realistic dynamic simulation.

A number of optimisations have been presented in order to reduce
the amount of computation required for collision detection, which
can be roughly categorised into two groups [Luque et al. 2005; Mir-
tich 1998]:

• Broad-phase: a fast test which enumerates pairs of objects that
potentially collide. This is also referred to asrejection tests
[Lin 1999], where pairs of objects are rejected as potential col-
lision candidates when they are too far apart.

• Narrow-phase: optimising the collision detection process be-
tween two complex objects.

Broad-phase algorithms typically aim to reduce the number objects
to be checked for collision. They make use ofspatial partition-
ing techniques to exclude objects which are too far apart. Narrow-
phase partitioning aims to optimise the collision detection process
between two complex objects which have passed through the broad-
phase filter. Narrow-phase detection works by encapsulating the ob-
jects within a number of simpler constructs (for example, spheres)
at different resolutions. If any of these constructs collide, then the
underlying geometry within that construct is tested for collision, ef-
fectively reducing the number of collision tests required.

Broad-phase collision detection is not concerned with detailed ge-
ometry, and generally tests for intersections between thebounding
volumeswhich encapsulate each object. Various types of bounding
volume exist, including bounding spheres, axis-aligned bounding
boxes (AABB), oriented bounding boxes (OBB) andk-DOPS (dis-
crete oriented polytopes) [Klosowski et al. 1998]. Many structures
have been developed to spatially partition these bounding volumes
in order to reduce the number of collision tests which must occur in
the narrow-phase. These structures include quadtrees, octrees,k-d
trees, binary-space-partition trees, BRep indices and regular grids.

This paper investigates and tests a number of spatial partitioning



methods. Each method is explained and its performance compared
to that of a baseline method. The baseline method is the brute force
solution to collision detection in which each object is checked for
collision against every other object. This approach is often classi-
fied as having a worst case runtime ofO(n2) [Lin 1999; Luque et al.
2005]. The spatial partitioning methods presented here are used to
reduce this runtime.

1.3 Overview of paper

The rest of this paper is thus structured as follows: Section 2 gives
an overview of a number of broad-phase spatial partitioning meth-
ods, a brief discussion of narrow phase optimisations, as well as an
overview of similar performance studies on partitioning techniques.
Section 3 presents the experiments done to evaluate the performance
of each partitioning scheme, and discusses the results of these tests.
Finally Section 4 gives a summary of the paper and briefly discusses
further tests which may be done for a more thorough evaluation of
broad-phase collision detection optimisations.

2 Related Work

A variety of broad-phase and narrow-phase optimisations exist for
collision detection. This section provides a survey of a number of
broad-phase partitioning methods used in collision detection, and
briefly discusses some techniques used in the narrow-phase. Addi-
tionally previous comparative results between different spatial parti-
tioning techniques are discussed.

2.1 Broad-phase (spatial) partitioning

The idea of spatial partitioning is to divide a space into distinct re-
gions. Objects within the space are grouped according to these re-
gions with the aim of reducing the number of candidates for collision
testing. For instance, if objectA is grouped according to regionR1
and objectB is grouped according to regionR2, assumingR1 and
R2 are disjoint, then no collision test is necessary between objectA
andB. A complication to this idea is that some objects may lie on
the border of two regions. One solution is to subdivide the object
into sub-objects, with each sub-object falling into a distinct region.
A simpler solution is to include the object in both regions. For in-
stance, if objectA lies on the border of regionR1 and R2 then it
will be included in both regions, and hence a collision test will be
necessary between objectA andB.

The above discussion leads to the conclusion that there are some
characteristics which differentiate the effectiveness of partitioning
methods. These include the number of objects in each region; the
distribution of objects over the regions; and the number of objects
which need to be grouped into more than one region. These charac-
teristics will be analysed in the context of each partitioning system.

2.1.1 Regular Grid

The most intuitive method for spatial partitioning is to divide a re-
gion into evenly spaced partitions. A two-pass method is often used
[Teschner et al. 2003]. In the first pass the space inR3 is implicitly
subdivided into a regular grid of cells. This is done by discretising
the positions of all object vertices with respect to a cell sizel . Each
component in the vertex position(x,y,z) is divided byl and rounded
down to the nearest integer. The results are then hashed to a 1D
index and the object information stored in a hash table at this in-
dex. During the second pass only the objects which fall in the same
buckets are tested for collision.
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Figure 2: 2-dimensional representation of a regular grid and the
mapping to a hash-table.

Figure 2 presents a two dimensional representation of the first pass.
The number of objects which need to be tested for collision is depen-
dent on the size ofl . If l is too large then a large number of objects
will be mapped to a small number of buckets, increasing the num-
ber of collision tests. Ifl is too small then objects overlap a number
of regions, adding to the number of collision candidates once again.
Additionally, the type of hash function used as well as the number of
buckets used in the hash-table affects the number of objects which
need to be tested.

Multi-resolution hash-tables have been used as a solution to the
problem of finding an ideal value forl [Mirtich 1998]. The region
is partitioned in increasing levels of resolution, each level having its
own associated hash-table. The highest level of resolution is scanned
first, and any region in a level of lower resolution which overlaps this
region is included in the collision tests.

The major flaw with a regular grid partition is lack of adaptivity
to the location of objects in the simulation. For instance, a large
number of objects clustered together will result in a hash-table with
a small number of buckets which have a large number of objects.
Ideally a scheme which can focus on populated areas and attempt to
partition only these areas is desired.

2.1.2 Quad/Octree

Quadtrees and Octrees are data structures which have the ability to
focus in on regions of space which are populated. A hierarchical
data structure is used to provide a multi-resolution representation of
the location of objects in a simulation.

The quadtree [Samet 1984], initially used in image processing,
works by partitioning a region into four equal quadrants. The root
node of the tree represents the space with no partitioning, and has
four children, each representing a partitioned quadrant. These chil-
dren are parents to further subtrees, where each quadrant is repeat-
edly partitioned in a similar manner. Figure 3 presents a 2D example
of a region-basedquadtree, which divides the space into equal sized
regions. The leaves at each level (shaded in gray) indicate empty
quadrants. Non-empty quadrants are recursively partitioned until
a predefined depth is reached, or until only one object per node is
achieved. In this example a predefined depth of 3 is specified, and
each leaf node on level 3 is used as a bucket for storing possible
collision candidates.

The concept discussed above can be adapted to three dimensions. In
the case of a quadtree, a space is divided into four equal sized par-
allelepipeds. Alternatively, as in the case of the octree, the space is
divided into eight equal sized octants, resulting in each node having
eight children [Samet 1984].

An alternative type of quadtree to the one presented in Figure 3 is
a point-basedquadtree. This method does not divide the space into
equal sized regions but rather chooses some point from the region’s
objects as a center for the next level of partitioning. The optimal
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Figure 3: Quadtree partitioning of a 2-dimensional space.

choice of this point, however, often implies a search[Samet 1984].
This technique has also been extended to octrees [Moore and Wil-
helms 1988].

2.1.3 k-d Tree

Extending a quadtree to an octree in the previous section raised the
branching factor of the tree from four to eight. Generally extending
this kind of partitioning into ak-dimensional space will result in a
branching factor of 2k branches per node. This kind of branching is
undesirable and reduces the efficiency of searching through the tree.
The k-d tree is proposed as a multidimensional space partitioning
technique [Bentley 1975] which has a branching factor of 2, making
it a variation of a regular binary tree. A set ofdiscriminatorsexists
which can be used to partition a space into two regions. At each
level of partitioning only one discriminator is used from the set, and
there is strict alternation between the choice of discriminator. In a
dynamic simulation context these discriminators are partitioners or
hyperplanes.

The root node in ak-d tree represents the entire space. Two de-
cisions need to be made when choosing the next partitioner [Held
et al. 1995]. Firstly, the axis (x−,y−,z−axis) against which the hy-
perplane should be aligned needs to be determined, and secondly
the position on the chosen axis that the hyperplane should be placed.
These decisions are at the discretion of the designer of the system,
and could range from choosing the median along the axis, to search-
ing for the planes which produce the most balanced partitioning.
Once a suitable hyperplane is found, the space is partitioned in two,
with all objects on one side falling into the corresponding child of
the current node. This process is recursive, and each space is in turn
divided until some threshold (for example minimum number of ob-
jects in a partition) is reached. Figure 4 illustrates the workings of
a k-d tree in 2D which alternates betweenx− andy−axis-aligned
hyperplanes at each level of recursion. An arbitrary position along
that axis is chosen. All objects which fall into the same partition are
candidates for the narrow-phase collision detection.

k-d trees can be implemented as both region-based and point-based
trees. For instance, a region-based tree will choose new partitioners
based on some spatial division, whereas a point-based tree would
choose some point within a region and use the point as the reference
point for the new hyperplane [Samet 1984].

2.1.4 Binary Space Partition (BSP) Tree

Binary Space Partition (BSP) trees are a generalisation of thek-d
tree, the main difference being that hyperplanes in any arbitrary di-
rection can be chosen (as against axis-aligned hyperplanes). The
construction of a BSP-tree takes as input the region to be partitioned,
and abinary partitioner (hyperplane), and produces two disjoint
subsets of the input region [Naylor 1992]. As with thek-d tree the
process is recursive and each partition is in turn partitioned.
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Figure 4:k-d tree in two dimensions.
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Figure 5: BSP-tree in two dimensions.

Figure 5 illustrates a BSP-tree in 2D. The diagram suggests that the
correct choice of partitioner can provide more efficient division of
regions than axis aligned methods. The choice of partitioner, how-
ever, is not a trivial one. Decisions when choosing a partitioner in-
clude the extent to which the angular range of a new partitioner is
limited (for instance, within some angle from the normal of the par-
ent hyperplane), as well as deciding where to place the hyperplane.
Partitioners can be chosen based on goodness criteria [Luque et al.
2005]. The quality of a partitioner is evaluated using metrics such
as:

• population: the number of objects tested against the partitioner

• balance: the measure of how evenly the partitioner splits ob-
jects in the region.

• redundancy: the number of objects which are intersected by
the partitioner and will be placed in both partitions.

Evaluating the goodness of a partitioner, however, adds another level
of time complexity to a collision detection system. For instance,
evaluating the balance of a partitioner requires that each object in
the partition be classified asin-front-of or behindevery candidate
partitioner. This process becomes feasible in cases such as [Luque
et al. 2005] in which temporal coherence between time-steps is im-
plemented in the simulation. In this case new partitioners are found
for only those nodes where objects have moved significant distances
over specified time intervals.

2.1.5 Other partitioning methods

A variety of other methods exist for spatial partitioning besides the
ones mentioned thus far. Many of them, however, are extensions of
one of the above techniques. For instance BRep indices [Vanecek
1991] extend the idea of BSP-trees to multiple dimensions in or-
der to provide detailed information about the boundary representa-
tion of an object. This is done by recursively decomposing thed-
dimensional hyperplanes into(d− 1)-dimensional BSP trees. The
space is thus partitioned into 3-, 2-, 1- and 0-dimensional regions.

An R-tree is a scheme which partitions the set of obstacles associated
with a node, rather than the space that the node represents [Held et al.



1995]. For instance, the objects at a certain node are split by finding
a median value between the centroids of the objects, and partitioning
the objects based on their relationship with the centroid.

A technique namedsweep and pruneis also used [Lin 1999]. This
approach projects the extreme edges of an object’s axis-aligned
bounding box onto thex−,y− and z−axes. The result is a set of
intervals along these axes. A collision occurs if an overlap in inter-
val occurs in all three dimensions.

A dimension of collision detection which is not handled by these
schemes is time. The major problem is that most dynamic simulation
use a time-step based approach where object positions are updated
at discrete intervals. If an object is moving at a very large velocity
there is a good chance that it will appear to have gone through an
obstacle, since the change in position between time-steps was large
enough to move the object beyond the obstacle without experiencing
any collisions. Aswept volumeapproach has been proposed to solve
this problem [Mirtich 1998], where a bounding box is created which
covers an object’s entire trajectory space over a time-step. This so-
lution only works when the trajectory is predictable and simply cal-
culated. Another technique is to maintain a priority queue of object
pairs that might collide, sorted with estimated time-to-collision, in
order to provide real-time performance [Lin 1999]. Other solutions
include using four dimensional representations, where the fourth di-
mension represents time [Klosowski et al. 1998], to bound the posi-
tion of objects within the near future.

Often in dynamic simulations the geometric relationship between
objects only differs slightly between successive timesteps. In ad-
dition to this, a simulation may contain a number of static objects
which do not move at all. These properties allow the the implemen-
tation of temporal coherence[Lin and Gottschalk 1998] between
successive frames. This means that a new broad-phase partition-
ing structure does not need to be applied at each new frame, but
rather the same structure used repeatedly over a number of frames
and updated with the new object positions. As mentioned previously,
temporal coherence can be implemented where the spatial hierarchy
(BSP-tree) is updated at regular intervals [Luque et al. 2005]. Up-
dating only occurs when certain conditions of the BSP-tree are met,
since in a system of many dynamic objects, dynamically updating
the tree can consume as much time as building the tree from scratch
at each frame. As object positions are changed at each frame, the
leaves of the BSP-tree which contain ordered lists of objects are also
updated. Using ordered lists at the leaves allows the exploitation of
temporal coherence to optimise the update process.

2.1.6 Bounding Volumes

Broad-phase collision detection aims to reduce the number of colli-
sion candidates to be tested for collision at a later stage. Therefore,
the partitioning tests to be done during the broad-phase need to be
efficient, but do not need to be completely accurate. It is for this
reason that complex objects are rather encapsulated within a convex
bounding volume for which collision tests are more efficient. During
the broad-phase, it is these bounding volumes which are compared
for partitioning purposes.

A number of bounding volumes can be used to encapsulate complex
objects. Although the precision when using such volumes is more
relaxed, it still holds that the more closely a bounding volume ap-
proximates the shape of an object, the more efficient the collision
detection process becomes.

The simplest type of bounding volume is the bounding sphere, where
the entire object is encapsulated by a single sphere. This option is at-
tractive since it is simple to calculate intersections between spheres.
However, since not all objects are spherical in shape, a bounding
sphere often does not produce a tightly fitting bounding volume.

Axis-aligned bounding boxes (AABBs) are parallelepipeds whose
faces are aligned with the basis vectors which define the coordinate
system [Eberly and Schneider 2003]. Intersection testing between
such volumes entails projecting the dimensions of the bounding box
onto all the basis vectors, and determining whether an overlap oc-
curs on at least one axis. Once again, this type of bounding volume
does not always closely bound an object, and hence the develop-
ment of the Oriented Bounding Box (OBB). This bounding volume
is a parallelepiped whose faces are not aligned with the basis vectors
which define the coordinate system. A similar method for detecting
collision between OBBs is used as for AABBs, except the OBBs are
projected onto an arbitrary axis to determine if overlap occurs, rather
than a basis vector.

Finally, a k-DOP (discrete oriented polytope) is presented
[Klosowski et al. 1998], where the bounding volume can be formu-
lated usingk facets whose outward normals come from a small set of
fixed orientations. This structure allows a tighter fit with the object
than AABBs and OBBs, since a larger number of facets is used.

2.2 Narrow-phase partitioning

Once the number of collision candidates has been filtered down by
the broad phase collision detection process, more accurate (but more
time-consuming) algorithms are used in the narrow-phase to deter-
mine whether objects penetrate. Such methods include techniques
such as the Lin-Canny algorithm [Mirtich 1998] for finding the clos-
est points between two objects. It works by dividing the surround-
ing space of a convex-polyhedron into Voronoi regions. If points on
both objects fall within a Voronoi region of the other, then the two
points are the closest points between the objects. This process is iter-
ative in nature, but eventually terminates after settling on the closest
points. Pure algebraic intersection testing can also be done. In ray-
tracing, for example, an intersection between a ray and a triangle can
be found by parameterising the triangle with respect to barycentric
coordinates [Buss 2003].

The above collision detection processes provide examples of com-
putationally expensive methods. Therefore, the fewer of these tests
that are the done, the better the performance of the system. Broad-
phase partitioning is responsible for filtering out entire objects which
need not be compared for collision. However, this can be extended
to the narrow phase, partitioning the object space.

Octrees, for example, are not limited to broad-phase optimisation,
but also apply in narrow phase collision detection [Bandi and Thal-
mann 1995]. In the broad-phase the bounding volumes of two com-
plex objects are used in conjunction with the octree to decide if
the objects are potential collision candidates. In the narrow phase,
the object space of the two objects are further partitioned using oc-
trees to speed up collision detection between the individual polygons
making up the objects. Therefore, for complex objects constructed
from a large number of primitives, such partitioning can reduce the
number of intersection tests required between two objects.

Simple constructs such as spheres can also be used to optimise
narrow-phase collision detection [James and Pai 2004]. An object
is encapsulated with a number of close fitting spheres which ad-
just automatically to any deformation that the object may experi-
ence. These spheres are then used in the narrow-phase to reduce the
number of collision-tests. This method can be applied as a multi-
resolution sphere tree, which begins with one bounding sphere at the
root which covers the entire objects. At each level of the tree more
and more spheres are used to cover the object with higher precision
[Hubbard 1996].

Another example of narrow phase partitioning involves partitioning
an object into a hierarchical structure of oriented bounding boxes
called an OBBTree [Gottschalk et al. 1996]. This technique involves
tightly fitting OBBs around groups of polygons, and then nesting



these OBBs into a tree hierarchy. Such partitioning allows for the
accurate detection of collisions between objects at interactive rates.

2.3 Evaluations of spatial partitioning techniques

Many evaluations have been done which compare various optimisa-
tion schemes in terms of performance. Such tests occur most fre-
quently when a new technique is developed, as is the case in Luque
et al. [2005], where the new technique for updating BSP trees is
compared against quadtrees, spatial hashing and a sweep-and-prune
approach. Metrics such as frames per second (FPS), number of colli-
sion pairs, broad-phase collision time and update time are collected.
In this particular case, the quadtree and BSP-tree produce the best
performance improvements.

Various hierarchical methods have uses which extend to many other
domains including ray-tracing. A number of performance tests in
a ray-tracing environment have been done using spatial partitioning
techniques for optimisation [Havran et al. 2000]. Such tests include
BSP-trees,k-d trees, uniform grids and octrees. A number of test
simulations are generated, some with more than 106 objects, which
are used as test environments for the ray-shooting scheme. Thek-d
tree is reported as having the best overall performance.

Another comparison between partitioning techniques is presented in
[Held et al. 1995] where a grid-based technique,k-d tree, a custom
defined mesh-based scheme and R-tree are compared. Each scheme
is evaluated over a number of randomly generated “obstacle” envi-
ronments. This experiment reveals that the R-tree is the best per-
forming collision detection scheme.

Finally Leveyet al. [2000] present metrics for evaluating collision
detection techniques based on performance, scalability, robustness
and ease of implementation.

3 Experimentation

The aim of this experimentation is to evaluate the performance of
a subset of the discussed broad-phase collision detection schemes.
Tree-based optimisations in particular are examined, including oc-
trees,k-d trees and BSP-trees. A generic structure for implementing
these optimisation schemes is created, and as a result a number of
modified versions of these schemes are also tested. In particular, the
following tests are conducted:

• Determine which algorithm improves performance by the
largest margin.

• Determine the impact of increasing the depth of the associated
tree.

• Determine the characteristics of each algorithm in terms of tree
construction as well as the number of collision tests which need
to be performed.

• Determine which algorithm performs the best consistently as
more objects are added to the simulation, and thereby identify
the point at which the various schemes fail.

3.1 Design

In order to evaluate the performance of each partitioning technique,
a baseline model is required against which each technique can be
compared. This baseline model is the worst case situation, where
each object in the simulation is tested against every other object.
Therefore the number of collisions in this model have a quadratic
relationship with the number of objects in the simulation.

Two types of octree are implemented in this experiment. The first
type of octree is aregion-basedoctree, and takes the centre point
of each octant as the centre point for three orthogonal axis-aligned
hyperplanes. The second type ispoint-basedwhere the centre point
of each octant is the median of all the objects in that octant. The
octree is simplified to form a quadtree, where the region is divided
into four equal sized parallelepipeds, and different combinations of
axis aligned planes are tested. Finally a binary version of the tree is
tested where only one axis-aligned plane partitions the space (bin-
tree). Once again, performance is measured for different planes.

Two types ofk-d tree are also implemented, one regional and the
other point-based. Thek-d tree begins with an axis aligned plane
which partitions the space, and at each level in the recursion chooses
the next axis-aligned plane from a set. In this 3-dimensional case,
level i in the tree will correspond to plane(i modulo3) in the set
of available planes. For instance, on level one, thex− z plane is
the partitioner, and on level two thex− y plane is the partitioner.
The region-basedk-d tree chooses the centre point in the region to
determine the location of the new plane, while the point-basedk-d
tree uses the median of the objects within the region.

A BSP-tree is implemented in the following manner. At each level
of recursion a normal is created by taking the direction from the
median of objects in the region to the previous reference point on a
plane. This normal is rotated by ninety degrees around thex−, y−
andz−axes. A new hyperplane is formed using this normal, with the
median as the new reference point.

Each of these trees are tested using different depths in order to eval-
uate the effect of tree depth on the performance of the optimisation.

Statistics gathered include the time taken for the entire collision pro-
cess to complete (including broad-phase collision detection and col-
lision response), and the number of collision-tests which need to be
performed at each frame.

Generic Structure In order to compare the optimisation schemes
in a fair manner, a generic structure is implemented that can repre-
sent octrees,k-d trees and BSP-trees. The structure requires that a
set of planes be added which will be used as partitioners. A division
function iterates through this set of planes, recursively partitioning
a region with regards to the specified planes resulting in 2p parti-
tions if p planes are added. Once a region is partitioned according to
this set of planes, each resulting partition is recursively partitioned
in turn. Choosing the new centre for the set of planes (or modifying
the planes’ orientations) at each level o recursion differentiates the
partitioning schemes from each other. For instance, at this stage a
region-based octree would calculate the centre of the new partition
and create a new set of axis aligned hyperplanes at this point. A
BSP-tree however, creates only one new plane with a randomised
orientation.

This structure is designed as a class containing a single publicly ac-
cessible method,CONSTRUCT, which takes as input: a set of planes
which will partition the space; the node in the tree representing the
current region to be partitioned by these planes; the set of objects
in this region; the current tree depth; and the type of partitioning
to occur. Two private methods are also used in this class,SINGLE-
SPLIT, andSPLIT. CONSTRUCT is responsible for choosing a new
set of hyperplanes for each partitioned space, whileSINGLESPLIT is
responsible for the partitioning of the space accordingly.

SINGLESPLIT is a recursive function which iterates through the set
of planes, partitioning the current space accordingly. Determining
whether an object lies in-front-of or behind a plane is implemented
in SPLIT. Once the region is fully partitioned by all the planes in the
set, a new node is created in the tree for each partition. This node
contains a list of pointers to the objects it contains. The algorithm
implemented inSINGLESPLIT is presented in Algorithm 1.



Algorithm 1 SINGLESPLIT function
void singleSplit(

Node parent,
Collection planes,
Collection spheres,
int i, //which plane this split uses
)

{
if (i < size of planes){

nf = Empty Collection of spheres (front);
nb = Empty Collection of spheres (behind);
//Split the collection of spheres
//according to plane i from planes and
//puts all spheres in front of the plane
//in nf, and those behind the plane in nb
split(ith plane, spheres, nf, nb);

//Split collection in front of plane
singleSplit(parent, planes, nf, i+1, fm);
//Split collection behind plane
singleSplit(parent, planes, nb, i+ , bm);

} else {
n = new Node;
n.spheres = spheres;
add n to the parent's children;

}
}

Algorithm 2 CONSTRUCTfunction.
void construct(

Vector point, //centre point of region
Collection planes, //hyperplanes
Node current, //current node of tree
float width,
Collection spheres,
int depth, //Max depth of tree
int type //Type of tree
)

{
//Partition the region and add the
//relevant children to the current node
singleSplit(current, planes, spheres, 0);
iterate through current's children{

child = current.child[i];
if (spheres in child > 1 && depth > 0){

switch (type){
//Each type defines its own unique
//way of creating a new set of planes
//for the next level of recursion
case OCTREE: ...
case POINTOCTREE: ...
...
}
//Recurse: newCenter is the reference
//point of the new region; newplanes
//is the set of new planes which will
//partition the regions
construct(newCenter, newplanes,

child, newWidth,
child's spheres, depth-1,
type);

} else {
//make spheres aware of surrounding
//collision candidates
iterate through all spheres in child{

sphere[i].neighbours = node.spheres
}

}
}

Original hy-
perplanes

New hyperplanes at each
level of recursion

Octree x− y, y− z,
x−z planes

x− y, y− z, x− z aligned
planes centered at midpoint
of new partition

Point-based
octree

x− y, y− z,
x−z planes

x− y, y− z, x− z aligned
planes centered at median
of objects in new partition

k-d tree y−z plane plane (imod3) from the
set of axis-aligned planes,
wherei is the current depth
of the tree. The plane
passes through the mid-
point of new partition

Point-based
k-d tree

y−z plane plane (imod3) from the
set of axis-aligned planes,
wherei is the current depth
of the tree. The plane
passes through the median
of objects in new partition

BSP-tree y−z plane New plane defined by me-
dian of objects in partition
and reference point on pre-
vious plane

Table 1: Parameters for implementing different schemes with the
generic structure.

The algorithm whichCONSTRUCT implements is presented in Al-
gorithm 2. Note that this structure makes the partitioning process
similar over all differing types of techniques. The algorithm is pa-
rameterised only by the new set of planes which are chosen at each
level of recursion. When the depth reaches zero, each object is made
aware of the other objects which fall into the same partition. These
surrounding objects are the collision candidates which will be passed
to the narrow-phase.

3.2 Implementation

The simulation environment for this experiment consists of a virtual
axis-aligned box into which 1000 spheres are dropped (see Figure 1).
Spheres are used since many collision detection schemes use bound-
ing spheres for complex objects. Since this experiment is aimed at
testing broad-phase optimisations, more complex structures are not
necessary. A simple test is done for collisions, where a collision oc-
curs if the distance between the centres of two spheres is less than
the sum of the radii of the spheres. If a collision occurs, the loca-
tions of these spheres are modified so that they no longer intersect.
In addition, a simple momentum based calculation is done in or-
der to determine the new velocities of the involved spheres. Each
sphere is also tested against the boundaries of the box, and the cor-
rect component of the velocity is reversed to simulate a bounce off
the boundary.

The generic structure is parameterised with the planes defined in Ta-
ble 1 in order to implement the different types of trees. The “Original
Hyperplanes” column indicates the initial set with which the entire
region is partitioned. The “New hyperplanes” column indicates how
new planes are created for the recursive partitioning. Note that the
major difference betweenk-d trees and the other types is that thek-d
tree chooses only one plane from the set of available planes, while
the other methods use the entire set of planes for the next level of
recursion. In addition, this implementation of a BSP-tree always be-
gins with they− z plane, after which non-axis-aligned planes are
created for the recursive partitioning.

During the creation of the tree structure, theSPLIT function is used
to determine whether the objects lie in front of or behind the cur-



rent plane. Two points on each sphere are tested against the current
plane to determine in which set the sphere falls. The two points are
derived by adding the radius to the centre of the sphere in the direc-
tion and reverse direction of the plane normal. A point is in front of
the plane(x,y,z) ·(nx,ny,nz)+d = 0 if a positived is obtained when
substituting the point coordinates into(x,y,z), where(nx,ny,nz) is
the plane normal. If the two points for the sphere fall both in front
of and behind the plane then the sphere is added to both regions.

Once the specified depth of the tree has been reached each object in
the set of spheres at each node is updated with the node reference
in memory, which results in a pseudo-hashtable of collision candi-
dates. Thus, after the creation of the tree each sphere will be aware
of which subset of spheres to test for collision.

The simulation is implemented in C++ using OpenGL for rendering
and is run on a 3GHz Pentium 4 HT processor with 1GB of physical
memory. A new sphere is added to the simulation at each frame,
until a total of 1000 spheres is reached. The simulation is allowed
to continue until 2000 frames have been rendered. Each new sphere
appears at the same location but with seeded randomised velocities.
Gravity is simulated in the system, and thus the spheres eventually
settle in the bottom of the box.

The simulation is updated as follows. At each frame the new posi-
tion for each sphere is calculated, after which the spheres are tested
against each other for collision. Collision against the boundaries are
then handled. Since this experiment is aimed at testing the construc-
tion and usage time of the various types of trees, no spatial coherence
is implemented, and thus a new tree is created for each frame.

Measurements are taken at each frame but averaged over 10 frames
in order to smooth out any external processing activity which may
take place. Each measurement contains the number of spheres in the
system, and average timings for the collision process to complete
over the past 10 frames. In addition to this each test is repeated 10
times over with the results of each frame-reading averaged in order
to eliminate any spurious operating system processing which may
have occurred.

3.3 Results

3.3.1 Overall Performance

Figure 6 presents the time taken for all collisions in the system to be
resolved. Thex-axis denotes the frame number (which corresponds
the number of spheres until 1000 spheres have been added), while
they-axis denotes the total time taken to detect and respond to colli-
sions. Note that the timings presented here do not include rendering
time, and that each tree structure is limited to a depth of 3.

As expected the baseline approximates a quadratic function, which
becomes constant when all spheres have been added to the simu-
lation. All graphs show a levelling at approximately frame 1200,
which indicates the point at which the spheres settle in the base of
the box.

Both the region-based and the point-based octree initially perform
more slowly than the baseline algorithm, but a crossover occurs in
both cases. This poor initial performance is attributed to the com-
plexity in constructing the initial octree, since each region must be
divided into eight partitions. This is a large amount of complexity
compared to thek-d tree and BSP-tree which are binary trees and
result in only two partitions per region. Both BSP- andk-d trees
perform equally well or better than the baseline algorithm. Once all
the spheres are added to the system and the simulation stabilises, the
octree provides the best performance, which indicates that the high
cost of constructing the tree pays off in terms of performance.

This figure also presents the performance of region-based and point-
based octrees andk-d trees. In the case of the octree, using the ob-
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Figure 6: Total time of collision calculation.
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ject median as the new centre point for the next level of partitioning
(point-based) results in noticeably poorer performance than a region
based octree, which merely uses the centre point of each partition.
However, in the case of thek-d tree the point-based method is far
more efficient. An explanation for this is that there is a trade off
between the balanced partitioning of a region, and the number of
planes used to partition a region. The octree uses a larger number of
partitioning planes, and therefore the choice of the median of objects
as a center point results in far more plane/object intersections. This
results in reduced performance. Thek-d tree however, uses a sin-
gle partitioner which provides the benefits of a more balanced tree,
without the overhead of too many plane/object intersections.

Figure 7 presents performance results of three quadtree variations.
The baseline model is included to highlight that in all cases perfor-
mance is improved. Notice that both quadtrees using a partitioner
aligned with thex−zplane perform the worst once the spheres have
settled. This can be attributed to the fact that when the spheres have
settled the use of thex−zplane as a partitioner will result in a large
number of plane/object intersections. Such intersections increases
the number of collision candidates in each partition.

Figure 8 presents performance results of various axis-aligned binary
trees. In no case did these binary trees outperform the region-based
octree. The most noticeable feature of this graph is the poor per-
formance of the binary tree using partitioners aligned with thex−z
plane, while the use ofx− y andy− z planes produces optimised
performance.
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Figure 9: Comparison of schemes with increased depth.

3.3.2 Variation in Depth

The octree,k-d tree and BSP-tree are tested once again, but this
time with a depth restriction of 7 instead of 3. Figure 9 presents
the comparative results of each scheme with both depths. Strikingly
noticeable is the extremely poor performance of the octree. This
can be attributed to the high branching factor of the structure, which
results inΣh

i=08i partitions, whereh is the height of the tree, and in
this case results in the order of 2 million partitions being generated
per frame. Both thek-d tree and the BSP-tree, however, benefit from
an increase in depth.

3.3.3 Reduction in Collision Tests

Figure 10 presents the average number of collisions tests per frame
by each scheme, using a depth of 3. Notice that both variations of oc-
tree produce the least number of collision tests. Of particular interest
is the behaviour of the region-based octree, which returns approxi-
mately 10 000 collision candidates once the spheres have settled.
This indicates that for such a shallow depth, the octree produces
very good results.

Figure 10 also highlights another phenomenon which has previously
been ignored. There are a number of spikes which occur after the
leveling-out of the spheres in the system, at approximately frame
1500, 1700 and 1950. These bumps are also noticeable in Fig-
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Figure 10: Total number of collision tests withdepth= 3.

ures 6 and 9. A number of observations can be made about these
anomalies. Firstly, only some schemes seem to be affected by this
anomaly. For example, the region-based octree and the BSP-tree are
clearly affected, while the point-based octree is not. Secondly, in af-
fected schemes, the bumps tend to occur at approximately the same
frame. The fact that these bumps occur in approximately the same
positions in Figure 6 (which is time-based) as well as in Figure 10
(which is not time based) rules out the possibility that such bumps
can be attributed to operating system activity. Additionally, these
anomalies cannot be entirely attributed to the coincidental config-
uration of spheres in the simulation, since all schemes would have
been affected. The only remaining explanation is that the affected
schemes are partially influenced by the sphere configuration, in the
sense that at particular configuration, the partitioning schemes fail
dramatically, resulting in many more collision tests than usual.

Figure 11 presents the number of collision tests resulting from the
region- and point-basedk-d tree and the BSP-tree with a maximum
depth of 7. Notice how all of these schemes benefit substantially
from an increased depth.

The major difference in Figure 11 from Figure 10 is the dramatic
smoothing of the BSP-tree’s performance after the settling point.
This serves to highlight that the configuration of spheres which so
radically affected the BSP-tree with depth 3 does not affect the same
tree on depth 7. In this figure it is thek-d tree which suffers the
most from arbitrary bumps after the settling mark. However, the av-
erage number of collisions is noticeably reduced from Figure 10. It
is conjectured that further increasing the maximum depth of thek-d
tree will smooth out these bumps in the same manner as with the
BSP-tree.

3.3.4 Crossover in Performance

Figure 12 presents the running time of each of the most optimal
schemes derived so far, but with an increased limit of 2000 spheres.
The purpose of this test is determine which scheme works consis-
tently better than the others, and in doing so identify under which
circumstances different types of partitioning schemes are optimal.
As noted previously the point-based and region-based octrees per-
form worse than the baseline model. However, the rate of increase
in running time is not as great as the baseline, and thus there is soon
a crossover, where these two structures perform better. This indi-
cates that there is a minimum threshold concerning the number of
objects, below which these optimisation schemes are ineffective.

The region-basedk-d tree performs better than the baseline model
and produces a consistent reduction in running time. However, once
again there is a threshold after which this scheme fails. This can bee



 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

Nu
m

be
r o

f c
ol

lis
io

n 
te

st
s

Frames (1 ball added per frame, stopping at 1000)

No optimisation
k-d Tree

Point k-d tree
BSP tree

Figure 11: Total number of collision tests withdepth= 7.

 0

 0.05

 0.1

 0.15

 0.2

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

Ti
m

e 
to

 c
al

cu
la

te
 c

ol
lis

io
ns

Frames (1 ball added per frame, stopping at 2000)

No optimisation
Region Octree

Point Octree
Region k-d tree

Point k-d tree
BSP tree

Figure 12: Crossover in performance

seen between frame 1400 and 1600, where the performance crosses
over both octrees.

The best overall performing schemes are the BSP-tree and point-
basedk-d tree. Both these schemes remain consistently below the
other schemes, and have smaller gradients in comparison. Whereas
the gradient of both octrees and the region-basedk-d trees appear to
increase towards the last 300 frames, the gradients of the BSP-tree
andk-d tree remain relatively linear. This indicates that it is unlikely
that the runtime of these two schemes will ever cross over those of
the other schemes.

3.4 Conclusions

A number of conclusions are inferred from the results presented in
the previous section. The overriding conclusion of all the above
tests is that all the optimisation schemes improve the performance
of collision detection dramatically compared to the baseline model.

However, each scheme requires a different configuration in order to
perform optimally. The configuration of each scheme depends on
a number of factors. As identified in the experiments, these factors
include allowable tree depth, the branching factor of the scheme,
the choice of new partitioners for each level of recursion, and the
application of the optimisation scheme. Incorrect choices for these
factors can lead to results worse than when no optimisation is ap-
plied. Table 2 presents a summary of the observations made in the
experiments with regards to these factors. Note that in the column

indicating whether the scheme is affected by the application domain
the specific factor which is affected is indicated in brackets. The
conclusions made are as follows:

Allowable tree depth and branching factor The most noticeable
difference in optimisation performance is a result of changing the
allowable tree depth. For example, allowing a depth of 7 results in
extremely poor performance in the case of the octree, but leads to the
best performance in the case of the BSP-tree. A general rule can be
applied as a result of this observation which states that an inverse re-
lationship should be maintained between branching factor and depth.
That is, the higher the branching factor, the lower the allowable tree
depth should be. Different partitioning schemes also experience pe-
riods of uncharacteristic inefficiency, which can only be explained
by temporary failures in the partitioning scheme to handle certain
configurations of objects in the simulation. Methods exist, however,
which can eliminate these periods such as increasing the allowable
tree depth.

Choice of new partitioners These experiments test two different
methods of selecting new partitioners, region-based and point based.
Even though the choice of a point based partitioner in these experi-
ments is very simplistic, the performance of a number of algorithms
including thek-d tree are greatly improved. In other situations, very
little difference is exhibited. Therefore the choice of partitioner is
dependent on the application.

Application of the partitioning scheme The amount of optimi-
sation capable of being achieved is highly dependent on the applica-
tion to which it is being applied. A clear example of this is in Figure
8, where dramatically poor performance is achieved after choosing
an optimisation scheme which is not suited to the general motion of
the objects in the simulation.

In terms of the initial goals of the experiments the following conclu-
sions are drawn:

• The scheme which provides the greatest increase in speed, and
the greatest reduction in the number of collision candidates is
the point-basedk-d tree, limited to a depth of 7. Closely fol-
lowing is the BSP at level 7. However, one cannot exclude
the octree which performs remarkably well at a very shallow
depth.

• Different schemes respond differently to change in depth, with
the performance exponentially proportional to the branching
factor of the structure.

• Each scheme reduces the number of collision tests dramati-
cally from the baseline method, but large differences occur be-
tween different optimisations.

• The BSP-tree and point-basedk-d tree perform consistently
well as objects are added to the simulation, compared to the
other schemes, and it is unlikely that these schemes will ever
perform worse than the any of other schemes.

4 Conclusion and Future Work

Collision detection is a well studied area in dynamic simulation,
robotics and many other fields. This paper introduces collision de-
tection in terms of dynamic simulations, and describes a number
of broad-phase techniques which can be used to improve the per-
formance such a system. In addition a number of experiments are
done in order to evaluate the comparative efficiency of a subset of
the described schemes, specifically tree-based partitioning schemes.
A generic structure for implementing these tree-based partitioning



Improved by Increasing Depth Improved by Point-based Partitioners Affected by Application Domain

Octree No No - but number of collision-tests very
low and stable where point-based scheme

used.

No

QuadTree - - Yes (choice of partitioner)
BinTree - Yes Yes (choice of partitioner)
k-d tree Yes Yes Yes (anomalies in number of collision-tests)

BSP-tree Yes N/A Yes (anomalies in number of collision-tests)

Table 2: Summary of observations.

schemes, and testing them in a neutral manner, is created. These
tests highlight a number of important relationships which are im-
portant when choosing a partitioning scheme for collision detec-
tion. Overall, every partitioning scheme tested provides some per-
formance improvements over the baseline model.

This paper contributes to the relatively small body of work of which
the focus is the analysis of well known partitioning techniques for
optimising collision detection. Well known techniques such as the
octree,k-d tree and BSP-tree are evaluated and implemented using
a generic structure, and a common testing simulation. This generic
structure allows for the testing of derivatives of each structure, such
as point-based trees, as well as trees which are reduced to lower
dimensions (for example, the quadtree).

There is great potential for future work in this area. Each of the
above tests can be run in a range of different simulations (where
the object dynamics are different) in order to establish a relationship
between the performance of an optimisation and the application do-
main. Additionally, the generic structure can be enhanced to support
temporal coherence between frames. This will establish whether
there is a performance gain in implementing temporal coherence, or
whether the overhead in implementing such a scheme outweighs the
benefits. Finally, similar tests can be run on narrow-phase optimisa-
tions in order to establish which works the best for different types of
objects.
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