Compilers and Compiler Generators © P.D. Terry, 2000

10 PARSER AND SCANNER CONSTRUCTION

In this chapter we aim to show how parsers and scanners may be synthesized once approj
grammars have been written. Our treatment covers the manual construction of these impor
components of the translation process, as well as an introduction to the use of software toc
help automate the process.

10.1 Construction of smplerecursive descent parsers

For the kinds of language that satisfy the rules discussed in the last chapter, parser constrt
turns out to be remarkably easy. The syntax of these languages is governed by production
the form

non-termina— allowable string
where the allowable string is a concatenation derived from

® the basic symbols or terminals of the language
® other non-terminals
® the actions of meta-symbols such as{},[], and | .

We express the effect of applying each production by writing a procedwaddunction in C++
terminology) to which we give the name of the non-terminal that appears on its left side. Th
purpose of this routine is to analyse a sequence of symbols, which will be supplied on requ
a suitable scanner (lexical analyser), and to verify that it is of the correct form, reporting err
is not. To ensure consistency, the routine corresponding to any non-te®minal

® may assume that it has been calfitdr some (globally accessible) varialdgm has been
found to contain one of the terminals in FIRST(

® will then parse a complete sequence of terminals which can be derive§, freporting an
error if no such sequence is found. (In doing this it may have to call on similar routines
handle sub-sequences.)

® will relinquish parsing after leavingym with the first terminal that it finds which cannot b
derived fromS that is to say, a member of the set FOLL@&N(

The shell of each parsing routine is thus

PROCEDURE S;
(* S —® string *)
BEG N
(* we assert Sym € FIRST(S) *)
Parse(string)
(* we assert Sym € FOLLONS) *)
END S;

where the transformatidParse(string) is governed by the following rules:

(a) If the production yields a single terminal, then the actidPaode is to report an error if an
unexpected terminal is detected, or (more optimistically) to accept it, and then to scan to th
symbol.

Parse (terninal) —F
I F | sExpected(term nal)
THEN Get (Sym)
ELSE ReportError
END

(b) If we are dealing with a "single" production (that is, one of the #eB), then the action of
Parseis a simple invocation of the corresponding routine

Par se(Si ngl eProduction A) —* B

This is a rather trivial case, just mentioned here for completeness. Single productions do nc
need special mention, except where they arise in the treatment of longer strings, as discus:

(c) If the production allows a number of alternative forms, then the action can be expressec
selection

Parse (o, | &, | ... &,) —*
CASE Sym OF
FIRST(,) : Parse(f;);
FIRST(,) : Parse(,);

FIRST(L,) : Parse(t,)
END

in which we see immediately the relevance of Rule 1. In fact we can go further to see the re
of Rule 2, for to the above we should add the action to be taken if one of the alternsPaese
empty. Here we do nothing to advar@en - an action which must lea®m, as we have seen, a
one of the set FOLLOVY - so that we may augment the abavéhis case as

Parse (&, | ©, | ... &, | €) —*
CASE Sym OF
FIRST(t,) : Parse(f;);
FIRST(%,) : Parse(t,);

FIRST(,,) : Parse(,);

FOLLONS) : (* do nothing *)
ELSE ReportError
END

(d) If the production allows for a nullable option, the transformation involves a decision

Parse ([&£]) —F
IF Sym € FIRST(f) THEN Parse(f) END

(e) If the production allows for possible repetition, the transformation involves a loop, often
form

Parse ({ oL}) —*
VWH LE Sym € FIRST(ft) DO Parse(f) END

Note the importance of Rule 2 here again. Some repetitions are of the form
S —+ o { o)}

which transforms to

Parse(ft); WHILE Sym € FIRST() DO Parse(ft) END

On occasions this may be better written

REPEAT Parse(ft) UNTIL Sym & FI RST(t)

(f) Very often, the production generates a sequence of terminal and non-terminals. The acti
then a sequence derived from (a) and (b), namely

Parse (&, ©, ... &) —*
Parse(tt,); Parse(t,); ... Parse(&,)

10.2 Case studies
To illustrate these ideas further, let us consider some concrete examples.

The first involves a rather simple grammar, chosen to illustrate the various options discusse

G={N, T, S, P}
N={A, B, C, D}
To o e] RS E R
S=A
P =
630 c B
A a
A | () [[|
D —+* { "+ B}

We first check that this language satisfies the requirements for LL(1) parsing. We can easil
that Rule 1 is satisfied. As before, in order to apply our rules more easily we first rewrite the
productions to eliminate the EBNF metasymbols:

A — B "." (1)

B —b "a" | (" Cc ™' | [B "" | € (2 3 4 5
C — BD (6)

D —» "+ B D | € (7, 8)

The only productions for which there are alternatives are thoedondD, and each non-nullable
alternative starts with a different terminal. However, we must continue to check Rule 2. We
thatB andD can both generate the null string. We readily compute

FIRST@) ={"a","(", "["}
FIRSTD) ={"+"}

The computation of the FOLLOW sets is a little trickier. We need to compute FOLBJOAM{
FOLLOW(D).

For FOLLOWQ) we use the rules of section 9.2. We check productions that generate strinc
forme D {. These are the ones 16r(6) and forD (7). Both of these hau@ as their rightmost

symbol; (7) in fact tells us nothing of interest, and we are lead to the result that
FOLLOW(D) = FOLLOW(EC) ={")"}.
(FOLLOW(C) is determined by looking at production (3)).

For FOLLOW@) we check productions that generate strings of the &dBra These are the one:
for A (1) andC (6), the third alternative fds itself (4), and the first alternative fbr (7). This

seems to indicate that
FOLLOW(@B) ={".","1"} UFIRSTD) ={ " , "1", "+"}

We must be more careful. Since the productiorDf@an generate a null string, we must augme
FOLLOW(B) by FOLLOW() to give

FOLLOW®B) ={"","1","+"yu{""y={"", "1", """, """}

Since FIRSTB) N FOLLOW(B) = @ and FIRSTD) n FOLLOW(D) = @, Rule 2 is satisfied for
both the non-terminals that generate alternatives, both of which are nullable.

A C++ program for a parser follows. The terminals of the language are all single characters
we do not have to make any special arrangements for character handling (aysiripe
function call suffices) or for lexical analysis.

The reader should note that, because the grammar is strictly LL(1), the function that parses
non-terminaB may discriminate between the genuine followerB (thereby effectively
recognizing where theeproduction needs to be applied) and any spurious followdésgwhich
would signal a gross error in the parsing process).

Si mpl e Recursive Descent Parser for the |anguage defined by the gramar
{ N, T, S, P}

11

11 G =

11 N={A, B, C, D}

I T={ e
11 S = A

11 P =

11 A = B"." .

I B = "a | "("c"H' | "["B"l
11 C = BD.

1l D = { "+ B} .

11

P.D. Terry, Rhodes University, 1996

#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

char sym // Source token

voi d get sym(voi d)
{ sym= getchar(); }

voi d accept(char expectedterm nal, char *errornessage)
{ if (sym!= expectedtermnal) { puts(errornessage); exit(1); }
) getsyn();

void A(void); [/ prototypes
void B(void);
void C(void);
void D(void);

voi d A(void)
/I A=B"." .
{ B(); accept(’.’, " Error - '.' expected"); }

{ switch (sym
{ case "a’:

voi d B(void)
/1l ngn

N G O L e - 2

getsym(); break;
case ' (':
getsym(); C(); accept(')’, " Error - ')’ expected"); break;
case '[':
getsym(); B(); accept(']', " Error - ']’ expected"); break;
case ')':
case ']’':
case ' +':
case '.':
break; // no action for followers of B
defaul t:

printf("Unknown synbol\n"); exit(1);

}

void C(void)
// C=BD.
{ BO: DO }

voi d D(voi d)
/1 D = {"+" B} .
{ while (sym=="+") { getsym(); B(); } }

voi d main()
{ sym= getchar(); A();
printf("Successful\n");

Some care may have to be taken with the relative ordering of the declaration of the functior
in this example, and in general, are recursive in nature. (These problems do not occur if the
functions have "prototypes" like those illustrated here.)

It should now be clear why this method of parsing is cademuirsive Descent, and that such
parsers are most easily implemented in languages which directly support recursive progran
Languages like Modula-2 andr€are all very well suited to the task, although they each have
own particular strengths and weaknesses. For example, in Modula-2 one can take advanta
other organizational strategies, such as the use of nested procedures (which are not permi
or CG++), and the very tight control offered by encapsulating a parser in a module with a very
interface (only the routine for the goal symbol need be exported), whilerinori@ can take
advantage of OOP facilities (both to encapsulate the parser with a thin public interface, anc
create hierarchies of specialized parser classes).

A little reflection shows that one can often combine routines (this corresponds to reducing t
number of productions used to define the grammar). While this may produce a shorter prog
precautions must be taken to ensure that the grammars, and any implicit semantic overtone
truly equivalent. An equivalent grammar to the above one is

T, S, P}

N,
A, B}
L e L T RS LA

Tu-HzZo
o unn

WP B
i
[os)

.

. (1)
A | (" B {"+ B})" | [B 1" | €(2 3 4 5

leading to a parser

/1 Sinple Recursive Descent Parser for the sane | anguage
/1 using an equival ent but different grammar

/1 P.D. Terry, Rhodes University, 1996

#i ncl ude <stdio. h>

#include <stdlib. h>

char sym // Source token

voi d get sym(voi d)
{ sym = getchar(); }

voi d accept(char expectedterm nal, char *errornessage)
{ if (sym!= expectedtermnal) { puts(errornessage); exit(1); }
) getsyn();

voi d B(void)
/I B="a” | (" B{"+ B}")" | "["B"]" |
{ switch (sym
{ case "a':
getsym(); break;
case '(':
getsynm(); B(); while (sym=="+") { getsyn(); B(); }

accept(')’, " Error - ')’ expected"); break;
case '[':
getsym(); B(); accept(']’, " Error - ']’ expected"); break;
case ')':
case ']’':
case ' +':
case '.':
br eak; /1 no action for followers of B
defaul t:
printf("Unknown synbol\n"); exit(1);

}

voi d A(void)
I A=B"." .
{ B(); accept(’.’, " Error - '.’ expected"); }

voi d mai n(voi d)
{ sym = getchar(); A();
printf("Successful\n");

Although recursive descent parsers are eminently suitable for handling languages which se
LL(1) conditions, they may often be used, perhaps with simple modifications, to handle lanc
which, strictly, do not satisfy these conditions. The classic example of a situation like this is
provided by theF ... THEN ... ELSE statement. Suppose we have a language in which
statements are defined by

St at enment
| f St at ement

IfStatenent | OherStatenment .
"IF* Condition "THEN' Statement ["ELSE' Statenent] .

which, as we have already discussed, is actually ambiguous as it stands. A grammar define
this is easily parsed deterministically with code like

void Statenent(void); // prototype

voi d O her St at enent (voi d) ;
/1 handl e parsing of other statenent - not necessary to show this here

voi d | fStatenent (void)

{ getsym(); Condition();
accept (thensym " Error - 'THEN expected");
Statenent();
if (sym== elsesym) { getsym(); Statenent(); }

voi d Statenent(void)
{ switch(sym
{ case ifsym: IfStatenent(); break;
default : O her St atement (); break;
}
}

The reader who cares to trace the function calls for an input sentence of the form

IF Condition THEN |F Condition THEN OherStatement ELSE O her Statenent

will note that this parser has the effect of recognizing and handlisgsaclause as soon as it ¢
- effectively forcing arad hoc resolution of the ambiguity by coupling eagtlsE to the closest
unmatchedHeEN. Indeed, it would be far more difficult to design a parser that implemented tt
other possible disambiguating rule - no wonder that the semantics of this statement are tho
correspond to the solution that becomes easy to parse!

As a further example of applying the LL(1) rules and considering the corresponding parsers
consider how one might try to describe variable designators of the kind found in many lang
denote elements of record structures and arrays, possibly in combination, for eXanpl®) .
One set of productions that describes some (although by no means all) of these constructic
appear to be:

Desi gnat or = identifier Qualifier . (1)

Qualifier = Subscript | FieldSpecifier . (2, 3)
Subscri pt = "[" Designator "]" | £ . (4, 5)
Fi el dSpecifier = "." Designator | £ . (6, 7)

This grammar is not LL(1), although it may be at first difficult to see this. The production for
Qualifier has alternatives, and to check Rule 1 for productions 2 and 3 we need to consider
FIRSTQualifier,) and FIRSTQualifier,). At first it appears obvious that

FIRSTQualifier;) = FIRST@ubscript) = {"[" }

but we must be more caref@ubscript is nullable, so to find FIRSQualifier ;) we must augmen

this singleton set with FOLLOV®(bscript). The calculation of this requires that we find
productions withSubscript on the right side - there is only one of these, production (2). From
we see that FOLLOVUbscript) = FOLLOW (Qualifier), which from production (1) is
FOLLOW(Designator). To determine FOLLOW@esignator) we must examine productions (4)
and (6). Only the first of these contributes anything, namely {."Thus we eventually conclude
that

FIRSTQualifier) ={"[","1" }.

Similarly, the obvious conclusion that
FIRSTQualifier,) = FIRSTEieldSpecifier) = { "." }

is also too naive (sindeeldSpecifier is also nullable); a calculation on the same lines leads tc
result that

FIRSTQualifier,) ={".","]"}

Rule 1 is thus broken; the grammar is not LL(1).

The reader will complain that this is ridiculous. Indeed, rewriting the grammar in the form

Desi gnat or = identifier Qualifier . (1)
Qualifier = Subscript | FieldSpecifier | £ . (2, 3, 4)
Subscri pt = "[" Designator "]" . (5)
Fi el dSpecifier = "." Designator . (6)

leads to no such transgressions of Rule 1, or, indeed of Rule 2 (readers should verify this t
own satisfaction). Once again, a recursive descent parser is easily written:

voi d Designator(void); // prototype

voi d Subscri pt(void)
{ getsym(); Designator(); accept(rbracket, " Error - ']’ expected"); }

voi d Fi el dSpeci fier(void)
{ getsym(); Designator(); }

void Qualifier(void)
{ switch(sym
{ case | bracket : Subscript(); break;
case period : FieldSpecifier(); break;
case rbracket : break; // FOLLONQualifier) is enpty
default : printf("Unknown synbol\n"); exit(1);

}

voi d Desi gnat or (voi d)

{ accept(identifier, " Error - identifier expected");
Qualifier();
}

In this case there is an easy, if not even obvious way to repair the grammar, and to develog
parser. However, a more realistic version of this problem leads to a situation that cannot as
resolved. In Modula-2 Besignator is better described by the productions

Desi gnat or = Qalifiedldentifier { Selector } .
Qualifiedldentifier = identifier { "." identifier } .
Sel ect or = identifier | "[" Expression "]" | "A"

It is left as an exercise to demonstrate that this is not LL(1). It is left as a harder exercise to
a formal conclusion that one cannot find an LL(1) grammar that des€rdsagator
unambiguously. The underlying reason is that "." is used in one context to separate a modt
identifier from the identifier that it qualifies (as$nanner. SYM and in a different context to
separate a record identifier from a field identifier (asvim Nane). When these are combined (a:
Scanner . SYM Nane) the problem becomes more obvious.

The reader may have wondered at the fact that the parsing methods we have advocated al
"ahead", and never seem to make use of what has already been achieved, that is, of inforn
which has become embedded in the previous history of the parse. All LL(1) grammars are,
course, context-free, yet we pointed out in Chapter 8 that there are features of programmin
languages which cannot be specified in a context-free grammar (such as the requirement tl
variables must be declared before use, and that expressions may only be formed when teri
factors are of the correct types). In practice, of course, a parser is usually combined with a
analyser; in a sense some of the past history of the parse is recorded in such devices as s)
tables which the semantic analysis needs to maintain. The example given here is not as se
may at first appear. By making recourse to the symbol table, a Modula-2 compiler will be at
resolve the potential ambiguity in a static semantic way (rather tharathree syntactic way as
done for the "dangling else" situation).

Exercises

10.1 Check the LL(1) conditions for the equivalent grammar used in the second of the prog
above.

10.2 Rework Exercise 10.1 by checking the director sets for the productions.

10.3 Suppose we wished the language in the previous example to be such that spaces in tl
file were irrelevant. How could this be done?

10.4 In section 8.4 an unambiguous set of productions was given far the THEN ... ELSE
statement. Is the corresponding grammar LL(1)? Whatever the outcome, can you construct
recursive descent parser to handle such a formulation of the grammar?

10.3 Syntax error detection and recovery

Up to this point our parsers have been content merely to stop when a syntactic error is dete
the case of a real compiler this is probably unacceptable. However, if we modify the parser

above so as simply not to stop after detecting an error, the result is likely to be chaotic. The
process will quickly get out of step with the sequence of symbols being scanned, and in all
likelihood will then report a plethora of spurious errors.

One useful feature of the compilation technique we are using is that the parser can detect ¢
syntactically incorrect structure after being presented with its first "unexpected” terminal. Tt
not necessarily be at the point where the error really occurred. For example, in parsing the

BEGNIF A>6 DOB :=2; C:=5 END END

we could hope for a sensible error message \wbes found wher@HeN is expected. Even if
parsing does not get out of step, we would get a less helpful message when thenzsofwdind
- the compiler can have little idea where the missi&@ N should have been.

A production quality compiler should aim to issue appropriate diagnostic messages for all tl
"genuine” errors, and for as few "spurious" errors as possible. This is only possible if it can
some likely assumption about the nature of each error and the probable intention of the aut
it skips over some part of the malformed text, or both. Various approaches may be made tc
handling the problem. Some compilers go so far as to try to correct the error, and continue
produce object code for the program. Error correction is a little dangerous, except in some -
cases, and we shall discuss it no further here. Many systems confine themselves to aterop
recovery, which is the term used to describe the process of simply trying to get the parser b
step with the source code presented to it. The art of doing this for hand-crafted compilers is
intricate, and relies on a mixture of fairly well defined methods and intuitive experience, bot
the language being compiled, and with the class of user of the same.

Since recursive descent parsers are constructed as a set of routines, each of which tackles
on behalf of its caller, a fairly obvious place to try to regain lost synchronization is at the ent
and exit from these routines, where the effects of getting out of step can be confined to exa
small range of known FIRST and FOLLOW symbols. To enforce synchronization at the ent
the routine for a non-termin&we might try to employ a strategy like

IF Sym & FIRST(S) THEN
ReportError; SkipTo(FIRST(S))
END

whereSkipTo is an operation which simply calls on the scanner until it returns a val8gnfidhat
is a member of FIRSH. Unfortunately this is not quite adequate - if the leading terminal has
omitted we might then skip over symbols that should be processed later, by the routine whi
S

At the exit fromS, we have postulated th&m should be a member of FOLLOW(This set may
not be known t&, but it should be known to the routine which c&8liso that it may conveniently
be passed t8 as a parameter. This suggests that we might employ a strategy like

IF Sym® FOLLONS) THEN
ReportError; Ski pTo(FOLLONYS))
END

The use of FOLLOWY) also allows us to avoid the danger mentioned earlier of skipping too
routine entry, by employing a strategy like

IF Sym % FIRST(S) THEN
ReportError; Ski pTo(FIRST(S) | FOLLONYS))
END;

IF SYM Sym € FIRST(S) THEN

Parse(S);

IF SYM Sym ¥ FOLLONS) THEN
Report Error; SkipTo(FOLLONS))
END
END

Although the FOLLOW set for a non-terminal is quite easy to determine, the legitimate follo
may itself have been omitted, and this may lead to too many symbols being skipped at rout
To prevent this, a parser using this approach usually passes to each subfpaleercs
parameter, which is constructed so as to include

® the minimally correct set FOLLOVY, augmented by

® symbols that have already been passdebswersto the calling routine (that is, later
followers), and also

® so-calledbeacon symbols, which are on no account to be passed over, even though the
presence would be quite out of context. In this way the parser can often avoid skippin
sections of possibly important code.

On return from sub-pars&we can then be fairly certain tHatm contains a terminal which was
either expected (if it is in FOLLOVY), or can be used to regain synchronization (if it is one o
beacons, or is in FOLLOV@aller(S). The caller may need to make a further test to see whicl
these conditions has arisen.

In languages like Modula-2 and Pascal, where set operations are directly supported, impler
this scheme is straightforward+€does not have "built-in" set types. Their implementation in
terms of a template class is easily achieved, and operator overloading can be put to good €
interface to such a class, suited to our applications in this text, can be defined as follows

tenpl ate <int nmaxEl enr

Set operator * (const Set &s)

Set operator - (const Set &s)

Set operator / (const Set &s)
private:

unsi gned char bits[(maxElem + 8) / 8];

int length;

int wd(int i);

int bitmask(int i);

void clear();

Intersection with s (AND)
Difference with s
Symmetric difference with s (XOR)

class Set { /1 { 0.. maxElem}
publi c:

Set (); /'l Construct { }

Set (int el); /1 Construct { el }

Set(int el, int e2); /1 Construct { el, e2}

Set(int el, int e2, int e3); /1 Construct { el, e2, e3

Set(int n, int e[]); /1 Construct { e[0] .. e[n-1] }

void incl(int e); /'l Include e

void excl (int e); /1 Exclude e

int nmenb(int e); /'l Test menbership for e

Set operator + (const Set &s) /1 Union with s (OR)
/1
/1
/1

b

The implementation is realized by treating a large set as an array of small bitsets; full detall
can be found in the source code supplied on the accompanying diskette and in Appendix B

Syntax error recovery is then conveniently implemented by defining functions on the lines c

typedef Set<l astDefi nedSyn> synset;

voi d accept (syntypes expected, int errorcode)
{ if (Sym== expected) getsyn(); else reporterror(errorcode); }

voi d test(synset allowed, synset beacons, int errorcode)
{ if (allowed. menb(Sym)) return;

reporterror(errorcode);
synset stopset = allowed + beacons;
while (!stopset. menb(Sym) getsym();

where we note that the amendedept routine does not try to regain synchronization in any w
The way in which these functions could be used is exemplified in a routine for handling vari
declarations for Clang:

voi d VarDecl arati ons(synmset followers);

/1 VarDeclarations = "VAR' OneVar { "," OnevVar } ";" .
{ getsym(); /] accept "var"
test(synset(identifier), followers, 6); // FIRST(OneVar)
if (Sym==identifier) /]l we are in step
{ OneVar (symnset(comra, sem colon) + followers);
whil e (Sym == comm) /1 nore variables foll ow

{ getsym(); OneVar(synset(comm, senicolon) + followers); }
accept (sem col on, 2);
test(foll owers, symset(), 34);

}

Thef ol | ower s passed t@ar Decl ar at i ons should include as "beacons" the elements of
FIRST&atement) - symbols which could start@atement (in caseBEG N was omitted) - and the
symbol which could follow &8lock (period, and end-of-file). Hence, calliigr Decl ar at i ons
might be done from withisl ock on the lines of

if (Sym== varsym
Var Decl arations(FirstBlock + FirstStatenent + followers);
Too rigorous an adoption of this scheme will result in some spurious errors, as well as an e
loss resulting from all the set constructions that are needed. In hand-crafted parsers the ide
often adapted somewhat. As mentioned earlier, one gains from experience when dealing w
learners, and some concession to likely mistakes is, perhaps, a good thing. For example, b
are likely to confuse operators like=", "=" and '==", and alsorHEN andDO after| F, and these m:
call for special treatment. As an example of such an adaptation, consider the following vari:
the above code, where the parser will, in effect, handle variable declarations in which the s
commas have been omitted. This is strategically a good idea - variable declarations that ar
properly processed are likely to lead to severe difficulties in handling later stages of a comg

voi d Var Decl arati ons(synset followers);
/] VarDeclarations = "VAR' OneVar { "," OneVar
{ getsym() _ o
test(synset(identifier), followers, 6);
if (Sym== identifier)
{ OneVar (synset(conmma, sem colon) + followers);
while (Sym== comma || Sym==identifier) // only conma is |egal
{ accept(comm), 31); OneVar(synset(conmma, sem colon) + followers); }
accept (sem col on, 2);
test(foll owers, synset(), 34);
}
}

Clearly it is impossible to recover from all possible contortions of code, but one should gual
against the cardinal sins of not reporting errors when they are present, or of collapsing corr

when trying to recover from an error, either by giving up prematurely, or by getting the pars
caught in an infinite loop reporting the same error.

p o
/ accept "var"

/" FI RST(OneVar)
/ we are in step

~—

Exercises

10.5 Extend the parsers developed in section 10.2 to incorporate error recovery.

10.6 Investigate the efficacy of the scheme suggested for parsing variable declarations, by
the way in which parsing would proceed for incorrect source code such as the following:

VAR A BC, , D E F

Further reading

Error recovery is an extensive topic, and we shall have more to say on it in later chapters. (
treatments of the material of this section may be found in the books by Welsh and McKeag
Wirth (1976b), Gough (1988) and Elder (1994). A much higher level treatment is given by
Backhouse (1979), while a rather simplified version is given by Brinch Hansen (1983, 1985
Papers by Pemberton (1980) and by Topor (1982), Stirling (1985) and Grosch (1990b) are
worth exploring, as is the bibliographical review article by van den Bosch (1992).

10.4 Construction of simple scanners

In a sense, a scanner or lexical analyser may be thought of as just another syntax analyset
handles a grammar with productions relating non-terminals suderdidier, number andRelop to
terminals supplied, in effect, as single characters of the source text. When used in conjunct
a higher level parser a subtle shift in emphasis comes about: there is, in effect, no special ¢
symbol. Each invocation of the scanner is very much bottom-up rather than top-down; its te
when it has reduced a string of characters to a token, without preconceived ideas of what tl
should be. These tokens or non-terminals are then regarded as terminals by the higher leve
recursive descent parser that analyses the phrase strudBloekpSatement, Expression and so
on.

There are at least five reasons for wishing to decouple the scanner from the main parser:
® The productions involved are usually very simple. Very often they amount to regular
expressions, and then a scanner may be programmed without recourse to methods lit
recursive descent.

® A symbol like andentifier is lexically equivalent to a "reserved word"; the distinction me
sensibly be made as soon as the basic token has been synthesized.

® The character set may vary from machine to machine, a variation easily isolated in thi

® The semantic analysis of a numeric literal constant (deriving the internal representatio
value from the characters) is easily performed in parallel with lexical analysis.

® The scanner can be made responsible for screening out superfluous separators, like t
comments, which are rarely of interest in the formulation of the higher level grammar.

In common with the parsing strategy suggested earlier, development of the routine or funct
responsible for token recognition

® may assume that it is always calkdter some (globally accessible) varial@el has been
found to contain the next character to be handled in the source

® will then read a complete sequence of characters that form a recognizable token

® will relinquish scanning after leavir@H with the first character that does not form part o
this token (so as to satisfy the precondition for the next invocation of the scanner).

A scanner is necessarily a top-down parser, and for ease of implementation it is desirable t
productions defining the token grammar also obey the LL(1) rules. However, checking thes
much simpler, as token grammars are almost invariably regular, and do not display self-em
(and thus can be almost always easily be transformed into LL(1) grammars).

There are two main strategies that are employed in scanner construction:

® Rather than being decomposed into a set of recursive routines, simple scanners are c
written in anad hoc manner, controlled by a largase or swi t ch statement, since the
essential task is one of choosing between a number of tokens, which are sometimes
distinguishable on the basis of their initial characters.

® Alternatively, since they usually have to read a number of characters, scanners are of
written in the form of dinite state automaton (FSA) controlled by a loop, on each iteratic
of which a single character is absorbed, the machine moving between a number of "st
determined by the character just read. This approach has the advantage that the cons
can be formalized in terms of an extensively developed automata theory, leading to
algorithms from which scanner generators can be constructed automatically.

A proper discussion of automata theory is beyond the scope of this text, but in the next sec
shall demonstrate both approaches to scanner construction by means of some case studie

10.5 Case studies

To consider a concrete example, suppose that we wish to extend the grammar used for eal
demonstrations into one described in Cocol as follows:

COWPI LER A
CHARACTERS
digit = "0123456789" .
letter = "abcdefgefghijkl mopgrstuvwyz" .
TOKENS
nunber
identifier
PRODUCTI ONS
A=B"." .
identifier | number | "(" C")" | "(." B".)" | .
B D.
{ "+" B} .

digit { digit } .
"a" { letter } .

Ow
1w nn

D
END A

Combinations likg . and.) are sometimes used to represent the brackets [and] on machin
limited character sets. The tokens we need to be able to recognize are definable by an enu

TOKENS = { nunber, |brack, Iparen, rbrack, rparen, plus, period, identifier }

It should be easy to see that these tokens are not uniquely distinguishable on the basis of t
leading characters, but it is not difficult to write a set of productions for the token grammar t
obeys the LL(1) rules:

t oken

= digit { digit } (* nunber *)
tCL] (* Iparen,

I

I LM (* period,

[™) (* rparen *)

| e (* plus *)

| "a" { letter } (* identifier *)

from which anad hoc scanner algorithm follows very easily on the lines of

TOKENS FUNCTI ON Get Sym

(* Preco
Post c
BEG N

I gno

ndition: CH is already available
ondition: CHis left as the character follow ng token *)

reComment sAndSepar at or s

CASE CH OF

a

"0

"

REPEAT Get(CH) UNTIL CH & [’ &

RETURN i dentifier;
) Ty -

REPEAT Get (CH) UNTIL CH & [0’

RETURN nunber

Get (CH) ;

IF CH=".
THEN Get (CH); RETURN | brack
ELSE RETURN | par en

END;

et (CH);

T+

END
END

IFCH=")"
THEN Get (CH); RETURN rbrack
ELSE RETURN peri od

END;

Get (CH); RETURN pl us

GEi(CH); RETURN r par en

Get (CH); RETURN unknown

A characteristic feature of this algorithm - and of most scanners constructed in this way - is
they are governed by a selection statement, within the alternatives of which one frequently
loops that consume sequences of characters. To illustrate the FSA approach - in which the
algorithm is inverted to be governed by a single loop - let us write our grammar in a slightly
different way, in which the comments have been placed to reflect the state that a scanner c

thought to possess at the point where a character has just been read.

t oken

unknown *) digit (* nunber *) { digit (* nunber *) }
) " ("o (* lbrack *)]
")" (* rbrack *)]

| paren *)

plus *)
unknown *) "a" (* identifier *) { letter (* identifier *)

(*
| (* unknown ("
| (* unknown *) "." (* period *)
| (* unknown *) ")" (* rparen *)
| (* unknown *) "+" (*
[

}

Another way of representing this information is in terms of a transition diagram like that sho
Figure 10.1, where, as is more usual, the states have been labelled with small integers, anc
the arcs are labelled with the characters whose recognition causes the automaton to move
state to another.

o— 2 ? T
ill' 84 .. 9
;,
1

—{=
‘5'4,
ER-
Figure 18.1 A transition diagram for a simple FSA

There are many ways of developing a scanner from these ideas. One approach, using a tal
scanner, is suggested below. To the set of states suggested by the diagram we add one m
denoted by i ni shed, to allow the postcondition to be easily realized.

TOKENS FUNCTI ON Get Sym
(* Preconditions: CHis already available
Next St at e, Token nappi ngs defi ned
Postcondition: CHis left as the character follow ng token *)
BEG N
State : = 0;
WH LE state # fini shed DO
LastState := State;
State := NextState[State, CH];
Get (CH) ;
END;
RETURN Token[Last St ate];
END

Here we have made use of various mapping functions, expressed in the form of arrays:

Token[s] is defined to be the token recogni zed when the machi ne has reached state s
Next State[s, x] indicates the transition that nust be taken when the machine
is currently in state s, and has just recognized character x.

For our example, the arraysken andNext St at e would be set up as in the table below. For
clarity, the many transitions to theni shed state have been left blank.

State

1 2 4 & 7 unknown
1 number

= lparen
lbrack
period
rbrack
plus
LRArEn .
= g ident if ier

Hert5tatelState, CH] Token

LeniN Leyldy BN N Dl
o

A table-driven algorithm is efficient in time, and effectively independent of the token gramm
thus highly suited to automated construction. However it should not take much imagination
that it is very hungry and wasteful of storage. A complex scanner might run to dozens of st
many machines use an ASCII character set, with 256 values. For each character a column
needed in the matrix, yet most of the entries (as in the example above) would be identical. .
although we may have given the impression that this method will always succeed, this is nc
necessarily so. If the underlying token grammar were not LL(1) it might not be possible to d
an unambiguous transition matrix - some entries might appear to require two or more value
situation we speak of requiringnan-deter ministic finite automaton (NDFA) as opposed to the
deterministic finite automaton (DFA) that we have been considering up until now.

Small wonder that considerable research has been invested in developing variations on thi
The code below shows one possible variation, for our specimen grammar, in the form of a «
C++ function. In this case it is necessary to have but one static array (deneted &),
initialized so as to map each possible character into a single state.

TOKENS get syn(voi d)
/1 Preconditions: First character ch has already been read
I/ stateO[] has been initialized
{ 1 gnoreConment sAndSepar at ors();
int state = stateO[ch];
while (1)
{ ch = getchar();
switch (state)
{ case 1 :
if (lisdigit(ch)) return nunber;
break; // state unchanged
case 2 :
if (ch =".") state = 3; else return | paren;
br eak;
case 3 :
return | brack;
case 4 :
if (ch =")") state = 5; else return period;
br eak;
case 5 :
return rbrack;
case 6 :
return plus;
case 7 :
return rparen;
case 8 :
if (lisletter(ch)) return identifier;
break; // state unchanged
defaul t :
return unknown,
}

}
}

Our scanner algorithms are as yet immature. Earlier we claimed that scanners often incorp
such tasks as the recognition of keywords (which usually resemble identifiers), the evaluati
constant literals, and so on. There are various ways in which these results can be achievec
later case studies we shall demonstrate several of them. In the case of the state machine it
easiest to build up a string that stores all the characters scanned, a task that requires minin
perturbation to the algorithms just discussed. Subsequent processingdefahiscan then be
done in an application-specific way. For example, searching for a string in a table of keywo
easily distinguish between keywords and identifiers.

Exercises

10.7 Our scanner algorithms have all had the property that they consume at least one char
Suppose that the initial character could not form part of a token (that is, did not belong to th
vocabulary of the language). Would it not be betttrto consume it?

10.8 Similarly, we have made no provision for the very real possibility that the scanner may
find any characters when it tries to read them, as would happen if it tried to read past the el
source. Modify the algorithm so that the scanner can recognize this condition, and return a
distinctiveeof token when necessary. Take care to get this correct: the solution may not be
obvious as it at first appears.

10.9 Suppose that our example language was extended to recagnéea keyword. We could

accomplish this by extending the last part of the transition diagram given earlier to that sho
Figure 10.2.

3_,
b
L2 e e 11]
a

a .a I a . 2
(=2 t .. 2 a e 2

=

Figure 18.2 Part of a transition diagram for an edtended FSA

What corresponding changes would need to be made to the tables needed to drive the par:
principle one could, of course, handle any number of keywords in a similar fashion. The nui
states would grow very rapidly to the stage where manual construction of the table would b
very tedious and error-prone.

10.10 How could the & code given earlier be modified to handle the extension suggested il
Exercise 10.9?

10.11 Suppose our scanner was also required to recognize quoted strings, subject to the c
restriction that these should not be allowed to carry across line breaks in the source. How c
be handled? Consider both the extensions that would be neede@ddtoescanner given earlie
and also to the table driven scanner.

Further reading

Automata theory and the construction of finite state automata are discussed in most texts o
compiler construction. A particularly thorough treatment is is to be found in the book by Gol
(1988); those by Holub (1990), Watson (1989) and Fischer and LeBlanc (1988, 1991) are ¢
highly readable.

Table driven parsers may also be used to analyse the higher level phrase structure for lanc
which satisfy the LL(k) conditions. Here, as in the FSA discussed above, and as in the LR
be discussed briefly later, the parser itself becomes essentially language independent. The
have to be more sophisticated, of course. They are known as "push down automata”, since
generally need to maintain a stack, so as to be able to handle the self-embedding found in
productions of the grammar. We shall not attempt to discuss such parsers here, but refer tr
interested reader to the books just mentioned, which all treat the subject thoroughly.

10.6 LR parsing

Although space does not permit of a full description, no modern text on translators would b
complete without some mention of so-callgd(k) parsing. The terminology here comes from-
notion that we scan the input string fraraft to right (the L), applying reductions so as to yield
Rightmost parse (the R), by looking as far ahead as theknesthinals to help decide which
production to apply. (In practideis never more than 1, and may be zero.)

The technique ibottom-up rather thartop-down. Starting from the input sentence, and makin
reductions, we aim to end up with the goal symbol. The reduction of a sentential form is act
by substituting the left side of a production for a string (appearing in the sentential form) wh
matches the right side, rather than by substituting the right side of a production whose left ¢
appears as a non-terminal in the sentential form.

A bottom-up parsing algorithm might employar se stack, which contains part of a possible
sentential form of terminals and/or non terminals. As we read each terminal from the input ¢
we push it onto the parse stack, and then examine the top elements of this to see whether:
make a reduction. Some terminals may remain on the parse stack quite a long time before
finally pushed off and discarded. (By way of contrast, a top- down parser can discard the te
immediately after reading them. Furthermore, a recursive descent parser stores the non-tel
components of the partial sentential form only implicitly, as a chain of as yet uncompleted c
the routines which handle each non-terminal.)

Perhaps an example will help to make this clearer. Suppose we have a highly simplified
(non-LL(1)) grammar for expressions, defined by

Goal = Expression "." . (1)
Expression = Expression "-" Term | Term. (2, 3)
Term = "a" (4)

and are asked to parse the striagd-a." .

The sequence of events could be summarized

Step Acti on Usi ng production St ack
1 read a a
2 reduce 4 Term
3 reduce 3 Expressi on
4 read - Expression -
5 r ead a Expression - a
6 reduce 4 Expression - Term
7 reduce 2 Expr essi on
8 read - Expression -
9 read a Expression - a
10 reduce 4 Expression - Term
11 reduce 2 Expr essi on
12 read . Expression .
13 reduce 1 Goal

We have reache@oal and can conclude that the sentence is valid.

The careful reader may declare that we have cheated! Why did we not use the production
Goal = Expression when we had reduced the strirgj to Expression after step 3? To apply a
reduction it is, of course necessary that the right side of a production be currently on the pa
stack, but this in itself is insufficient. Faced with a choice of right sides which match the top
elements on the parse stack, a practical parser will have to employ some strategy, perhaps
looking ahead in the input string, to decide which to apply.

Such parsers are invariably table driven, with the particular strategy at any stage being dett
by looking up an entry in a rectangular matrix indexed by two variables, one representing tf
current "state" of the parse (the position the parser has reached within the productions of tt
grammar) and the other representing the current "input symbol" (which is one of the termini
non-terminals of the grammar). The entries in the table specify whether the parsecéptithe
input string as correctgject as incorrectshift to another state, oeduce by applying a particular
production. Rather than stack the symbols of the grammar, as was implied by the trace abc
parsing algorithm pushes or pops elements representing states of the sarieoparation

pushing the newly reached state onto the stack, aedliee operation popping as many elemen
as there are symbols on the right side of the production being applied. The algorithm can b

expressed:

BEG N

Get SYM | nput Synbol) ;
State := 1; Push(State);

REPEAT

Entry := Tabl e[State,
CASE Entry. Action OF

shift:

(* first Symin sentence *)

Parsi ng : = TRUE;

I nput Synbol];

State := Entry. Next State; Push(State);
I F I sTerm nal (I nput Synbol) THEN
Get SYM | nput Synbol) (* accept *)

END
reduce:
FOR |
State :
I nput Synbol
reject:

Report (Failure);

accept:

Report (Success);

END
UNTI L NOT Parsing
END

1 TO Length(Rul e[Entry]. Ri ght Si de) DO Pop END;
Top(St ack) ;
= Rul e[Entry]. LeftSide;

Parsing : = FALSE

Parsing : = FALSE

Although the algorithm itself is very simple, construction of the parsing table is considerably
difficult. Here we shall not go into how this is done, but simply note that for the simple exan
given above the parsing table might appear as follows (we have le#jthe entries blank for

clarity):

Sumba L
Goal Expression Term et LU LUALY
State

1 Accept Shift 2 Shift 3 Shift 4
2 Shift & Reduce 1
E] Reduce 3 Reduce 3
4 Feduce 4 Feduce 4
5 Shift & Shift 4
& Reduce 2 Reduce 2

Given this table, a parse of the strirag-'a - a ." would proceed as follows. Notice that the peric
has been introduced merely to make recognizing the end of the string somewhat easier.

State Synbol
1 a
4 -
1 Term
3 -
1 Expr essi on
2 -
5 a
4 -
5 Term
6 -
1 Expr essi on
2 -
5 a
4 .
5 Term
6 .
1 Expr essi on
2 .
1 Goal

@
m
3
=~

PRrRRPRRRRPRRPRRERRERRPRRRRRR

N NNNNN NNNNN w N

oo

oo o

Acti on

Shift to state 4, accept a
Reduce by (4) Term= a

Shift to state 3

Reduce by (3) Expression = Term
Shift to state 2

Shift to state 5, accept -
Shift to state 4, accept a
Reduce by (4) Term= a

Shift to state 6

Reduce by (2) Expression = Expression -

Shift to state 2

Shift to state 5, accept -
Shift to state 4, accept a
Reduce by (4) Term= a
Shift to state 6

Reduce by (2) Expression = Expression -

Shift to state 2
Reduce by (1) Goal = Expression
Accept as conpl et ed

Term

Term

The reader will have noticed that the parsing table for the toy example is very sparsely fillec
use of fixed size arrays for this, for the production lists, or for the parse stack is clearly non-

One of the great problems in using the LR method in real applications is the amount of stor
which these structures require, and considerable research has been done so as to minimiz

As in the case of LL(1) parsers it is necessary to ensure that productions are of the correct
before we can write a deterministic parser using such algorithms. Technically one has to a\
are known as "shift/reduce conflicts”, or ambiguities in the action that is needed at each ent
parse table. In practice the difficult task of producing the parse table for a large grammar w
productions and many states, and of checking for such conflicts, is invariably left to parser

generator programs, of which the best known is probgady (Johnson, 1975). A discussion of

yacc, and of its underlying algorithms for LR(k) parsing is, regrettably, beyond the scope of
book.

It turns out that LR(k) parsing is much more powerful than LL(k) parsing. Before an LL(1) pi
can be written it may be necessary to transform an intuitively obvious grammar into one for
the LL(1) conditions are met, and this sometimes leads to grammars that look unnaturally
complicated. Fewer transformations of this sort are needed for LR(k) parsers - for example.
recursion does not present a problem, as can be seen from the simple example discussed
the other hand, when a parser is extended to handle constraint analysis and code generatic
LL(1)-based grammar presents fewer problems than does an LR(1)-based one, where the «
are sometimes found to introduce violations of the LR(K) rules, resulting in the need to tran:
the grammar anyway.

The rest of our treatment will all be presented in terms of the recursive descent technique,
has the great advantage that it is intuitively easy to understand, is easy to incorporate into
hand-crafted compilers, and leads to small and efficient compilers.

Further reading

On the accompanying diskette will be found source code for a demonstration program that
implements the above algorithm in the case where the symbols can be represented by sing
characters. The reader may like to experiment with this, but be warned that the simplicity of
parsing algorithm is rather overwhelmed by all the code required to read in the productions
elements of the parsing tables.

In the original explanation of the method we demonstrated the use of a stack which contain
symbols; in the later discussion we commented that the algorithm could merely stack state:
However, for demonstration purposes it is convenient to show both these structures, and st
program we have made use ofatiant record or union for handling the parse stack, so as to
accommodate elements which represent symbols as well as ones which represent parse st
alternative method would be to use two separate stacks, as is outlined by Hunter (1981).

Good discussions of LR(K) parsing and of its variations such as SLR (Simple LR) and LALF
Ahead LR) appear in many of the sources mentioned earlier in this chapter. (These variatio
reduce the size of the parsing tables, at the cost of being able to handle slightly less gener:
grammars.) The books by Gough (1988) and by Fischer and LeBlanc (1988, 1991) have us
comparisons of the relative merits of LL(k) and LR(k) parsing techniques.

10.7 Automated construction of scannersand parsers

Recursive descent parsers are easily written, provided a satisfactory grammar can be founi
the code tends to match the grammar very closely, they may be developed manually quickl
accurately. Similarly, for many applications the manual construction of scanners using the
techniques demonstrated in the last section turns out to be straightforward.

However, as with so many "real” programming projects, when one comes to develop a larg
compiler, the complexities of scale raise their ugly heads. An obvious course of action is to
interleave the parser with the semantic analysis and code generation phases. Even when n
techniques are used - such as writing the system to encapsulate the phases in well-definec
classes or modules - real compilers all too easily become difficult to understand, or to main
(especially in a "portable” form).

For this reason, among others, increasing use is now madesef generator s andscanner
generators - programs that take for their input a system of productions and create the
corresponding parsers and scanners automatically. We have already made frequent refere
such tool, Coco/R (Mdssenbdck, 1990a), which exists in a number of versions that can gen
systems, embodying recursive descent parsers, in eitherCJ&a, Pascal, Modula-2 or Ober«
We shall make considerable use of this tool in the remainder of this text.

Elementary use of a tool like Coco/R is deceptively easy. The user prepares a Cocol gramr
description of the language for which the scanner and parser are required. This grammar d
forms the most obvious part of the input to Coco/R. Other parts come in the form of so-calle
framefiles that give the skeleton of the common code that is to be generated for any scann
parser or driver program. Such frame files are highly generic, and a user can often employ
standard set of frame files for a wide number of applications.

The tool is typically invoked with a command like

cocor -c -1 -f grammar Nanme

wheregr ammar Narre is the name of the file containing the Cocol description. The arguments
prefixed with hyphens are used in the usual way to select various options, such as the gen
a driver module-(c), the production of a detailed listing {, a summary of the FIRST and
FOLLOW sets for each non-terminak {j, and so on.

After the grammar has been analysed and tested for self-consistency and correctness (ens
example, that all non-terminals have been defined, that there are no circular derivations, ar
tokens can be distinguished), a recursive descent parser and complementary FSA scanner
generated in the form of highly readable source code. The exact form of this depends on th
of Coco/R that is being used. The Modula-2 version, for example, genegate&sTI ON MODULES
specifying the interfaces, along withPLEMENTATI ON MODULES detailing the implementation of
each component, while the-€version produces separate header and implementation files tr
define a hierarchical set of classes.

Of course, such tools can only be successfully used if the user understands the premises ¢
they are based (for example, Coco/R can guarantee real success only if it is presented witt
underlying grammar that is LL(1)). Their full power comes about when the grammar descrig
are extended further in ways to be described in the next chapter, allowing for the constructi
complete compilers incorporating constraint analysis, error recovery, and code generation,

we delay further discussion for the present.

Exercises

10.12 On the accompanying diskette will be found implementations of Coco/R fet,di@bo
Pascal, and Modula-2. Submit the sample grammar given earlier to the version of your cho
compare the code generated with that produced by hand in earlier sections.

10.13 Exercises 5.11 through 5.21 required you to produce Cocol descriptions of a number
grammars. Submit these to Coco/R and explore its capabilities for testing grammars, listing
and FOLLOW sets, and constructing scanners and parsers.

Further reading

Probably the most famous parser generatpags, originally developed by Johnson (1975). Th¢
are several excellent texts that describe the ugacofand its associated scanner generator
(Lesk, 1975), for example those by Aho, Sethi and Ullman (1986), Bennett (1990), Levine,
and Brown (1992), and Schreiner and Friedman (1985).

The books by Fischer and LeBlanc (1988) and Alblas and Nymeyer (1996) describe other
generators written in Pascal and in C respectively.

There are now a great many compiler generating toolkits available. Many of them are freely
available from one or other of the large repositories of software on the Internet (some of the
listed in Appendix A). The most powerful are more difficult to use than Coco/R, offering, as
do, many extra features, and, in particular, incorporating more sophisticated error recovery
techniques than are found in Coco/R. It will suffice to mention three of these.

Grosch (1988, 1989, 1990a), has developed a toolkit known as Cocktail, with components f
generating LALR based parsers (LALR), recursive descent parsers (ELL), and scanners (R
variety of languages.

Grune and Jacobs (1988) describe their LL(1)-based tool (LLGen), as a "programmer frienc
LL(1) parser". It incorporates a number of interesting techniques for helping to resolve LL(1
conflicts, improving error recovery, and speeding up the development of large grammatrs.

A toolkit for generating compilers written in C o#-€that has received much attention is PCC™
the Purdue University Compiler Construction Tool Set (Parr, Dietz and Cohen (1992), Parr
This is comprised of a parser generator (ANTLR), a scanner generator (DLG) and a tree-p¢
generator (SORCERER). It provides internal support for a number of frequently needed op:
(such as abstract syntax tree construction), and is particularly interesting in that it uses LL(l
parsing with k > 1, which its authors claim give it a distinct edge over the more traditional LI
parsers (Parr and Quong, 1995, 1996).

