RHODES UNIVERSITY
Computer Science 301 - 2000 - Programming Language Translation
Well, here you are. Here is the free information you have all been waiting for, with some extra bits of advice:
e Don't panic. It is probably easier than you might at first think.

¢ The solution to section B does not need an enormous amount of code. But it needs careful thought. I am
looking for evidence of mature solutions, not crude hacks.

* Do make sure you get a good night's sleep!
How to spend a Special Sunday

From now until two hours before the examination tomorrow, Computer Science 3 students have exclusive use of
the Braae Laboratory. You are encouraged to throw out anyone else who tries to use it, but we hope that this
does not need to happen.

During this time you will be able to find the following files in the usual places, or by following links from the
course web page:

e All the files as were made available for the practical course.

® The files EXAMC.ZIP, exam.tgz and EXAMP.ZIP which contain C++ and Pascal versions of the Coco/R
system, and the sources for generating an "extended" Topsy compiler, as in the model solution for Prac 26 this
year. If you unzip the appropriate file you will be able to run QEdit and Coco/R using your Favourite
Language in the way that is, hopefully, familiar by now.

® The Turbo Pascal and Borland and Visual C++ compilers, which you can invoke in the usual way. You will
not need to log on to a server to use these compilers; they are on the local C: drive.

* The entire set of source files for The Book, in a directory system starting at I :CSC301\TRANS\SOURCES,
unpacked as described in Appendix A. The files are arranged by chapter and by language - for example, the
C++ versions of the sources for chapter 18 are in I:CSC301\TRANS\SOURCES\CHAP18\CPP. If you
have trouble locating these files you are free to ask for help (but the information is all in the file
I:CSC301\TRANS\SOURCES\README. SRC).

¢ Notes on enumeration types from a Modula-2 text book.

Once you have copied the "exam kit" it is suggested that you reboot the machines into the "local" mode that you
will use tomorrow. To do this you shut down, and then choose the "NONET" configuration as the system
reboots. When the login screen reappears you log in with the username testl and the password rbtestl.
This works on all the machines; none of them have access to one another or to the network.

Today you may use the files and the systems in any way that you wish subject to the following restrictions:
Please observe these in the interests of everyone else in the class.

(a) Create a working directory on D: in the usual way, and preferably do all your work within this directory.

(b) When you have finished working, please delete your files from the D: directory, so that others are not
tempted to come and snoop around to steal ideas from you.

©) Since tomorrow you will not have access to the file server, work on the D: drive and not on your server
file space, for practice, if for no other reason!

(d) You are encouraged to discuss the problem with one another, and with anybody not on the "prohibited"
list.

(e) You are also free to consult books in the library. If you cannot find a book that you are looking for, it
may well be the case that there is a copy in the Department. Feel free to ask.

I suggest that you DO spend some of the next 24 hours in DISCUSSION with one another, and some of the time
in actually TRYING OUT your ideas. You have plenty of time in which to prepare and test really good solutions
- go for it and good luck! Remember that you may not bring any papers or diskettes into the exam room
tomorrow.

If you cannot unpack the files, or have trouble getting the familiar tools to work (unlikely!), you may ask me for
help. You may also ask for explanation of any points in the question that you do not understand, in the same way
that you are allowed to ask before the start of an ordinary examination. You are no longer allowed to ask me
questions about any other part of the course. Sorry; you had your chance earlier, and I cannot allow this without
risking the chance of sneak questions and suggestions being called for.

If you cannot solve the problem completely, don't panic. It has been designed so that I can recognize that

students have reached varying degrees of sophistication and understanding.

How you will spend a Merry Monday

Just before the start of the formal examinations the laboratory will be unavailable. During that time

¢ The D: and C:\TEMP drives will be cleared.

® The network connections will be disabled. You will not be able to use a Unix system

At the start of each examination session:

® You will receive ordinary answer books for the preparation of answers, and an examination paper.

® You will be supplied with a diskette on which you will find the exam kit. This will contain the Coco/R
system, as was made available on the previous day, and also various machine readable parts of the examination

paper itself, in files with names like Q7.TXT (Question 7)

e A few copies of Chapter 12 of the text (running Coco/R) will be available as free information, should you
need them.

¢ At the end of the exam you will be given a chance to copy any files that you have edited or created back to the
diskette. It is, obviously, in your own interest to make sure that you know how to copy files correctly.

And for my last trick -

Section B [85 marks]

Please note that there is no obligation to produce a machine readable solution for this section. Coco/R and other
files are provided so that you can enhance, refine, or test your solution if you desire. If you choose to produce a
machine readable solution, you should create a working directory, unpack EXAMP.ZIP (Pascal) or EXAMC.ZIP
(C++), modify any files that you like, and then copy all the files back to the blank diskette that will be provided.

Most computer languages provide simple, familiar, notations for handling arithmetic, character and Boolean types
of data. Variables, structures and arrays can be declared of these basic types; they may be passed from one
routine to another as parameters, and so on.

Some languages, notably Pascal, Modula-2, C, C++, and Ada, allow programmers the flexibility to define what
are often known as enumeration types, or simply enumerations. Here are some examples to remind you of this
idea:

TYPE (* Pascal or Modula-2 *)

COLOURS = (Red, Orange, Yellow, Green, Blue, Indigo, Violet);

INSTRUMENTS = (Drum, Bass, Guitar, Trumpet, Trombone, Saxophone, Bagpipe);
VAR

Walls, Ceiling, Roof : COLOURS;

JazzBand : ARRAY [0 .. 401 OF INSTRUMENTS;

Free information - 2000 - Programming language translation 2

or the equivalent

typedef /[* C or C++ */
enum { Red, Orange, Yellow, Green, Blue, Indigo, Violet } COLOURS;
typedef
enum { Drum, Bass, Guitar, Trumpet, Trombone, Saxophone, Bagpipe } INSTRUMENTS;
COLOURS Walls, Ceiling, Roof;
INSTRUMENTS JazzBand[411;

Sometimes the variables are declared directly in terms of the enumerations:

VAR (* Pascal or Modula-2 *)
CarHireFleet : ARRAY [1 .. 1001 OF (Golf, Tazz, Sierra, BMW316);

enum CARS { Golf, Tazz, Sierra, BMW316 } CarHireFleet[1011; /[* C or C++ */

The big idea here is to introduce a distinct, usually rather small, set of values which a variable can legitimately be
assigned. Internally these values are represented by small integers - in the case of the CarHireFleet example
the "value" of Golf would be 0, the value of Tazz would be 1, the value of Sierra would be 2, and so on.

In the C/C++ development of this idea the enumeration, in fact, results in nothing more than the creation of an
implicit list of const int declarations. Thus the code

enum CARS { Golf, Tazz, Sierra, BMW316 } CarHireFleet[101]1;
is semantically completely equivalent to
const int Golf = 0; const int Tazz = 1;
const int Sierra = 2, const int BMW316 = 3;
int CarHireFleet[101]1;
and to all intents and purposes this gains very little, other than possible readability; an assignment like
CarHireFleetIN] = Tazz;
might mean more to a reader than the semantically identical

CarHireFleetIN] = 1;

In the much more rigorous Pascal and Modula-2 approach one would not be allowed this freedom; one would be
forced to write

CarHireFleet[N] := Tazz;
Furthermore, whereas in C/C++ one could write code with rather dubious meaning like
CarHireFleet[4] = 45; /* Even though 45 does not correspond to any known car! */
CarHireFleet[11 = Tazz / Sierra; /* Oh come, come! */
Walls = Sierra; /* Whatever turns you on is allowed in C++ */
in Pascal and Modula-2 one cannot perform arithmetic on variables of these types directly, or assign values of one
type to variables of an explicitly different type, or assign values that are completely out of range. In short, the
idea is to promote "safe" programming - if variables can meaningfully only assume one of a small set of values,
the compiler should prevent the programmer from writing meaningless statements.
Clearly there are some operations that could have sensible meaning. Looping and comparison statements like
if (Walls == Indigo) Redecorate(Blue);

or

for (Roof = Red; Roof <= Violet; Roof++) DiscussWithNeighbours(Roof);

Free information - 2000 - Programming language translation 3

or
if (Jazzband[N] >= Saxophone) Shoot(JazzBand[Nl);

might reasonably be thought to make perfect sense - and would be easy to "implement" in terms of the underlying
integer values.

In fact, the idea of a limited enumeration is already embodied in the standard character and Boolean types - type
Boolean is really the enumeration of the values {0, 1} identified as {false, true}, although this type is so
common that the programmer is not required to declare the type explicitly. Similarly, the character type is really
an enumeration of a sequence of (typically) ASCII codes, and so on.

Although Pascal and Modula-2 forbid programmers from abusing variables and constants of any enumeration
types that they might declare, the idea of "casting" allows them to bypass the security where necessary. The
standard function ORD (x) can be applied to a value of an enumeration type to do nothing more than cheat the
compiler into extracting the underlying integral value. This, and the inverse operation of cheating the compiler
into thinking that it is dealing with a user-defined value when you want to map it from an integer are exemplified
by code like

IF (ORD(Bagpipe) > 4) THEN
Roof = COLOURS(I + 5);

Rather annoyingly, in Pascal and Modula-2 one cannot READ and WRITE values of enumeration types directly -
one has to use these casting functions to achieve the desired effects.

Enumerations are a "luxury" - clearly they are not really needed, as all they provide is a slightly safer way of
programming with small integers. Not surprisingly, therefore, they are not found in languages like Java
(simplified from C++) or Oberon (simplified from Modula-2).

During this course you have studied and extended a compiler for a small language, Topsy, which has syntax
similar to C++, but in the implementation of which we have repeatedly stressed the ideas and merits of safe
programming. In the examination "kit" you will find the tools we have used to develop this compiler, namely a
C++ or Pascal version of the Coco/R compiler generator, frame files, the attributed grammar for Topsy, and the
support modules for the symbol table handler, code generator and interpreter for the version of Topsy as it was
extended during the final stages of the laboratory work.

How would you add the ability to define enumeration types in Topsy programs and to implement these types, at
the same time providing safeguards to ensure that they could not be abused? It will suffice to restrict your answer
to use a syntax where the variables are declared directly in terms of the enumerations, that is, do not try to handle
the typedef (or TYPE) form of declaration.

A completely detailed solution to this reasonably large exercise might take the form of a complete set of attribute
grammar and supporting module source files, and it is highly likely that you cannot provide these in full in the
time available in the examination session. However, in the 24 hours available before the formal examination
period, by careful study of the example Topsy programs in the exam kit, and taking advantage of the opportunity
to discuss your approach with other members of the class, you should be able to get a long way towards making
this little language "absolutely perfect”. (As I said early one Friday morning - any language would be absolutely
perfect if it had just one more feature!)

The examiners will be looking for evidence that you are familiar with the use of Cocol, symbol table
manipulation, type and range checking, and error detection. During the formal examination period you would be
advised to concentrate simply on describing the changes and alterations to the attribute grammar and support files
in as much detail as time permits, preferably by providing selected and appropriate sections of code. Listings of
the attribute grammar will be available to candidates who require them.

You may wish to read up a little more on enumeration types as they are used in languages like Modula-2. An
essay on these can be found on the course WWW page by following a fairly obvious link.

A typical test program in the kit reads:

Free information - 2000 - Programming language translation 4

void main (void) { // exanm.top
// Illustrate some simple enumeration types in extended Topsy++
// some valid declarations
enum DAYS { Mon, Tues, Wed, Thurs, Fri, Sat, Sun } Today, Yesterday;
enum WORKERS { BlueCollar, WhiteCollar, Manager, Boss } Staffl[12]1;
int i, j, k, PayPacket[12]1;
const pay = 100;
bool rich;
// some invalid declarations - your system should be able to detect these

enum DEGREE { BSc, BA, BCom, MSc, PhD }; // No variables declared
enum FRUIT { Orange, Pear, Banana, Grape } Favourite; // This is okay
enum COLOURS { Red, Orange, Green } Paint; // Orange not unique

// some potentially sensible statements
Today = Tues;

Yesterday = Mon; // That follows!

if (Today < Yesterday) cout << "Compiler error"; // Should not occur
Today++; // Working past midnight?
if (Today != Wed) cout << "another compiler error";

int totalPay = 0;
for (Today = Mon; Today <= Fri; Today++) totalPay
for (Today = Sat; Today <= Sun; Today++) totalPay
rich = Staff[il > Manager;
Yesterday = DAYS(int(Today) - 1); // unless Today is Mon

// Some meaningless statements - your system should be able to detect these

totalPay + pay;
totalPay + 2 * pay;

sun++; // cannot increment a constant
Today = Sun; Today++; [/ There is no day past Sun
if (Today == 4) // Invalid comparison - type incompatibility
staff[11 = rich; // Invalid assignment - type incompatibility
Manager = Boss; // Cannot assign to a constant
PayPacket[Bossl = 1000; // Incompatible subscript type
b

Examination period allocations

The morning session will run from 08h30 until 11h30. Candidates must be in the Struben Building from 08h15,
and will not be allowed to leave before 11h30.

The afternoon session will run 12h00 until 15h00. Candidates must be in the Struben Building from 11h15, as we
have to make sure that there is no collaboration between sessions.

Morning 698C6270 Carter, LS Morning 69610159 Ndlangisa, M
Afternoon 69730904 Chari, DP Afternoon 69730217 Ngoasheng, KJ
Morning 698D3523 Daya, PJ Morning 698N4624 Noudehou, FSM
Morning 698D3070 Dickson, BJ Afternoon 69806331 Ocker, DHC
Afternoon 698E1944 Emmenes, Q Morning 698P1200 Palmer, MN
Afternoon 69610658 Erfani-Ghadimi, N Morning 698P1836 Parry, DC
Afternoon 698H1711 Hartley, CG Afternoon 69750001 Patel, AS
Afternoon 698H3690 Hitchcock, JD Morning 698P1642 Paterson, Al
Afternoon 695H7571 Holose, MM Afternoon 69760003 Price, RE
Afternoon 69730230 Howis, S Afternoon 698R3067 Renwick, MR
Afternoon 698J6219 Jacot-Guillarmod, PF Afternoon 698R6473 Ridderhof, MJ
Afternoon 698J6035 Johnson, RD Afternoon 698R1724 Riordan, DD
Afternoon 698J4312 Jones, EB Morning 697R6228 Roberts, AW
Morning 697K5335 Kao, MN Morning 698R1477 Roberts, K
Morning 698K4561 Kavuma, I Afternoon 69856239 Stavrakis, EA
Afternoon 698K6080 Kulesza, K Morning 69851317 Stevens, BR
Morning 69730402 Lalloo, A Afternoon 69755130 Swales, D
Morning 69610870 Louw, JA Morning 698T1375 Tankard, GM
Morning 698M3440 Madhoo, V Morning 698T3747 Traas, GRL
Afternoon 69730153 Makaya, V Morning 698T4414 Tsegaye, MA
Morning 698M2452 Marx, 1B Afternoon 69640121 Twala, MEN
Morning 69610537 Masekoameng, RP Afternoon 698U6039 Urban, PA
Morning 69731187 Mfenguza, N Morning 69610531 Walwyn, GA
Afternoon 69731732 Miler, V Afternoon 698W1548 Wells, TJ
Morning 698M1394 Motsoeneng, TP Morning 698W4075 Wright, LA
Afternoon 698M3016 Mutagahywa, RN Afternoon 693W5688 Wright, MK
Morning 698N1103 Naude, R Morning 698Y2081 Yates, SC

Free information - 2000 - Programming language translation 5

Test programs

The exam kits contain a selection of silly Topsy programs which you may find useful in testing the modifications
you make. In particular look at the ones below. They are not all "correct” of course.

You will also find an executable TEST . EXE derived from my model solution to this exercise. Rather cruelly, it
has had all the debugging information suppressed; don't bother to try anything like reverse engineering this!

A command like
TEST t0.top
will attempt to compiler the file t0 . top.

$D+ // Turn diagnostic mode on for testing the compiler - tO.top
void main (void) { // Declarations only

enum MyType { a, b, ¢ > X, Y, Z[4];
>

$D+ // Turn diagnostic mode on for testing the compiler - t1.top
void main (void) { // Declarations and initialisation

enum MyType { a, b, ¢ > X =a, Y = b, Z[4];
>

$D+ // Turn diagnostic mode on for testing the compiler - t2.top
void main (void) { // several enumerations

enum MyType { a, b > X, Y, Z[4];

enum YourType { p, q } A;

enum SillyType { LonelyValue } Ace;
>

$D+ // Turn diagnostic mode on for testing the compiler - t3.top
void main (void) { // some bad enumeration declarations

enum MyType { a, b, ¢ > X, Y, Z[4];

enum YourType { a, p, g9, r } A;

enum HisType { el1, e2, e3 };

enum MyType { my1, my2 };

enum YourType { d1, , > DD;

enum HerType { f1 f2 } FF;

enum ItsType € ¥ it;

$D+ // Turn diagnostic mode on for testing the compiler - té.top
void main (void) { // Declarations and invalid assignments
enum MyType { a, b, ¢ > X, Y, ZL[4];

int i;

i = MyType; [/ invalid
i=X; // invalid
X =i; // invalid

>

$D+ // Turn diagnostic mode on for testing the compiler - t5.top
void main (void) { // Declarations and invalid input/output

enum MyType { a, b, ¢ > X, Y, ZL[4];

cin >> MyType; [/ invalid

cin > X; // invalid
cout << X; // invalid
cout << a; // invalid

Free information - 2000 - Programming language translation 6

$D+ // Turn diagnostic mode on for testing the compiler - té.top
void main (void) { // simple for Lloops

enum MyType { a, b, ¢ > X, Y, ZL[4];

int i = 1;

for (X = a; X <= ¢; X++) { cout << i; i++; >
>

$D+ // Turn diagnostic mode on for testing the compiler - t7.top
void main (void) { // For loop going backwards

enum MyType { a, b, ¢ > X, Y, ZL4];

int i = 2;

for (X = ¢; X >= a; X--) { cout << i; i--; 2
>

$D+ // Turn diagnostic mode on for testing the compiler - t8.top
void main (void) { // simple while Lloop

enum MyType { a, b, ¢ > X, Y, Z[4];

int i = 1;

X = a; while (X <= ¢) { cout << 1i; i++; X++; >
>

$D+ // Turn diagnostic mode on for testing the compiler - t9.top
void main (void) { // Simple casting

enum MyType { a, b, ¢ > X, Y, Z[4];

int i = 0;

for (X = a; X <= ¢; X++) { cout << i << int(X); i++; }
>

$D+ // Turn diagnostic mode on for testing the compiler - t10.top
void main (void) { // Casting between types

enum MyType { a, b, ¢ > X, Y, Z[4];

int i = int(a);

X = val(MyType, 2);

X = MyType(1);

bool value = bool(0);

value = bool(a);

$D+ // Turn diagnostic mode on for testing the compiler - t11.top
void main (void) { // Casting between types, range errors

enum MyType { a, b, ¢ > X, Y, ZL[4];

X = val(MyType, -2);

X = MyType(4);

bool Bad = bool(c);
>

$D+ // Turn diagnostic mode on for testing the compiler - t12.top
void main (void) { // Compound type casting

enum MyType { a, b, ¢ > X, Y, Z[4];

int i = 0;

for (X = a; X <= ¢; X++) { cout << i << char{int(X) + 65); i++; ¥
>

$D+ // Turn diagnostic mode on for testing the compiler - t13.top
void main (void) { // Relational operations

enum MyType { a, b, ¢ > X, Y, Z[4];

if (a < ¢) cout << "a < c\n";

if (¢ < a) cout << "compiler error";

bool okay = a == a;

okay = a > ¢;

okay = int(c) >= 2;

Free information - 2000 - Programming language translation 7

$D+ // Turn diagnostic mode on for testing the compiler - t14.top
void main (void) { // Relational operations - illegal

enum MyType { a, b, ¢ > X, Y, ZL[4];

if (a < 4) cout << "a < &\n";

bool okay = a == char(a);

okay = X < &4;

$D+ // Turn diagnostic mode on for testing the compiler - t15.top
void main (void) { // Several enumerations and scopes

enum MyType { a, b > X, Y, Z[4];

enum YourType { p, q } A;

// now start another block and scope

{ enum MyType { a, b > X, Y, Z[4]1;

enum YourType { p, q } A;

X

>

$D+ // Turn diagnostic mode on for testing the compiler - t16.top
void main (void) { // some bad enumeration declarations

enum MyType { a, b, ¢ > X, Y, ZL[4];

enum YourType { a, p, g, r } A;

enum HisType { e1, €2, e3 };

enum YourType { d1, d2, d3 } DD;

$D+ // Turn diagnostic mode on for testing the compiler - t17.top

void main (void) { // Declarations with casting (bad)
enum MyType { a, b, ¢ » X = MyType(1), Y = MyType(5), ZL[41;
>

Cessation of Hostilities Party

As previously agreed, Sally and I would like to invite you to an informal end of course party at our house on 13
November. There's a map below to help you find your way there. It would help if you could let me know
whether you are coming so that we can borrow enough glasses, plates etc. E-mail to p.terry@ru.ac.za.

Time: from 18h30 onwards. Dress: Casual

============>> PDT(8) \ <

A\
\ \ [\
\ Bedford / \ constitution St
cradock '\ \
\ / \ Hospital
\ Pear Lane \
Worcester St '\

St Andrew's
Milner St

African St

Somerset
New St

Vic

Rhodes Hill st
High st

Cathedral

Free information - 2000 - Programming language translation 8

