
RHODES UNIVERSITY

Computer Science 301 - 2001 - Programming Language Translation

Well, here you are. Here is the free information you have all been waiting for, with some extra bits of advice:

• Don't panic. It is probably easier than you might at first think.

• The solution to section B does not need an enormous amount of code. But it needs rather careful thought. I
am looking for evidence of mature solutions, not crude hacks.

• Do make sure you get a good night's sleep!

How to spend a Special Sunday

From now until two hours before the examination tomorrow, Computer Science 3 students have exclusive use of
the Braae Laboratory. You are encouraged to throw out anyone else who tries to use it, but we hope that this
does not need to happen. On Sunday evening Jody and I will have to move some computers around in preparation
for Monday, but you will be able to continue working.

During this time you will be able to find the following files in the usual places, or by following links from the
course web page:

• All the files as were made available for the practical course.

• The file EXAM.ZIP which contains the C++ version of the Coco/R system, and the sources for generating an
"extended" CS301-2 compiler, essentially as in the model solution for Prac 21 this year, but with a few minor
improvements. If you unzip this file you will be able to run GenMake, QEdit and Coco/R using your
Favourite Language in the way that is, hopefully, familiar by now.

• Borland and Visual C++ compilers, which you can invoke in the usual way. You will not need to log on to a
server to use these compilers; they are on the local C: drive.

• The entire set of source files for The Book, in a directory system starting at I:CSC301\TRANS\SOURCES,
unpacked as described in Appendix A. The files are arranged by chapter and by language - for example, the
C++ versions of the sources for chapter 18 are in I:CSC301\TRANS\SOURCES\CHAP18\CPP. If you
have trouble locating these files you are free to ask for help (but the information is all in the file
I:CSC301\TRANS\SOURCES\README.SRC).

Once you have copied the "exam kit" it is suggested that you reboot the machines into the "local" mode that you

will use tomorrow. To do this you shut down, and then choose the "NONET" configuration as the system reboots.

When the login screen reappears you log in with the username test1 and the password rbtest1. This works

on all the machines; in this mode none of them have access to one another or to the network.

Today you may use the files and the systems in any way that you wish subject to the following restrictions:
Please observe these in the interests of everyone else in the class.

(a) Create a working directory on D: in the usual way, and preferably do all your work within this directory.

(b) When you have finished working, please delete your files from the D: drive, so that others are not tempted
to come and snoop around to steal ideas from you.

(c) Since tomorrow you will not have access to the file server, work on the D: drive and not on your server
file space, for practice, if for no other reason!

(d) You are encouraged to discuss the problem with one another, and with anybody not on the "prohibited"
list.

(e) You are also free to consult books in the library. If you cannot find a book that you are looking for, it
may well be the case that there is a copy in the Department. Feel free to ask.

I suggest that you DO spend some of the next 24 hours in DISCUSSION with one another, and some of the time
in actually TRYING OUT your ideas. You have plenty of time in which to prepare and test really good solutions

- go for it and good luck! Remember that you may not bring any papers or diskettes into the exam room
tomorrow.

If you cannot unpack the file, or have trouble getting the familiar tools to work (unlikely!), you may ask me for
help. You may also ask for explanation of any points in the question that you do not understand, in the same way
that you are allowed to ask before the start of an ordinary examination. You are no longer allowed to ask me
questions about any other part of the course. Sorry; you had your chance earlier, and I cannot allow this without
risking the chance of sneak questions and suggestions being called for.

If you cannot solve the problem completely, don't panic. It has been designed so that I can recognize that
students have reached varying degrees of sophistication and understanding.

How you will spend a Merry Monday

Just before the start of the formal examinations the laboratory will be unavailable. During that time

• The D: and C:\TEMP drives will be cleared.

• The network connections will be disabled.

At the start of each examination session:

• You will receive ordinary answer books for the preparation of answers, and an examination paper.

• You will be supplied with a diskette on which you will find the exam kit. This will contain the Coco/R
system, as was made available on the previous day, and also various machine readable parts of the examination
paper itself, in files with names like Q7.TXT (Question 7).

• A few copies of Chapter 12 of the text ("Using Coco/R - Overview") will be available as free information,
should you need them.

• At the end of the exam you will be given a chance to copy any files that you have edited or created back to the
diskette. It is, obviously, in your own interest to make sure that you know how to copy files correctly.

Cessation of Hostilities Party

As previously mentioned, Sally and I would like to invite you to an informal end-of-course party at our house on
12 November. There's a map below to help you find your way there. It would help if you could let me know
whether you are coming so that we can borrow enough glasses, plates etc. E-mail to p.terry@ru.ac.za. Time:
from 18h30 onwards. Dress: Casual

\
============>> PDT(8) \ <======================================

|\
\ \ /---\
\ Bedford / \ Constitution St

Cradock \ \ / \
\ \ / \ �Hospital
\ Pear Lane \ ³

| Worcester St \ ³
ÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
DSG ³ ³

³ St Andrew's ³
³ ³Milner St
³ ³
³ African St ³
ÃÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÂÄÄÄÄÄÄÄÄÄÄ
³ ³ ³
³Somerset³ ³
³ ³ ³
³ Rat ³ New St ³

ÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÂÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄ
³ ³ PopArt ³
³ ³ ³

Rhodes ³ ³ ³Hill St
³ ³ High St ³

ÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁ Cathedral

Free information - 2001 - Programming language translation 2

And for my last trick -

Section B [85 marks]

Please note that there is no obligation to produce a machine readable solution for this section. Coco/R and other

files are provided so that you can enhance, refine, or test your solution if you desire. If you choose to produce a

machine readable solution, you should create a working directory, unpack EXAM.ZIP, modify any files that you

like, and then copy all the files back to the blank diskette that will be provided.

For several years your predecessors in this course - and even yourselves - have been expected, as part of the
practical course, to gain an understanding of a stack machine architecture by preparing programs written in a very
limited form of assembler language in which all addressing had to be done in terms of numerical values which
students were supposed to calculate for themselves - with understandable frustration setting in every time they
inserted or deleted a few statements into programs as they debugged them. During this time students have begged
me to give them a "real" assembler in which alphanumeric labels could be used to identify constants, variables,
and the destinations of branch instructions. I have, of course, always been too busy to do this, but with 24 hours
at your disposal and the expert knowledge you have amassed after studying the translators course this year, you
should be able to remedy this situation - and if you succeed you may be able to make some useful pocket money
selling your system to the class next year!

We start by observing that, rather than writing code as exemplified by the columns on the left, most people would
prefer to write code as exemplified by the columns on the right

ASSEM $D+ ³ ASSEM $D+ # Read a list and write it backwards
³ CONST # High level declarations
³ Max = 10; # constants
³ Width = 6;
³ INT # variables

BEGIN ³ List[Max], I, Item;
DSP 13 ³ BEGIN # DSP 13 can be generated automatically
ADR -12 ³ ADR I # I := 0;
LIT 0 ³ LIT 0 #
STO ³ STO #
ADR -13 ³ READ ADR Item # LOOP
INN ³ INN # Read(Item);
ADR -13 ³ ADR Item #
VAL ³ VAL #
BZE 32 ³ BZE DONE # IF Item = 0 THEN EXIT END;
ADR -1 ³ ADR List #
ADR -12 ³ ADR I #
VAL ³ VAL #
LIT 11 ³ LIT SIZE(List) #
IND ³ IND #
ADR -13 ³ ADR Item #
VAL ³ VAL #
STO ³ STO # List[I] := Item;
ADR -12 ³ ADR I # I++;
PPP ³ PPP #
BRN 7 ³ BRN READ # END;
PRS 'Reversed' ³ DONE PRS 'Reversed' # Write('Reversed');
ADR -12 ³ PRINT ADR I # WHILE I > 0 DO
VAL ³ VAL #
LIT 0 ³ LIT 0 #
GTR ³ GTR #
BZE 59 ³ BZE EXIT #
ADR -12 ³ ADR I # I--;
MMM ³ MMM #
ADR -1 ³ ADR List #
ADR -12 ³ ADR I #
VAL ³ VAL #
LIT 11 ³ LIT Max + 1 #
IND ³ IND #
VAL ³ VAL #
LIT 6 ³ LIT Width # Write(List[I] : 6);
PRN ³ PRN #
BRN 34 ³ BRN PRINT # END
HLT ³ EXIT HLT # RETURN

END. ³ END.

Since it might be dangerous to place too much reliance on what would be required of an assembler, or indeed
determine exactly what is permitted in the assembler language itself from studying this one single example, here
are some suggestions for deriving a complete system. (In the exam kit will be found some other example

Free information - 2001 - Programming language translation 3

programs to assist in your development of the assembler.)

(a) You can make use of Coco/R, and in particular derive a solution by making use of the attributed grammar
and support modules (symbol table handler, code generator, error handler, frame files etc) that were useful
in the development of a CS301 compiler/interpreter.

(b) The assembler statements should appear between a bracketing BEGIN and END, and may optionally be
preceded by declarations of constants and variables (like Max, Width, List, I and Item) using
similar syntax to that found in CS301 programs.

(c) The assembler system should be able to assemble simple programs in which the addressing is all given in
absolute form (as in the example on the left), as well as those with alphanumeric names and labels.

(d) Treat the mnemonics as key (reserved) words. Since AND and NOT are mnemonic opcodes, use !, && and
|| for Boolean operators.

(e) Alphanumeric labels (like READ, PRINT, DONE and EXIT) used as the targets of branch instructions
must be uniquely defined. For simplicity, these labels should not be allowed to duplicate identifiers used in
the declaration of named constants or variables.

(f) It is acceptable to define labels without ever having branch instructions that referred to them, to have
multiple labels defined at one point, or to have multiple branches to one point, for example

BRN START # Unnecessary, but legal
START
LOOP LIT 6

LIT 7
PRN
BRN START # equivalent to BRN LOOP

(g) It would not be acceptable to have branch instructions refer to labels that are never defined, for example

BEGIN
LOOP LIT 6

LIT 7
PRN
BRN START # Start is undefined

END

(h) The LIT and DSP mnemonics should be allowed to take a constant-generating expression as a parameter:

DSP 6 # Absolute form
LIT Max # Equivalent to LIT 10
LIT Max * 10 + Width # Equivalent to LIT 106
LIT Size(Array) # Equivalent to LIT 11

where Size is a pseudo function that can return the storage space needed for the variable quoted as its
actual argument (this would clearly be useful in applications that use arrays in particular).

(i) The ADR mnemonic should be allowed to take a (possibly signed) number or a variable name as its
parameter. In the case where this name refers to an array a possible extension would be to allow it to have
a constant subscript indicating a further offset that could be computed at assemble time, for example:

ADR -1 # absolute addressing
ADR Item # equivalent to ADR -13
ADR List # equivalent to ADR -1
ADR List[0] # equivalent to ADR -1
ADR List[2] # equivalent to ADR -3

(j) Not much attention need be paid to type checking - at this level programmers should be relied on to get
these semantics correct for themselves.

(k) Apart from situations where they are necessary for separating other alphanumeric quantities, whitespace
characters may be used at the coder's discretion to improve the appearance of source code.

(l) In the extended compiler for CS301 you may have made use of additional opcodes to the ones listed below,

Free information - 2001 - Programming language translation 4

in particular to handle switch/case statements. For the purposes of this examination you may confine your
assembler to the opcodes in the table on page 7.

Instruction set for stack machine

Several of these operations belong to a category known as zero address instructions. Even though operands are
clearly needed for operations such as addition and multiplication, the addresses of these are not specified by part
of the instruction, but are implicitly derived from the value of the stack pointer SP. The two operands are
assumed to reside on the top of the stack and just below the top; in our informal descriptions their values are
denoted by TOS (for "top of stack") and SOS (for "second on stack"). A binary operation is performed by popping
its two operands from the stack into (inaccessible) internal registers in the CPU, performing the operation, and
then pushing the result back onto the stack.

AND Pop TOS and SOS, and SOS with TOS, push result to form new TOS

ORR Pop TOS and SOS, or SOS with TOS, push result to form new TOS

ADD Pop TOS and SOS, add SOS to TOS, push sum to form new TOS

SUB Pop TOS and SOS, subtract TOS from SOS, push difference to form new TOS

MUL Pop TOS and SOS, multiply SOS by TOS, push product to form new TOS

DVD Pop TOS and SOS, divide SOS by TOS, push quotient to form new TOS

REM Pop TOS and SOS, divide SOS by TOS, push remainder to form new TOS

EQL Pop TOS and SOS, push 1 to form new TOS if SOS = TOS, 0 otherwise
NEQ Pop TOS and SOS, push 1 to form new TOS if SOS ≠ TOS, 0 otherwise
GTR Pop TOS and SOS, push 1 to form new TOS if SOS > TOS, 0 otherwise
LSS Pop TOS and SOS, push 1 to form new TOS if SOS < TOS, 0 otherwise
LEQ Pop TOS and SOS, push 1 to form new TOS if SOS ≤ TOS, 0 otherwise
GEQ Pop TOS and SOS, push 1 to form new TOS if SOS ≥ TOS, 0 otherwise
NEG Integer negation of TOS
NOT Boolean negation of TOS

STK Dump stack to output (useful for debugging)
PRN Pop TOS and SOS, write SOS to output as an integer value in field width TOS

PRB Pop TOS and SOS, write SOS to output as a Boolean value in field width TOS

PRS A Write the nul-terminated string that is assumed to be stacked in the literal pool from Mem[A]

NLN Write a newline (carriage-return-line-feed) sequence
INN Read integer value, pop TOS, store the value that was read in Mem[TOS]

INB Read Boolean value, pop TOS, store the value that was read in Mem[TOS]

DSP A Decrement value of stack pointer SP by A

LIT A Push the integer value A onto the stack to form new TOS

ADR A Push the value BP + A onto the stack to form new TOS. (This value is conceptually the address
of a variable stored at an offset A within the stack frame pointed to by the base register BP.)

IND (Range checked indexing of array) Pop TOS to yield Size; pop TOS and SOS; if 0 ó TOS < Size

then subtract TOS from SOS, push result to form new TOS

INX (Unchecked indexing of array) Pop TOS and SOS, subtract TOS from SOS, push result to form new TOS

VAL (Dereferencing) Pop TOS, and push the value of Mem[TOS] to form new TOS

DUP Push TOS to form duplicate copy
STO Pop TOS and SOS; store TOS in Mem[SOS]

PPP Pop TOS and increment Mem[TOS] by 1
MMM Pop TOS and decrement Mem[TOS] by 1

HLT Halt
BRN A Unconditional branch to instruction A

BZE A Pop TOS, and branch to instruction A if TOS is zero
BAN A Branch to instruction A if TOS is false; else pop TOS

BOR A Branch to instruction A if TOS is true; else pop TOS

NOP No operation

The instructions in the first group are concerned with arithmetic and logical operations, those in the second group
afford I/O facilities, those in the third group allow for the access of data in memory by means of manipulating
addresses and the stack, and those in the last group allow for control of flow of the program itself.

Free information - 2001 - Programming language translation 5

Examination period allocations

The morning session will run from 08h30 until 11h30. Candidates must be in the Struben Building from 08h15,
and will not be allowed to leave until everyone has finished and the papers been collected.

The afternoon session will run from about 12h00 until 15h00. Candidates must assemble in the Hamilton
Building from 11h15, as we have to make sure that there is no collaboration between sessions.

afternoon 699A0124 Abrey, DM ³ morning 698M1813 Matlock, JA
afternoon 697A1002 Adar, AO ³ morning 698M1871 Miya, SC
morning 699A0269 Alli, S ³ morning 697M6120 Mkuzangwe, NNP
morning 699A0928 Amtha, P ³ morning 699M2744 Moeca, WT
afternoon 699A0564 Anderson, ML ³ morning 699M0761 Morkel, C
afternoon 699A1450 Armstrong, MEG ³ morning 699M0158 Mpofu, AC
morning 698A1083 Asafo-Adjei, T ³ afternoon 699N3374 Nadasen, KG
morning 69750204 Bhe, U ³ afternoon 698N3985 Naidoo, D
morning 697B3411 Brown, DE ³ morning 699N0776 Naidoo, O
afternoon 699C1815 Cave, ML ³ afternoon 699N0640 Naidoo, P
morning 699D2774 Dada, A ³ afternoon 699N0225 Nel, LG
morning 699E1291 Everett, KA ³ afternoon 699N0587 Nyamadzawo, F
morning 699K1690 Eyambe, LK ³ morning 699O2038 Okai-Tettey, HA
morning 699F0023 Ferguson, BA ³ afternoon 698P3127 Parbhoo, NH
afternoon 698F4230 Futshane, Z ³ afternoon 699P1968 Parbhu, P
afternoon 699G1912 Gaul, T ³ morning 699P1628 Pare, JR
morning 699G0578 Goodenough, TW ³ morning 699P3117 Proske, H
morning 699H3447 Haig, D ³ afternoon 699R2070 Rampertab, M
afternoon 699H1589 Hatting, CA ³ afternoon 698R1293 Rana, B
morning 698H1625 Hone, GJ ³ morning 698R3067 Renwick, MR
morning 699J1570 Jogee, ZS ³ morning 699R0191 Rudraraju, U
afternoon 698J4312 Jones, EB ³ morning 699S2055 Seedat, RG
morning 699K2455 Keildson, J ³ afternoon 699S2711 Shepherd, J
morning 699K0958 Kieser, SJ ³ morning 699S1482 Sigsworth, R
morning 699K3906 Krijger, HGL ³ afternoon 600S1452 Smit, NK
afternoon 697K5261 Ku, YJ ³ morning 699S0115 Sterne, PJ
afternoon 698L3455 Leong Son, JMJ ³ afternoon 600T4417 Thomas, JJ
afternoon 699M1325 Mabvudza, FTL ³ afternoon 699U1402 Ubogu, CO
afternoon 699M1260 Machimana, TD ³ afternoon 699V1803 Van Berkel, GG
afternoon 699M0302 Mackie, DS ³ afternoon 699V0697 Vanda, NM
afternoon 69731436 Mahluza, NLN ³ afternoon 699W0746 Wasswa, PJK
afternoon 698M6232 Manners, PJ ³ afternoon 699Y1212 Yazdani, N
morning 699M0189 Manyindo, SN ³ morning 699Y1855 Yong, RAH
morning 699M1972 Mathebula, DW ³

Free information - 2001 - Programming language translation 6

Other Goodies

The exam kits contain a selection of silly assembler programs which you may find useful in testing the system you
develop. They are not all "correct" of course.

You will also find an executable ASM.EXE derived from my model solution to this exercise. Don't bother to try
anything like reverse engineering this; it has all been encrypted!

A command like

ASM A02.ASM

will attempt to assemble the code in the file A02.ASM and then interpret it.

There are two versions of the attributed grammar for the CS301 compiler. CS301.ATG uses two "expression
parsers" as suggested in the prac course - one for constant expressions and the other for "code generating"
expressions. CS301A.ATG is a version as discussed in the prac solution where only one, suitably parameterized,
expression parser is used.

Listings of CS301.ATG, of the code generator CGEN.CPP and of the table handler and interpreter interfaces
TABLE.H and STKMC.H are available today, and will be made available tomorrow (when the printers are
disabled).

Special attention is drawn to some features of this system which have changed slightly since the last practical
solution was issued, or which you may have overlooked at the time:

• Take note of the useful routine STKMC::opcodes .

• Take note of the routine TABLE::update which has been added to the symbol table handler.

• Take note of the LexName routine, which is an alternative to LexString useful in situations where one is
ignoring case sensitivity in source code.

• In the original CS301 language the keywords NOT, AND and OR were used in formulating Boolean
expressions. In the version you now have, the C++-like alternatives !, && and || are also allowed. Since the
keywords will clash with stack-machine opcodes, in your assembler limit yourself to the C++-like versions of
these operators. The alternatives are clearly delineated in the attribute grammars you have been given.

I apologise - there is a typo in the listing of CS301.ATG. Line 445 should read

| NotOp CUnaryExp<u, value> (. if (!booltypes.memb(u)) SemError(218);

The correct line is to be found in the file as supplied to you

And here are two hints:

• Don't be over ambitious at the outset. You could perhaps begin by developing an "absolute assembler"which
might be capable of handling examples like A01.ASM, A02.ASM, A03.ASM, A05.ASM. When you
have that working, go on to incorporate the variables and expressions. Leave the "labels" as exemplified from
about A14.ASM till later.

• It is suggested you use the $D+/$D- pragmas in your assembler system in a similar way to that used in the
compiler to help you debug your system.

Free information - 2001 - Programming language translation 7

