
RHODES UNIVERSITY

Computer Science 301 - 2004 - Programming Language Translation

Well, here you are. Here is the free information you have all been waiting for, with some extra bits of advice:

• Don't panic. It is probably easier than you might at first think.

• The solution to section B needs rather careful thought. I am looking for evidence of mature solutions, not

crude hacks.

• Work in smaller, rather than larger groups. Too many conflicting ideas might be less helpful than a few

carefully thought out ones.

• Do make sure you get a good night's sleep!

How to spend a Special Sunday

From now until about 10h30 tonight, Computer Science 3 students have exclusive use of the Hamilton

Laboratory. You are encouraged to throw out anyone else who tries to use it, but we hope that this does not need

to happen. At about 10h30 pm Jody and I will have to move some computers around and prepare things for

Monday. If there is still a high demand we shall try to leave some computers for use until later, but by then we

hope you will have a good idea of how to solve the problem below. During this time you will be able to find the

following files in the usual places, or by following links from the course web page:

• All the files as were made available for the practical course.

• The files EXAM.ZIP (or EXAMC.ZIP) which contains the Java (or C#) versions of the Coco/R system, and

its support files, and the complete sources for the Parva compiler you were supplied in Practical 25. It also

contains a PDF version of the Coco/R user manual (CocoManual.pdf).

Most of the machines in the labs will work in exactly the way they have done this semester. A few are set up to

show you the configuration you can expect to find tomorrow. It is suggested that you work at one of those

machines for a short time to make sure you know what to expect. To work on these machines you proceed as

follows

• Open up a DOS window following the usual route

• Give the command

CONNECT TESTxx demo

where xx is the two digit number for the machine (typically in the range 01 through 26).

• This will then allow you to log onto the J: drive, where you will find the file EXAM.ZIP (and EXAMC.ZIP)
waiting for you.

• Give a command like

UNZIP EXAM.ZIP

to unpack the "exam kit" of choice.

From here on things should be familiar. You could, for example, log onto the D: or J: drive, use UltraEdit

run CMAKE Parva ... generally have hours of fun.

But note that the exam set up has no connection with the outside world - no web browser, ftp client, telnet client,

shared directories - not even a printer!

Today you may use the files and either the "usual" or the "exam" systems in any way that you wish subject to the

following restrictions: Please observe these in the interests of everyone else in the class.

(a) When you have finished working, please delete any files from the D: drive, so that others are not tempted

to come and snoop around to steal ideas from you.

(b) You are permitted to discuss the problem with one another, and with anybody not on the "prohibited" list.

(c) You are also free to consult books in the library. If you cannot find a book that you are looking for, it

may well be the case that there is a copy in the Department. Feel free to ask.

(d) Please do not try to write any files onto the C: directory, for example to C:\TEMP

(e) If you take the exam kit to a private machine you will need to have Java installed (or the .NET framework

or equivalent to use the C# version).

I suggest that you do spend some of the next 24 hours in discussion with one another, and some of the time in

actually trying out your ideas. You have plenty of time in which to prepare and test really good solutions - go for

it, and good luck. Remember that tomorrow you may not bring anything into the room other than your

student card and writing utensils, and especially not listings, diskettes, memory sticks, text books or cell

phones.

If you cannot unpack the file, or have trouble getting the familiar tools to work (unlikely!), you may ask me for

help. You may also ask for explanation of any points in the question that you do not understand, in the same way

that you are allowed to ask before the start of an ordinary examination. You are no longer allowed to ask me

questions about any other part of the course. Sorry; you had your chance earlier, and I cannot allow this without

risking the chance of sneak questions and suggestions being called for.

If you cannot solve the problem completely, don't panic. It has been designed so that I can recognize that

students have reached varying degrees of sophistication and understanding.

How you will spend a Merry Monday

Before the start of the formal examinations the laboratory will be unavailable. During that time

• The machines will be completely converted to a fresh exam system with no files left on directories like D:

or C:\TEMP .

• The network connections will be disabled.

At the start of the examination session:

• You will receive ordinary answer books for the preparation of answers, and an examination paper.

• You will receive a copy of the complete listing of the Parva compiler that accompanies this handout. You may

annotate this during the exam to form part of your solution if you wish to submit a hand-written answer to

Section B and need to make reference to the code (possibly by line number). In this case you should hand in

the annotated listing with your answer book.

• You will be allocated to a computer and supplied with a CONNECT command for your own use. Once

connected you will find an exam kit on the J: drive. This will contain the same Coco/R system and other

files you have been given today, and in addition there will be "flat ASCII" machine readable parts of the

examination paper itself, in files with names like Q7.TXT (Question 7). There is no obligation to use a

computer during the exam. You can answer on paper if you prefer - and yes, you can write in pencil if you

prefer that.

• At the end of the exam you will be given a chance to copy any files that you have edited or created on the D:

drive back to the server. This will be explained tomorrow.

Cessation of Hostilities Party

As previously mentioned, Sally and I would like to invite you to an informal end-of-course party at our house on

15 November. There's a map below to help you find your way there. It would help if you could let me know

whether you are coming so that we can borrow enough glasses, plates etc. Please post the reply slip into the

hand-in box during the course of the day. Time: from 18h30 onwards. Dress: Casual

Free information - 2004 - Programming language translation 2

\
PDT(8) \ <==================================== here!

|\
\ \ /---\
\ Bedford / \ Constitution St

Cradock \ \ / \
\ \ / \ �Hospital
\ Pear Lane \ ³

| Worcester St \ ³
ÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
DSG ³ ³

³ St Andrew's ³Milner St
³ ³
³ ³

Somerset ³ African St ³
Street ÃÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÂÄÄÄÄÄÄÄÄÄÄ

³ ³ ³
³ ³ ³
³ ³ ³
³ Rat ³ New St ³

ÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÂÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄ
Hamilton ³ ³ The Suite ³

Hell Hole ³ ³ ³
³ ³ Gino's³Hill St

Rhodes ³ ³ High St ³
ÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁ Cathedral

And now for the next trick - taken as it apears in tomorrow's examination paper:

Section B [95 marks]

Please note that there is no obligation to produce a machine readable solution for this section. Coco/R and other

files are provided so that you can enhance, refine, or test your solution if you desire. If you choose to produce a

machine readable solution, you should create a working directory, unpack EXAM.ZIP, modify any files that you

like, and then copy all the files back onto an exam folder on the network.

2004 has been a great year for anniversaries: 10 years of democracy; 10 years of 24-hour compiler course

examinations; 100 years of excellence at Rhodes University; 60 years since the allies invaded Europe on D-Day;

40 years since the Beatles invaded the United States; 50 years of MacDonald's Hamburgers; 50 years of Elvis

Presley recordings. The list is endless.

It is also 50 years after Backus started work on the programming language FORTRAN.

Regular readers of this column - the Compiler Course Examination Archives (CCEA) - will know that this time of

the year usually sees a crisis develop in the Computer Science Department, and this year is no exception. As part

of the Rhodes Centenary Celebrations, each department has been mounting exhibitions that incorporate their most

important relics of the past. A potential rich research funder is to visit our exhibition on the day after tomorrow,

and a lot is at stake. His silver hair suggests that he only ever programmed in FORTRAN, and so it is

slightly unfortunate that we have not found a FORTRAN compiler, let alone one that targets the ground-breaking

PVM (Parva Virtual Machine) on which the Department's research reputation is increasingly based.

"No problem", exclaimed the illustrious Head of Department. "Write one! I know that the first FORTRAN

compiler is reputed to have taken 18 person-years of effort, but we don't need a full FORTRAN compiler - we

need only demonstrate a carefully chosen subset compiler and that should easily convince the potential funder that

we have the Real Thing".

Very simple FORTRAN programs are not that hard to code or understand. They have a single program unit that

starts with a PROGRAM line and ends with an END line. In between these come, firstly, a list of variable

declarations, and then, secondly a sequence of executable statements. In the original FORTRAN, only upper-case

characters were allowed, but today it is generally taken as a case-insensitive language. Only one statement may

appear on a line, so a simple example that would impress our visitor immensely might be provided by:

Free information - 2004 - Programming language translation 3

PROGRAM Greeting
C: Comments start with C: and go on to the end of the line

INTEGER Year, Born
Year = 2004
PRINT *, 'When were you born?'
READ *, Born
PRINT *, 'That means you''re ', Year - Born, ' years old!', EOLN
STOP
END

The asterisks in the READ and PRINT statements denote input from the "standard input" (keyboard) and output to

the "standard output" (screen) devices respectively. The asterisk in READ statements is followed by a list of

designators in a familiar way, and in PRINT statements by an obvious list of expressions and strings. Unlike

Java, FORTRAN literal strings are bracketed with single apostrophes. If a string is to contain an apostrophe, this

is denoted by two apostrophes in succession, as in the example just given, which would display something like:

That means you're 59 years old!

if the program were executed. Other escape sequences like the familiar \n and \t found in Java strings are not

allowed. Although it is not really part of standard FORTRAN, we suggest using the token EOLN to represent

"output an end of line sequence".

For the purposes of this exercise, limit variables to being of only two types, denoted by INTEGER (int) and

LOGICAL (Boolean), and demand that they be declared as in the following examples:

INTEGER I, J, K, List(12)
LOGICAL Sieve(4000), IsEasy, IsOld, CanRetire
INTEGER N, Age

where arrays are indicated (and storage automatically allocated to them) by indicating the uppermost permitted

value of the (integer) subscript in parentheses, for those identifiers that are to denote arrays.

Arithmetic (integer) expressions can contain the usual +, -, * and / operators. In forming logical (Boolean)

expressions the tokens .EQ., .NE., .LT., .LE., .GT., .GE., .AND., .OR. and .NOT. are used, and the

logical constants are denoted by .FALSE. and .TRUE. Within expressions, array elements are selected using

index expressions contained in (round) parentheses rather than [square] brackets. All this rather clumsy

notation comes about because of the limited character sets available on computers 50 years ago. Precedence rules

are effectively the same as we still have in Java. Here are some examples of simple assignments in FORTRAN:

IsOld = Age .GE. 25
Profit = Items * (Sell - Cost)
CanRetire = Age .GT. 55 .AND. Pension .GT. 100000 .OR. WifeInsists
Average = (List(1) + List(2) + List(3)) / 3

Where FORTRAN differs significantly from the languages most familiar to you is in the way in which it handles

branching and looping. As FORTRAN evolved, so too did its control structures, but our old visitor might not

recognize all of those, so we should rather cater for the traditional forms. Chief among these is the GOTO

statement. An executable FORTRAN statement can be associated with a unique label, and such labelled

statements can be the target of GOTO statements, as exemplified by the mindless program:

PROGRAM Parrot
10 PRINT *, 'Pretty Polly '

GOTO 10
END

Of course, one needs somewhat more sophistication. A rather strange statement found in the original FORTRAN

is the so-called "arithmetic IF" statement, exemplified by:

IF (A - B * C) 10, 20, 30

The dynamic semantics of this statement form are as follows: the parenthesized expression - which has to be

"arithmetic" rather than "logical" - is evaluated, followed by one of a GOTO 10 (the first label) if the result is

negative, a GOTO 20 (the second label) if the result is zero, and a GOTO 30 if the result is positive. All three

labels have to be provided (and, of course, each label has to be attached to a statement somewhere within the

program). Here is a more complete example:

Free information - 2004 - Programming language translation 4

PROGRAM Decide
INTEGER I, J

90 READ *, I, J
IF (I - J) 20, 500, 500

20 PRINT *, 'I is less than J'
GOTO 30

500 PRINT *, 'I is greater than or equal to J'
30 STOP

END

This may strike you as a bit tortuous, and it is not hard to see that a program with many GOTO statements and

labels (which could be assigned to statements in any order) can become hard for a human reader to understand.

A little later in the history of FORTRAN came the introduction of the "logical IF" statement. In this statement

the parenthesized expression after IF has to be "logical" rather than "arithmetic", and is followed by a single

statement which is executed if the expression evaluates to true. Again some examples will clarify:

IF (A .GT. B) PRINT *, 'A is greater than B'

Total = 0
10 READ *, I

Total = Total + I
IF (I .NE. 0) GOTO 10
PRINT *, 'Total = ', Total

This "logical IF" statement did not provide for an ELSE clause (that came even later in the history of

FORTRAN) and the auxiliary statement could only be one of a limited set of possibilities - it could be a READ,

PRINT, STOP, CONTINUE, GOTO, or an assignment, but not another IF statement.

The STOP statement does the obvious thing (halts program execution) and the CONTINUE statement does

"nothing" - it is a useful way of introducing an extra label into a program if that is ever needed.

The last control statement we should like to demonstrate to our visitor is the WHILE statement, which is

exemplified by the following code (which also incorporates simple array handling):

Total = 0
N = 1
Read *, Item
WHILE (Item .NE. 0)
List(N) = Item
N = N + 1
READ *, Item

ENDWHILE

Here the parenthesized expression in the WHILE statement must be a "logical expression", and the body of the

loop consists of the statements between the WHILE statement itself and the distinctive ENDWHILE statement.

WHILE loops can be nested, and ENDWHILE statements can be labelled, so a larger example might be:

I = 0
WHILE (I .LE. 10)
J = 0
WHILE (J .LE. 0)
PRINT *, I * J

ENDWHILE
PRINT *, EOLN

10 ENDWHILE

WHILE and ENDWHILE statements cannot form part of a "logical IF" statement.

Save the honour of the Department! Spend the next 24 hours using Coco/R to develop a subset FORTRAN

compiler that targets the PVM and handles the set of statements loosely described above, and then present a

report and a Cocol grammar showing how you would do this. To assist you in this task we shall provide you with

an attributed grammar and the usual support modules, from which a working Parva compiler/interpreter system

can be constructed. This is essentially the same as the one which you explored in the practical course, but with

the part of the compiler that deals with expressions already modified to incorporate the C#/Java rules for

precedence. It should be apparent that large parts of the Parva compiler can be incorporated into the FORTRAN

compiler almost unchanged, and you are encouraged to do so, or to modify components (such as the PVM or

symbol table handlers) as you see fit. The Parva system forms part of a kit that also includes various other sample

FORTRAN programs that you may find useful in developing and testing your compiler.

Free information - 2004 - Programming language translation 5

Now that you have got over the shock...

It may be helpful to make a few suggestions as to how best to tackle this exercise, and the examination itself.

(a) You should be able to use the Parva compiler as the basis of your solution. For example the main production

in the original Parva compiler is

Parva
= "void" Ident "(" ")" "{"

{ Statement }
"}" .

It does not give much away to suggest that to make simple changes to this production to yield a very similar one

Parva
= { EOL } /* allow for leading blank lines */

"PROGRAM" Ident EOL /* the first line */
{ Statement } /* the statements */

"END" EOL . /* the last line */

will get you going on the development of a toy Fortran compiler. Various other productions for the Fortran

system will also be very similar to their Parva equivalents.

(b) Continue to call the system "Parva" - this will avoid complications with changing namespaces, packages,

libraries and so on.

(c) The exam kit contains quite a large number of simple Fortran examples. They appear on an attached listing in

an order that you may find useful in completing the exercise in an incremental fashion. For the most part the

early ones relate to fairly simple changes to the Parva compiler. The later ones are generally harder, and you can

expect to be quite challenged when finding solutions.

(d) You have been supplied with a listing of the entire Parva compiler and its support modules, and you will

receive a copy of this listing again during the examination tomorrow. Although you are free to write your

answers "in any medium except red ink" tomorrow, I suggest that the best way to present your answer in the exam

itself may be to mark up the listing with the changes you suggest - there is plenty of space to do so. I suspect that

trying to type in the alterations during the exam will take you far too long. The point of the exercise is not to see

how accurately you can type, but to demonstrate to the examiners that you understand how to use Coco to help

develop a simple compiler.

(e) Having said that, you will surely find it very useful today (Sunday) to see how much of the answer you can get

to work.

(f) Your answers should be self-contained. It will not convince the examiners if (for example) you write down

claims like "we could do this part as we did in Practical 18".

Free information - 2004 - Programming language translation 6

Summary of useful library classes

class SymSet { // simple set handling routines
public SymSet()
public SymSet(int[] members)
public boolean equals(Symset s)
public void incl(int i)
public void excl(int i)
public boolean contains(int i)
public boolean isEmpty()
public int members()
public SymSet union(SymSet s)
public SymSet intersection(SymSet s)
public SymSet difference(SymSet s)
public SymSet symDiff(SymSet s)
public void write()
public String toString()

} // SymSet

public class OutFile { // text file output
public static OutFile StdOut
public static OutFile StdErr
public OutFile()
public OutFile(String fileName)
public boolean openError()
public void write(String s)
public void write(Object o)
public void write(int o)
public void write(long o)
public void write(boolean o)
public void write(float o)
public void write(double o)
public void write(char o)
public void writeLine()
public void writeLine(String s)
public void writeLine(Object o)
public void writeLine(int o)
public void writeLine(long o)
public void writeLine(boolean o)
public void writeLine(float o)
public void writeLine(double o)
public void writeLine(char o)
public void write(String o, int width)
public void write(Object o, int width)
public void write(int o, int width)
public void write(long o, int width)
public void write(boolean o, int width)
public void write(float o, int width)
public void write(double o, int width)
public void write(char o, int width)
public void writeLine(String o, int width)
public void writeLine(Object o, int width)
public void writeLine(int o, int width)
public void writeLine(long o, int width)
public void writeLine(boolean o, int width)
public void writeLine(float o, int width)
public void writeLine(double o, int width)
public void writeLine(char o, int width)
public void close()

} // OutFile

public class InFile { // text file input
public static InFile StdIn
public InFile()
public InFile(String fileName)
public boolean openError()
public int errorCount()
public static boolean done()
public void showErrors()
public void hideErrors()
public boolean eof()
public boolean eol()
public boolean error()
public boolean noMoreData()
public char readChar()
public void readAgain()
public void skipSpaces()
public void readLn()
public String readString()
public String readString(int max)

Free information - 2004 - Programming language translation 7

public String readLine()
public String readWord()
public int readInt()
public long readLong()
public int readShort()
public float readFloat()
public double readDouble()
public boolean readBool()
public void close()

} // InFile

Strings and Characters in Java

The following rather meaningless program illustrates various of the string and character manipulation methods

that are available in Java and which will be found to be useful in developing translators.

import java.util.*;

class demo {
public static void main(String[] args) {

char c, c1, c2;
boolean b, b1, b2;
String s, s1, s2;
int i, i1, i2;

b = Character.isLetter(c); // true if letter
b = Character.isDigit(c); // true if digit
b = Character.isLetterOrDigit(c); // true if letter or digit
b = Character.isWhitespace(c); // true if white space
b = Character.isLowerCase(c); // true if lowercase
b = Character.isUpperCase(c); // true if uppercase
c = Character.toLowerCase(c); // equivalent lowercase
c = Character.toUpperCase(c); // equivalent uppercase
s = Character.toString(c); // convert to string
i = s.length(); // length of string
b = s.equals(s1); // true if s == s1
b = s.equalsIgnoreCase(s1); // true if s == s1, case irrelevant
i = s1.compareTo(s2); // i = -1, 0, 1 if s1 < = > s2
s = s.trim(); // remove leading/trailing whitespace
s = s.toUpperCase(); // equivalent uppercase string
s = s.toLowerCase(); // equivalent lowercase string
char[] ca = s.toCharArray(); // create character array
s = s1.concat(s2); // s1 + s2
s = s.substring(i1); // substring starting at s[i1]
s = s.substring(i1, i2); // substring s[i1 ... i2]
s = s.replace(c1, c2); // replace all c1 by c2
c = s.charAt(i); // extract i-th character of s

// s[i] = c; // not allowed
i = s.indexOf(c); // position of c in s[0 ...
i = s.indexOf(c, i1); // position of c in s[i1 ...
i = s.indexOf(s1); // position of s1 in s[0 ...
i = s.indexOf(s1, i1); // position of s1 in s[i1 ...
i = s.lastIndexOf(c); // last position of c in s
i = s.lastIndexOf(c, i1); // last position of c in s, <= i1
i = s.lastIndexOf(s1); // last position of s1 in s
i = s.lastIndexOf(s1, i1); // last position of s1 in s, <= i1
i = Integer.parseInt(s); // convert string to integer
i = Integer.parseInt(s, i1); // convert string to integer, base i1
s = Integer.toString(i); // convert integer to string

StringBuffer // build strings
sb = new StringBuffer(), //
sb1 = new StringBuffer("original"); //

sb.append(c); // append c to end of sb
sb.append(s); // append s to end of sb
sb.insert(i, c); // insert c in position i
sb.insert(i, s); // insert s in position i
b = sb.equals(sb1); // true if sb == sb1
i = sb.length(); // length of sb
i = sb.indexOf(s1); // position of s1 in sb
sb.delete(i1, i2); // remove sb[i1 .. i2]
sb.replace(i1, i2, s1); // replace sb[i1 .. i2] by s1
s = sb.toString(); // convert sb to real string
c = sb.charAt(i); // extract sb[i]
sb.setCharAt(i, c); // sb[i] = c

}
}

Free information - 2004 - Programming language translation 8

