
RHODES UNIVERSITY

Computer Science 301 - 2006 - Programming Language Translation

Well, here you are. Here is the free information you have all been waiting for, with some extra bits of advice:

• Don't panic. It may be easier than you might at first think.

• The final solution to section B will need rather careful thought. I am looking for evidence of mature

solutions, not crude hacks.

• Work in smaller, rather than larger groups. Too many conflicting ideas might be less helpful than a few

carefully thought out ones.

• Do make sure you get a good night's sleep!

How to spend a Special Sunday

From now until about 22h30 tonight, Computer Science 3 students have exclusive use of the Hamilton

Laboratory. You are encouraged to throw out anyone else who tries to use it, but we hope that this does not need

to happen. At about 22h30 Chris and I will have to move some computers around and prepare things for

Monday. If there is still a high demand we shall try to leave some computers for use until later, but by then we

hope you will have a good idea of what is involved.

This year the format of the examination is somewhat different from previous years, so as to counter what has

happened recently where, essentially, one solution was prepared by quite a large group and then passed around to

many others, who had probably not contributed to it in any real way. The problem set below is only part of the

story. At 14h30 you will receive further hints as to how this problem should be solved (by then you might have

worked this out for yourselves, of course). You will be encouraged to study the problem further, and the solution

in detail, because during the examination tomorrow you will be set further questions relating to the system - for

example, asked to extend the solution in certain ways. It is my hope that if you have really understood the

material today, these questions will have solutions that come readily to mind, but of course you will have to

answer these on your own!

My "24 hour exam" problems have all been designed so that everyone should have been able to produce at least

the basic solution, with scope given for top students to demonstrate their understanding of the subtler points of

parsing, scanning and compiling. Each year I have been astounded at the quality of some of the solutions

received, and I trust that this year will be no exception.

Please note that there will be no obligation to produce a machine-readable solution in the examination (in fact

doing so is quite a risky thing, if things go wrong for you, or if you cannot type quickly). The tools will be

provided before the examination so that you can experiment in detail. If you feel confident, then you are free to

produce a complete working solution to Section B during the examination. If you feel more confident writing out

a neat detailed solution or extensive summary of the important parts of the solution, then that is quite acceptable.

Many of the best solutions over the last few years have taken that form.

During the first few hours you will be able to find the following files in the usual places, or by following links

from the course web page:

• All the files as were made available for the practical course.

• The files FREE1J.ZIP (or FREE1C.ZIP) which contains the Java (or C#) versions of the Coco/R system,

and its support files, and an unattributed grammar for a version of Parva, including the ability to declare and

use variables of the char type. We did not cover this in this year's pracs, but as you will shortly see, that

does not really matter. I had to set the examination questions before the course was completed. The kit also

contains a PDF version of the Coco/R user manual (CocoManual.pdf).

At 14h30 new versions of the exam kit will be posted (FREE2J.ZIP and FREE2C.ZIP), and a further handout

issued, with extra information.

Most of the machines in the labs will work in exactly the way they have done this semester. Some are set up to

show you the configuration you can expect tomorrow. It is suggested that you work at one of those machines for a

short time to make sure you know what to expect. To work on these machines you proceed as follows

• Open up a DOS window following the usual route

• Give the command

CONNECT TESTxxx yyyyy

where xx is a three digit number for the machine (typically in the range 101 through 123) and yyyy is a 5
digit password.

• This will then allow you to log onto the J: drive, where you will find the file EXAM.ZIP (and EXAMC.ZIP)
waiting for you.

• Give a command like

UNZIP FREE1J.ZIP

to unpack the "exam kit" of choice.

From here on things should be familiar. You could, for example, log onto the D: or J: drive, use UltraEdit

use CMAKE and CRUN ... generally have hours of fun. The C# system will work only on the D: drive, however.

But note that the exam set up has no connection with the outside world - no ftp client, telnet client, shared

directories - not even a printer!

Today you may use the files and either the "usual" or the "exam" systems in any way that you wish subject to the

following restrictions: Please observe these in the interests of everyone else in the class.

(a) When you have finished working, please delete any files from the D: drive, so that others are not tempted

to come and snoop around to steal ideas from you.

(b) You are permitted to discuss the problem with one another, and with anybody not on the "prohibited" list.

(c) You are also free to consult books in the library. If you cannot find a book that you are looking for, it

may well be the case that there is a copy in the Department. Feel free to ask.

(d) Please do not try to write any files onto the C: directory, for example to C:\TEMP

(e) If you take the exam kit to a private machine you will need to have Java installed (or the .NET framework

or equivalent to use the C# version).

I suggest that you do spend some of the next 24 hours in discussion with one another, and some of the time in

actually trying out your ideas. You have plenty of time in which to prepare and test your ideas - go for

it, and good luck. Remember that tomorrow you may not bring anything into the room other than your

student card and writing utensils, and especially not listings, diskettes, memory sticks, text books or cell

phones.

If you cannot unpack the file, or have trouble getting the familiar tools to work (unlikely!), you may ask me for

help. You may also ask for explanation of any points in the question that you do not understand, in the same way

that you are allowed to ask before the start of an ordinary examination. You are no longer allowed to ask me

questions about any other part of the course. Sorry; you had your chance earlier, and I cannot allow this without

risking the chance of sneak questions and suggestions being called for.

If you cannot solve the problem completely, don't panic. It has been designed so that I can recognize that

students have reached varying degrees of sophistication and understanding.

How you will spend a Merry Monday

Before the start of the formal examinations the laboratory will be unavailable. During that time

• The machines will be completely converted to a fresh exam system with no files left on directories like D: or

C:\TEMP .

• The network connections will be disabled.

Free information (1) - 2006 - Programming language translation 2

At the start of the examination session:

• You will receive ordinary answer books for the preparation of answers, and an examination paper.

• You will receive a copy of the complete listing of the Parva grammar that you received at 14h30. You may

annotate this during the exam to form part of your solution if you wish to submit a hand-written answer to

Section B and need to make reference to the code (possibly by line number). In this case you should hand in

the annotated listing with your answer book.

• You will be allocated to a computer and supplied with a CONNECT command for your own use. Once

connected you will find an exam kit on the J: drive. This will contain the same Coco/R system and other

files you have been given today, and in addition there will be "flat ASCII" machine readable parts of the

examination paper itself, in files with names like Q7.TXT (Question 7). There is no obligation to use a

computer during the exam. You can answer on paper if you prefer - and yes, you can write in pencil if you

prefer that.

• At the end of the exam you will be given a chance to copy any files that you have edited or created on the D:

drive back to the server. This will be explained tomorrow.

Cessation of Hostilities Party

As previously mentioned, Sally and I would like to invite you to an informal end-of-course party at our house on

13 November. There's a map below to help you find your way there. It would help if you could let me know

whether you are coming so that we can borrow enough glasses, plates etc. Please post the reply slip into the

hand-in box during the course of the day. Time: from 18h30 onwards. Dress: Casual

\
PDT(8) \ <==================================== here!

|\
\ \ /---\
\ Bedford / \ Constitution St

Cradock \ \ / \
\ \ / \ �Hospital
\ Pear Lane \ ³

| Worcester St \ ³
ÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
DSG ³ ³

³ St Andrew's ³Milner St
³ ³
³ ³

Somerset ³ African St ³
Street ÃÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÂÄÄÄÄÄÄÄÄÄÄ

³ ³ ³
³ ³ The Mall ³
³ ³ ³
³ Rat ³ New St ³

ÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÂÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄ
Hamilton ³ ³ ³
Hell Hole ³ ³ ³ Hill St

³ ³ Gino's³
Rhodes ³ ³ High St ³

ÄÄÁÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁ Cathedral

Section B [90 marks]

As you should know by now, having seen an example in an earlier practical, a pretty-printer is a form of

translator that takes source code and translates this into object code that is expressed in the same language as the

source. This probably does not sound very useful! However, the main aim is to format the "object code" neatly

and consistently, according to some simple conventions, making it far easier for humans to understand.

For example, a system that will read a set of EBNF productions, rather badly laid out as

Goal={One}.
One
= Two "plus" Four ".".

Four =Five {"is" Five|(Six Seven)}.
Five = Six [Six].
Six= Two| Three |"(*" Four "*)"|'(' Four ')'.

Free information (1) - 2006 - Programming language translation 3

and produce the much neater output

Goal
= { One } .

One
= Two "plus" Four "." .

Four
= Five { "is" Five | (Six Seven) } .

Five
= Six [Six] .

Six
= Two | Three | "(*" Four "*)" | '(' Four ')' .

is easily developed by using the following Cocol grammar

import Library.*;

COMPILER EBNF $CN
/* Pretty-print a set of EBNF productions

P.D. Terry, Rhodes University, 2006 */

static int indentation = 0;

public static void append(String s) {
// Append string s to results file

IO.write(s);
}

public static void newLine() {
// Write line mark to results file but leave indentation as before
int i = 1;
IO.writeLine();
while (i <= indentation) { IO.write(' '); i++; }

}

public static void indentNewLine() {
// Write line mark to results file and prepare to indent further lines
// by two spaces more than before
indentation += 2;
newLine();

}

public static void exdentNewLine() {
// Write line mark to results file and prepare to indent further lines
// by two spaces less
indentation -= 2;
newLine();

}

public static void indent() {
// Increment indentation level by 2
indentation += 2;

}

public static void exdent() {
// Decrement indentation level by 2
indentation -= 2;

}

CHARACTERS
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
lowline = "_" .
control = CHR(0) .. CHR(31) .
digit = "0123456789" .
noquote1 = ANY - "'" - control .
noquote2 = ANY - '"' - control .

TOKENS
nonterminal = letter { letter | lowline | digit } .
terminal = "'" noquote1 { noquote1 } "'" | '"' noquote2 { noquote2 } '"' .

COMMENTS FROM "(*" TO "*)" NESTED

IGNORE control

Free information (1) - 2006 - Programming language translation 4

PRODUCTIONS
EBNF
= { Production (. newLine(); .)

} EOF .

Production (. String name; .)
= NT<out name> (. append(name); .)
"=" (. indentNewLine(); append("= "); .)
Expression "." (. append(" ."); exdentNewLine(); .)
.

Expression
= Term { "|" (. append(" | "); .)
Term } .

Term
= Factor { (. append(" "); .)
Factor } .

Factor (. String name; .)
= NT<out name> (. append(name); .)

| terminal (. append(token.val); .)
| "[" (. append("["); .)

Expression "]" (. append("]"); .)
| "(" (. append("("); .)

Expression ")" (. append(")"); .)
| "{" (. append("{ "); .)

Expression "}" (. append(" }"); .)
.

NT<out String name>
= nonterminal (. name = token.val; .)
.

END EBNF.

The "code generator" is embodied in the simple methods append, indent, exdent and so on, which for

simplicity have simply been incorporated at the start of the grammar. A more sophisticated system might direct

the output to a named file in the manner familiar to you from earlier practicals.

As the first step in the examination you are invited to experiment with the above system, code for which is

included in the examination kit, and then to go on to develop a pretty-printer for programs expressed in the

version of Parva described in the following grammar. A version of this grammar - spread out to make the

addition of actions easy - can also be found in the examination kit, along with the necessary frame files.

COMPILER Parva $NC
/* Parva level 1 grammar - Coco/R for C# or Java */

CHARACTERS
lf = CHR(10) .
backslash = CHR(92) .
control = CHR(0) .. CHR(31) .
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
digit = "0123456789" .
stringCh = ANY - '"' - control - backslash .
charCh = ANY - "'" - control - backslash .
printable = ANY - control .

TOKENS
identifier = letter { letter | digit | "_" } .
number = digit { digit } .
stringLit = '"' { stringCh | backslash printable } '"' .
charLit = "'" (charCh | backslash printable) "'" .

COMMENTS FROM "//" TO lf
COMMENTS FROM "/*" TO "*/"
IGNORE CHR(9) .. CHR(13)

PRODUCTIONS
Parva = "void" Ident "(" ")" "{" { Statement } "}" .
Statement = Block | ";" | Assignment | ConstDeclarations | VarDeclarations

| IfStatement | WhileStatement | DoWhileStatement | ForStatement
| BreakStatement | ContinueStatement | HaltStatement | ReturnStatement
| ReadStatement | WriteStatement .

Free information (1) - 2006 - Programming language translation 5

Block = "{" { Statement } "}" .
ConstDeclarations = "const" OneConst { "," OneConst } ";" .
OneConst = Ident "=" Constant .
Constant = IntConst | CharConst | "true" | "false" | "null" .
VarDeclarations = Type OneVar { "," OneVar } ";" .
Type = BasicType ["[]"] .
BasicType = "int" | "bool" | "char" .
OneVar = Ident ["=" Expression] .
Assignment = Designator ("=" Expression | "++" | "--") ";" .
Designator = Ident ["[" Expression "]"] .
IfStatement = "if" "(" Condition ")" Statement ["else" Statement] .
WhileStatement = "while" "(" Condition ")" Statement .
DoWhileStatement = "do" Statement "while" "(" Condition ")" ";" .
ForStatement = "for" Ident "=" Expression ("to" | "downto") Expression Statement .
BreakStatement = "break" ";" .
ContinueStatement = "continue" ";" .
HaltStatement = "halt" ";" .
ReturnStatement = "return" ";" .
ReadStatement = "read" "(" ReadElement { "," ReadElement } ")" ";" .
ReadElement = (StringConst | Designator) .
WriteStatement = "write" "(" WriteElement { "," WriteElement } ")" ";" .
WriteElement = (StringConst | Expression) .
Condition = Expression .
Expression = AndExp { "||" AndExp } .
AndExp = EqlExp { "&&" EqlExp } .
EqlExp = RelExp { EqualOp RelExp } .
RelExp = AddExp [RelOp AddExp] .
AddExp = MultExp { AddOp MultExp } .
MultExp = Factor { MulOp Factor } .
Factor = Primary | "+" Factor | "-" Factor | "!" Factor .
Primary = Designator | Constant | "new" BasicType "[" Expression "]"

| "(" ("char" ")" Factor | "int" ")" Factor | Expression ")") .
AddOp = "+" | "-" .
MulOp = "*" | "/" | "%" .
EqualOp = "==" | "!=" .
RelOp = "<" | "<=" | ">" | ">=" .
Ident = identifier .
StringConst = stringLit .
CharConst = charLit .
IntConst = number .

END Parva.

You should find that this is quite easy to do, leading to a system that might be able to convert a "messy" little

Parva program like

void main(){int b,c,d;
b= 10;
while (b>0) { write("b = ", b); b--;
if (b == 4) write(" hit four!\n")
; else write(" on we go\n");}
}

into the rather more readable code

void main() {
int b, c, d;
b = 10;
while (b > 0) {
write("b = ", b);
b--;
if (b == 4)
write(" hit four!\n");

else
write(" on we go\n");

}
}

Hints: (a) Do not change the grammar to include any of the other extensions you made in Prac 25. (b) One test for

correctness is to take the output from the pretty-printer and pretty-print that again (ie take the output file from

one run and use it as the input file for another run). You should, of course, just get the same result again.

Free information (1) - 2006 - Programming language translation 6

