Computer Science 3 - 2008
Programming Language Translation
Practical for Week 20, beginning 1 September 2008

Hand in this prac sheet before lunch time on your next practical day, correctly packaged in a transparent folder
with your solutions and the "cover sheet". Unpackaged and late submissions will not be accepted - you have
been warned. Please do NOT come to a practical and spend the first hour printing or completing solutions from
the previous week's exercises. Since the practical will have been done on a group basis, please hand in one copy
of the cover sheet for each member of the group. These will be returned to you in due course, signed by the
marker.

Objectives:

In this practical you are to

® become familiar you with the workings of a simple machine emulator for the PVM pseudo-machine we shall
use frequently in the course.

® gain some experience with the machine, writing machine code for it, and extending it.

You will need this prac sheet and your text book. Copies of the prac sheet and of the Parva report are also
available at http://www.cs.ru.ac.za/CSc301/Translators/trans.htm.

Outcomes:

When you have completed this practical you should understand

¢ the opcode set for the Parva Virtual Machine (PVM);

® how to write and debug machine level code for the PVM;

® how to extend the PVM to incorporate new opcodes;

¢ why and how interpretive systems are slower than native code systems.

To hand in:

This week you are required to hand in, besides the cover sheet:

e Listings of the final version of the emulator system you produce (Task 9), and your solutions to the
programming exercises in Tasks 2 (Parva), 4 (PVM file) and 8 (PVM file). (LPRINT or UltraEdit small font
format please.)

¢ Electronic copies of your source code for those exercises, using the electronic submission system.

* Discussion of the experiments in Task 10.

Keep the prac sheet and your solutions until the end of the semester. Check carefully that your mark has
been entered into the Departmental Records.

You are referred to the rules for practical submission which are clearly stated in our Departmental
Handbook. However, for this course pracs must be posted in the "hand-in" box outside the laboratory and
not given to demonstrators.

A rule not stated there, but which should be obvious, is that you are not allowed to hand in another group's or
student's work as your own. Attempts to do this will result in (at best) a mark of zero and (at worst) severe
disciplinary action and the loss of your DP. You are allowed - even encouraged - to work and study with other
students, but if you do this you are asked to acknowledge that you have done so. You are expected to be familiar
with the University Policy on Plagiarism, which you can consult at:

http://www.scifac.ru.ac.za/plag.htm

Task 1 - creating a working directory and unpacking the prac kit
There are several files that you need, zipped up this week in the file PRAC20.ZIP.

e Immediately after logging on, get to the DOS command line level by using the Start -> Command
prompt option from the tool bar.

e Copy the prac kit into a newly created directory/folder in your file space

md prac20

cd prac20

copy 1i:\csc301l\trans\prac20.zip
unzip prac20.zip

This will create several other directories "below" the prac20 directory:

J:\prac20
J:\prac20\Assem
J:\prac20\Library

containing the Java classes for the I/O Library, and the Java sources for an assembler/interpreter system
equivalent to the C# one described in Chapter 4. The differences between C# and Java are very minimal and it
is hoped that you will have no problems in this regard.

e UltraEdit is probably your editor of choice. The version in the lab is configured to run various of the
compilers easily, and it is possible to tweak it to run others in the same sort of way. 7To get this to work
properly, start UltraEdit from a command window by giving the command UEDIT32, rather than by clicking
on the icon on the desktop.

¢ Although it is recommended that you program in Java for these practicals, a version of the prac kit is available
(prac20c.zip) with C# versions of this source code for people who might want to experiment with that
instead. It all works in much the same way.

Task 2
Start off by considering the following gem of a Parva program (PALIN. PAV)

void main () {

// Read a sequence of numbers and report whether they form a palindromic
// sequence (one that reads the same from either end)

/] Examples: 123 4321 is palindromic

/] 1234432 is non-palindromic

// P.D. Terry, Rhodes University, 2008

int
n, // number of items
low, high, // indices of items to be compared
item; /] latest item read
bool
isPalindrome; // Boolean flag
int [1 list = new int [100]; // the Llist of items

n=0;

read(item);

while (item I= 0) {
listlnl = item;
n=n+1;
read(item);

X
isPalindrome = true; /] optimist
low = 0; high = n - 1; // initial indices
while (low < n - 1) { // sweep through the List
if (listClowl != LlistLChighl)
isPalindrome = false; // bad luck
low = low + 1; high = high - 1; // adjust indices
X

if (isPalindrome) write("Palindromic sequence");
else write("Non-palindromic sequence");

Computer Science 301 - 2008 - Practical 20 2

You can compile this (PARVA PALIN.PAV) at your leisure to make quite sure that you understand how it works.

If you are observant you will note that this program has an "else" to the "if". The Parva compiler this week is not
the same as last week - it only allows a single main function, but it includes "else" and the modulo " %" operator.

You will observe that it is not very efficient - it makes more comparisons than are needed to establish whether the
sequence is palindromic. So see whether you can improve it. Of course you can! See how much better you can
make it.

---- The modified PALIN.PAYV file must be submitted for assessment.

Task 3

In the directory prac20\Assem you will find Java files that give you a minimal assembler and emulator for the
PVM stack machine (described in Chapter 4.7). The files have the names

PVMAsm. java a simple assembler
PVM.java an interpreter/emulator very close to the one on page 63
Assem.java a driver program

You can compile and make this assembler/interpreter system by issuing the batch command
MAKEASM

It takes as input a "code file" in the sort of format shown in the examples in section 4.5. There are three very
simple example programs in the kit, so make up the minimal assembler/interpreter and try to run them with the
ASM batch command:

ASM hello.pvm
ASM 1lsmall.pvm
ASM divzero.pvm

Wow! Isn't Science wonderful? Try the interpretation with and without the trace option, and familiarize yourself
with the trace output and how it helps you understand the action of the virtual machine.

Task 4 - Coding the hard way

Time to do a little more creative work. Task 4 is to produce an equivalent program to the improved palindrome
checker you should have produced in Task 2. In other words, "hand compile" the Parva algorithm directly into
the PVM machine language. You may find this a bit of a challenge, but it really is not too hard, just a little
tedious, perhaps. Remember to include comments - especially the one with your name(s).

Health warning: if you get the logic of your program badly wrong, it may load happily, but then go beserk when
you try to interpret it. You may discover that the interpreter is not so "user friendly" as all the encouraging
remarks in the book might have led you to believe interpreters all to be. Later we shall improve it quite a bit. (Of
course, if your machine-code programs are correct you won't need to do so. As it has been said: "Any fool can
write a translator for source programs that are 100% correct”.)

The most tedious part of coding directly in PVM code is computing the destination addresses of the various
branch instructions. As a side effect of assembly, the ASM system writes a new file with a .COD extension
showing what has been assembled and where in memory it has been stored. Study of this code will often give you
a good idea of what the targets of branch instructions should be.

---- The PALIN.PVM file must be submitted for assessment.
Task 5 - Trapping overflow
Several of the remaining tasks in this prac require you to examine the machine emulator to learn how it really

works, and to extend it to improve some opcodes and to add others.

Computer Science 301 - 2008 - Practical 20 3

In the prac kit you will discover two programs deliberately designed to cause chaos. DIVZERO.PVM bravely
tries to divide by zero, and MULTBIG. PVM embarks on a continued multiplication that soon goes out of range.
Try assembling and interpreting them to watch disaster happen.

Now we can surely do better than that! Modify the interpreter (PVM. java) so that it will anticipate division by
zero or multiplicative overflow, and change the program status accordingly, so that users will be told the errors of
their ways and not left wondering what has happened.

You will have to be subtle about this - you have to detect that overflow is going to occur before things "go
wrong", and you must be able to detect it for negative as well as positive overflow conditions.

Hint: After you edit any of the source code for the assembler you will have to issue the MAKEASM command to
recompile it, of course. It's easy to forget to do this and then wonder why nothing seems to have changed.

Task 6 - Your lecturer is quite a character

If the PVM could only handle characters as well as integers and Booleans, we could write a much better
palindrome checker that would work on words like "ANNA" or "GLENELG" or "MADAM". Something like
this, if only the Parva compiler were extended to support it: (Later in the course, perhaps?)

void main () {
// Read a sequence of characters terminated by a period and report whether
/] they form a palindrome (one that reads the same from either end)
/| Examples: madam. is palindromic
Pat Terry. is non-palindromic
// P.D. Terry, Rhodes University, 2008

int
n, // number of characters
low, high; // indices of characters to be compared
char
ch; /] latest character read
bool
isPalindrome; // Boolean flag
char []
str = new char [100]; // the string to be checked
n = 0;
read(ch);
while (ch != '.") {
strCn]l = ch;
n=n+1;
read(ch);
X
isPalindrome = true; /] optimist
low = 0; high = n - 1; // initial indices
while (low < n - 1) { /| sweep through the string
if (strLlowl != strChighl)
isPalindrome = false; // bad luck

low = Llow + 1; high = high - 1; // adjust indices
b
if (isPalindrome) write("Palindromic string");
else write("Non-palindromic string");
b

Not a problem for the assembler system. All we need to do is add appropriate opcodes to our virtual machine -
for example, INPC for reading a character and PRNC for writing a character - to open up exciting possibilities.

Hint: Adding "instructions” to the pseudo-machine is easy enough, but you must be careful to make sure you
modify all the parts of the system that need to be modified. Before you begin, study the code in the definition of
the stack machine carefully to see where and how the opcodes are defined, how they are mapped to the
mnemonics, and in which switch/case statements they are used.

Task 7 - Even better palindromes
Palindrome analysis of a sentence - that is, a sequence of characters terminated by a period - is usually extended to

ignore the case of the letters and to ignore spaces and other punctuation too. Examples of such palindromic
sentences are

Computer Science 301 - 2008 - Practical 20 4

The famous scoring phrase in the Garden of Eden: "Madam, I'm Adam"
The deep religious/philosophical question: "Do Geese see God"

The plaintive cry of the midsummer owl: "Too hot to hoot"

An enginering slogan: "A man, a plan, a canal - Panama"

The scornful response of my brother in the old CTM adverts: "Bob, Bob"

Now if Parva were less of a toy we might try to handle these sort of sentences like this:

void main () {

// Read a sequence of characters terminated by a period and report whether
// they form a palindrome (one that reads the same from either end)

// ignoring non-alphanumeric chars

// Examples: too hot to hoot. is palindromic
// Peter Terry. is non-palindromic
/] Bob, Bob. but he used to advertise tiles that way
// P.D. Terry, Rhodes University, 2008
int
n, // number of characters
low, high; // indices of characters to be compared
char
ch; /| latest character read
boo L
isPalindrome; // Boolean flag
char [1
str = new char [100]; /] the string to be checked
n = 0;
read(ch);
while (ch != '.') {

ch = toUppercCase(ch);
if (isLetterorDigit(ch)) {
strCn]l = ch;

n++;
b
read(ch);
X
isPalindrome = true; /] optimist
low = 0; high = n - 1; // initial indices
while (low < n - 1) { /| sweep through the string
if (strClowl != strChighl)
isPalindrome = false; // bad luck
low++; high--; // adjust indices

b
if (isPalindrome) write("Palindromic string");
else write("Non-palindromic string");

b

This uses methods for converting characters to uppercase and determining whether a character is alphanumeric -
methods which are easily added to the machine by introducing special opcodes. It also uses the infamous ++ and
-- operators, which can be handled by special opcodes that take less space (and should take less time to execute)
than the tedious sequences needed for code corresponding directly ton = n + 1.

Extend the machine and the assembler still further with opcodes CAP, ISLD, INC and DEC, and modify your
palindrome program to use them.

Hint: Be careful. Think ahead! Don't limit your INC and DEC opcodes to cases where they can handle only
statements like X++. In some programs you might want to have statements like List [N+6] ++.
Task 8 - Improving the opcode set still further

Section 4.10.2 of the text discusses the improvements that can be made to the system by using load and store
opcodes like LD, N and STL N.

Once again, these are almost trivially easy to add to the system. Do so, and fine tune the palindrome program
still further.

---- The final PALIN.PVM file must be submitted for assessment.

Computer Science 301 - 2008 - Practical 20 5

Task 9 - Safety first

We have already implied in Task 5 that interpreter systems should trap errors sensibly. In this task you are
invited to make further modifications to the interpreter, but first make a copy of the one produced so far, as it
will be needed again in Task 10.

You should have noticed that interpreting many of the opcodes involves a call to the auxiliary routines Push ()
and Pop (). Consider what would happen if calls to Push () and Pop () did not balance - for example if one
were to assemble incorrect code like

LDA 1
STO

for which the interpreter would make only one call to Push () but two calls to Pop (), so that the stack would be
corrupted, and chaos would ensue sooner or later. This sort of mess can be detected at runtime without too much
trouble. Refer to Figure 4.3 (page 32), when it should be clear that cpu.pc should remain confined to the range
0 ... HeapBase while cpu.sp should essentially remain confined to the range cpu.hp ... cpu.fp.
Create a modified interpreter that incorporates these range checks. Chaos would also ensue if one tried to access
an array element "out of range". This is discussed on pages 43 to 44; incorporate these checks into your
interpreter.

Hint: You will have to think carefully about how to do this neatly. Avoid the urge to hack, or to cut and paste.
Aim for elegance!

--- A listing of the final version of the assembler/interpreter must be submitted for assessment.

Task 10 - How do our systems perform?

In the kit you will find two versions of the infamous Sieve program written in PVM code. S1.pvm uses the
original opcode set; S2.pvm uses the extended opcodes suggested in Task 8.

Run both versions through your two systems and obtain timings for a suitable upper limit (say 1000) and number
of iterations (say 2000) for the combinations:

Original opcodes + interpreter with no bounds checks
Original opcodes + interpreter with the bounds checks of Task 9

Extended opcodes + interpreter with no bounds checks
Extended opcodes + interpreter with the bounds checks of Task 9

Comment on the results. Are they what you expect?

Interpreters are easy to develop, but this prac should show you that they are not necessarily very "efficient”. Can
you think of further ideas that could be used to improve the efficiency of the interpreter for the PVM still further?

Think carefully about all this. Please don't think you can write two lines of utter rubbish three minutes after you
were supposed to hand the prac in, and try to bluff me that you know what is going on!

Have fun, and good luck.

Computer Science 301 - 2008 - Practical 20 6

