
Computer Science 3 - 2008

Programming Language Translation

Practical for Week 20, beginning 1 September 2008 - Solutions

There were some very good solutions submitted, and some very energetic ones too - clearly a lot of students had

put in many hours developing their code. This is very encouraging. Do learn to put your names into the

introductory comments of programs that you write.

Full source for the solutions summarized here can be found in the ZIP file on the Web page - PRAC20A.ZIP

(Java) and PRAC20AC.ZIP (C#).

Task 2

Most people had seen at least one improvement that could be made to the palindrome checker to ensure that the

loop terminated as quickly as possible. Here are some suggestions (there are even more ways of course):

isPalindrome = true; // optimist
low = 0; high = n - 1; // initial indices
while (low < high) { // sweep through the list
if (list[low] != list[high])
isPalindrome = false; // bad luck

low = low + 1; high = high - 1; // adjust indices
}

isPalindrome = true; // optimist
low = 0; high = n - 1; // initial indices
while (low < high && isPalindrome) { // sweep through the list

if (list[low] != list[high])
isPalindrome = false; // bad luck

low = low + 1; high = high - 1; // adjust indices
}

isPalindrome = true; // optimist
bool checking = true; // start search
low = 0; high = n - 1; // initial indices
while (checking) { // sweep through the list

if (list[low] != list[high]) {
isPalindrome = false; // bad luck
checking = false; // no need to search further

}
low = low + 1; high = high - 1; // adjust indices
if (low >= high) checking = false // reached middle

}

isPalindrome = true; // optimist
low = 0; high = n - 1; // initial indices
while (low < high) { // sweep through the list
if (list[low] != list[high]) {
isPalindrome = false; // bad luck
low = high; // to abort the loop

}
low = low + 1; high = high - 1; // adjust indices

}

isPalindrome = true; // optimist
low = 0; mid = n/2; // initial indices
while (low < mid) { // sweep through the list

if (list[low] != list[n - 1 - low]) {
isPalindrome = false; // bad luck
low = mid; // to abort the loop

}
low = low + 1; // adjust indices

}

Task 4

Most people seemed to get to a solution, or close to a solution. Here is one that matches the original Parva

algorithm. Notice the style of commentary - designed to show the algorithm to good advantage, rather than being

a statement by statement comment at a machine level (which is what most people did). Some people changed the

original algorithm considerably, which was acceptable, but perhaps they missed out on the intrinsic simplicity of

the translation process.

; Read a sequence of numbers and report whether they form a palindromic
; sequence (one that reads the same from either end)
; Examples: 1 2 3 4 3 2 1 is palindromic
; 1 2 3 4 4 3 2 is non-palindromic
; P.D. Terry, Rhodes University, 2008
; Coded directly from Palin.pav without making the (obvious) improvements
; var n (0), low (1), high (2), item (3), isPalindrome (4), list (5)

0 DSP 6 70 LDV ;
2 LDA 5 ; 71 LDA 0 ;
4 LDC 100 ; 73 LDV ;
6 ANEW ; 74 LDC 1 ;
7 STO ; int[] list = new int[100]; 76 SUB ;
8 LDA 0 ; 77 CLT ;

10 LDC 0 ; 78 BZE 124 ; while (low < n - 1) {
12 STO ; n = 0; 80 LDA 5 ;
13 LDA 3 ; 82 LDV ;
15 INPI ; read(item); 83 LDA 1 ;
16 LDA 3 ; 85 LDV ;
18 LDV ; 86 LDXA ;
19 LDC 0 ; 87 LDV ;
21 CNE ; 88 LDA 5 ;
22 BZE 49 ; while (item != 0) { 90 LDV ;
24 LDA 5 ; 91 LDA 2 ;
26 LDV ; 93 LDV ;
27 LDA 0 ; 94 LDXA ;
29 LDV ; 95 LDV ;
30 LDXA ; 96 CNE ;
31 LDA 3 ; 97 BZE 104 ; if (list[low] != list[high]) {
33 LDV ; 99 LDA 4 ;
34 STO ; list[n] = item; 101 LDC 0 ;
35 LDA 0 ; 103 STO ; isPalindrome = false;
37 LDA 0 ; 104 LDA 1 ; }
39 LDV ; 106 LDA 1 ;
40 LDC 1 ; 108 LDV ;
42 ADD ; 109 LDC 1 ;
43 STO ; n = n + 1; 111 ADD ;
44 LDA 3 ; 112 STO ; low = low + 1;
46 INPI ; read(item); 113 LDA 2 ;
47 BRN 16 ; } // while 115 LDA 2 ;
49 LDA 4 ; 117 LDV ;
51 LDC 1 ; 118 LDC 1 ;
53 STO ; isPalindrome = true; 120 SUB ;
54 LDA 1 ; 121 STO ; high = high - 1;
56 LDC 0 ; 122 BRN 68 ; } // while
58 STO ; low = 0; 124 LDA 4 ;
59 LDA 2 ; 126 LDV ;
61 LDA 0 ; 127 BZE 133 ; if (isPalindrome)
63 LDV ; 129 PRNS "Palindromic sequence"
64 LDC 1 ; 131 BRN 135 ; else
66 SUB ; 133 PRNS "Non-palindromic sequence"
67 STO ; high = n - 1; 135 HALT ; exit
68 LDA 1 ;

Task 5 - Checking overflow

Checking for overflow in multiplication and division was not well done. You cannot multiply and then try to

check overflow (it is too late by then) - you have to detect it in a more subtle way. Here is one way of doing it -

note the check to prevent a division by zero if one of the factors is zero!. This does not use any precision greater

than that of the simulated machine itself. I don't think anybody spotted that the PVM.rem opcode also involved

division, and many people who thought of using a multiplication overflow check on these lines forgot that

numbers to be multiplied can be negative as well as positive. This code should not generate an error message

either, as many people did. Leave the error reporting to the postmortem routine.

case PVM.mul: // integer multiplication
tos = pop(); sos = pop();
if (tos != 0 && Math.abs(sos) > maxInt / Math.abs(tos)) ps = badVal;
else push(sos * tos);
break;

case PVM.div: // integer division (quotient)
tos = pop();
if (tos == 0) ps = divZero; else push(pop() / tos);
break;

case PVM.rem: // integer division (remainder)
tos = pop();
if (tos == 0) ps = divZero; else push(pop() % tos);
break;

Computer Science 301 - 2008 - Practical 20 solutions 2

Some students used an intermediate long variable (most of them forgot that they should use the abs function as

well!)

Task 6 - Your lecturer is quite a character

Reading and writing characters was trivially easy, being essentially a simple variation on the cases for numeric

input and output. However, the output of numbers was arrranged to have a leading space; this is not as pretty

when you see i t a p p l i e d t o c h a r a c t e r s , i s i t - which is why the call to results.write uses a

second argument of 1, not 0 (this argument could have been omitted). Note the use of the modulo arithmetic to

ensure that only sensible ASCII characters will be printed:

case PVM.inpc: // character input
mem[pop()] = data.readChar();
break;

case PVM.prnc: // character output
if (tracing) results.write(padding);
results.write((char) (Math.abs(pop()) % (maxChar + 1)), 1);
if (tracing) results.writeLine();
break;

With the aid of the PVM.inpc opcode the input section of palin.pvm changes to that shown below - note that

we have to use the magic number 46 in the comparison (the code for "period" in ASCII):

13 LDA 3 ;
15 INPC ; read(item);
16 LDA 3 ;
18 LDV ;
19 LDC 46 ; // '.'
21 CNE ;
22 BZE 49 ; while (item != '.') {

Task 7 - Even better palindromes

Extending the machine and the assembler still further with opcodes CAP, ISLD, INC and DEC was also

straightforward. However, many people had not considered the hint that one should not limit the INC and DEC

opcodes to cases where they can handle only statements like X++. In some programs you might want to have

statements like List[N+6]++.

Hence, the opcodes for the equivalent of a ++ or -- operation produced interesting answers. There are clearly two

approaches that could be used: either increment the value at the top of the stack, or increment the variable whose

address is at the top of the stack. I suspect the latter is more useful if you are to have but one of these (one could,

of course, provide both versions of the opcodes, as one goup did). Here is my suggestion:

case PVM.cap: // toUpperCase
push(Character.toUpperCase((char) pop()));
break;

case PVM.isld: // isLetterOrDigit
tos = pop();
push(Character.isLetterOrDigit((char) tos) ? 1 : 0);
break;

case PVM.inc: // ++
mem[pop()]++;
break;

case PVM.dec: // --
mem[pop()]--;
break;

Task 8 - Improving the opcode set still further

Once again, adding the LDL N and STL N opcodes is very easy. This required changes to be made to the

assembler in PVMAsm.java as well as to the interpreter, which clearly confused several people considerably!

case PVM.ldl: // push local value
push(mem[cpu.fp - 1 - next()]);
break;

case PVM.stl: // store local value
mem[cpu.fp - 1 - next()] = pop();
break;

Computer Science 301 - 2008 - Practical 20 solutions 3

Some people forgot to introduce the LDL and STL wherever they could, but if one codes carefully the palindrome

checker reduces to the code shown below:

; Read a sequence of characters and report whether they form a palindromic
; sentence (one that reads the same from either end) ignoring case and non letters
; and terminating sentence with a period (ASCII 46)
; Examples: Madam I'm Adam. is palindromic
; Pat Terry. is non-palindromic
; This version uses the optimized opcode set for a PVM
; P.D. Terry, Rhodes University, 2008
; var n (0), low (1), high (2), item (3), isPalindrome (4), str (5)

0 DSP 6 ; 57 LDC 1 ;
2 LDC 100 ; 59 SUB ;
4 ANEW ; 60 STL 2 ; high = n - 1;
5 STL 5 ; char[] str = new char [100]; 62 LDL 1 ;
7 LDC 0 ; 64 LDL 0 ;
9 STL 0 ; n = 0; 66 LDC 1 ;
11 LDA 3 ; 68 SUB ;
13 INPC ; read(item); 69 CLT ;
14 LDL 3 ; 70 BZE 99 ; while (low < n - 1) {
16 LDC 46 ; 72 LDL 5 ;
18 CNE ; 74 LDL 1 ;
19 BZE 47 ; while (item != '.') { 76 LDXA ;
21 LDL 3 ; 77 LDV ;
23 CAP ; 78 LDL 5 ;
24 STL 3 ; item = toUpperCase(item); 80 LDL 2 ;
26 LDL 3 ; 82 LDXA ;
28 ISLD ; 83 LDV ;
29 BZE 42 ; if (isLetterOrDigit(item)) { 84 CNE ; if (str[low] != str[high])
31 LDL 5 ; 85 BZE 91 ;
33 LDL 0 ; 87 LDC 0 ;
35 LDXA ; 89 STL 4 ; isPalindrome = false;
36 LDL 3 ; 91 LDA 1 ;
38 STO ; str[n] = item; 93 INC ; low++;
39 LDA 0 ; 94 LDA 2 ;
41 INC ; n++; 96 DEC ; high--;
42 LDA 3 ; } 97 BRN 62 ; }
44 INPC ; read(item); 99 LDL 4 ;
45 BRN 14 ; } 101 BZE 107 ; if (isPalindrome)
47 LDC 1 ; 103 PRNS "Palindromic string"
49 STL 4 ; isPalindrome = true; 105 BRN 109 ; else
51 LDC 0 ; 107 PRNS "Non-palindromic string"
53 STL 1 ; low = 0; 109 HALT ; exit
55 LDL 0 ;

Task 9 - Safety first

In this task you were invited to make further modifications to the interpreter to make it "safer". This part of the

practical was not well done, however, and few groups had thought through how to trap all the disasters that might

occur if very badly incorrect code found its way to the interpreter stage.

Several groups did follow the basic advice given. Noting that many of the opcodes involve calls to the auxiliary

routines push() and pop(), it makes sense to do some checking there:

static void push(int value) {
// Bumps stack pointer and pushes value onto stack

mem[--cpu.sp] = value;
if (cpu.sp < cpu.hp) ps = badMem;

}

static int pop() {
// Pops and returns top value on stack and bumps stack pointer
if (cpu.sp == cpu.fp) ps = badMem;
return mem[cpu.sp++];

}

Note that the system should not call on something like System.out.println("error message") when

errors are detected, but should simply change the status flag ps to an appopriate value that will ensure that the

fetch-execute cycle will stop immediately thereafter and invoke the postMortem method to clean up the mess.

Many people had missed this point.

However, there are many other places where checking could and should be attempted. For example, the cpu.pc

register might get badly corrupted. This can be checked at the start of the fetch-execute cycle as follows:

Computer Science 301 - 2008 - Practical 20 solutions 4

do {
pcNow = cpu.pc; // retain for tracing/postmortem
if (cpu.pc < 0 || cpu.pc >= codeLen) {
ps = badAdr;
break;

}
cpu.ir = next(); // fetch
...

It would be just as well to protect the BRN and BZE opcodes as well:

case PVM.brn: // unconditional branch
cpu.pc = next();
if (cpu.pc < 0 || cpu.pc >= codeLen) ps = badAdr;
break;

case PVM.bze: // pop top of stack, branch if false
int target = next();
if (pop() == 0) {
cpu.pc = target;
if (cpu.pc < 0 || cpu.pc >= codeLen) ps = badAdr;

}
break;

There are many places where intermediate addresses are computed that really need to be checked. Several groups

had read up in the text (or looked at solutions from previous years!) and introduced a further checking function on

the lines of:

static boolean inBounds(int p) {
// Check that memory pointer p does not go out of bounds. This should not
// happen with correct code, but it is just as well to check

if (p < heapBase || p > memSize) ps = badMem;
return (ps == running);

}

which can and should be invoked in situations like the following:

case PVM.dsp: // decrement stack pointer (allocate space for variables)
int localSpace = next();
cpu.sp -= localSpace;
if (inBounds(cpu.sp)) // initialize
for (loop = 0; loop < localSpace; loop++)
mem[cpu.sp + loop] = 0;

break;
case PVM.lda: // push local address

adr = cpu.fp - 1 - next();
if (inBounds(adr)) push(adr);
break;

case PVM.ldl: // push local value
adr = cpu.fp - 1 - next();
if (inBounds(adr)) push(mem[adr]);
break;

case PVM.stl: // store local value
adr = cpu.fp - 1 - next();
if (inBounds(adr)) mem[adr] = pop();
break;

case PVM.inc: // ++
adr = pop();
if (inBounds(adr)) mem[adr]++;
break;

Several people had incorporated the refinements in the text for protecting the ANEW and LDXA opcodes:

case PVM.anew: // heap array allocation
int size = pop();
if (size <= 0 || size + 1 > cpu.sp - cpu.hp - 2)
ps = badAll;

else {
mem[cpu.hp] = size;
push(cpu.hp);
cpu.hp += size + 1;

}
break;

Computer Science 301 - 2008 - Practical 20 solutions 5

case PVM.ldxa: // heap array indexing
adr = pop();
int heapPtr = pop();
if (heapPtr == 0) ps = nullRef;
else if (heapPtr < heapBase || heapPtr >= cpu.hp) ps = badMem;
else if (adr < 0 || adr >= mem[heapPtr]) ps = badInd;
else push(heapPtr + adr + 1);
break;

Few, if any, thought to check that input operations might succeed or had succeeded:

case PVM.inpi: // integer input
adr = pop();
if (inBounds(adr)) {
mem[adr] = data.readInt();
if (data.error()) ps = badData;

}
break;

For completeness we should check the PRNS opcode (the terminating NUL character had might have been omitted

by a faulty assembler):

case PVM.prns: // string output
if (tracing) results.write(padding);
loop = next();
while (ps == running && mem[loop] != 0) {
results.write((char) mem[loop]); loop--;
if (loop < stackBase) ps = badMem;

}
if (tracing) results.writeLine();
break;

Task 10 - How do our systems perform?

In the kit you were given two versions of the infamous Sieve program written in PVM code. S1.pvm used the

original opcode set; S2.pvm used the extended opcodes suggested in Task 8.

There were some intriguing claims made, several of which lead me to suspect their authors clearly think I am

naive. If your interpreters were incorrect, or you had interpreted the INC and DEC opcodes in some other way, I

doubt whether S2.PVM would have given you any meaningful results.

The timings I obtained on my 1.4GHz laptop for an upper limit of 1000 in the sieve and 2000 iterations were as

follows:

Java C#

Original opcodes + interpreter with no bounds checks 10.30 10.60
Original opcodes + interpreter with the bounds checks of Task 9 15.57 13.04

Extended opcodes + interpreter with no bounds checks 9.47 7.07
Extended opcodes + interpreter with the bounds checks of Task 9 12.80 8.69

Although the Java and C# systems use effectively exactly the same source code for each, it is interesting to see

that the ratios of these times are not the same. They all show a reasonable speedup when the extended opcode set

is used (more for the C# versions than for the Java ones) but a considerable slow down when the error checks are

introduced.

Computer Science 301 - 2008 - Practical 20 solutions 6

