
Computer Science 3 - 2008

Programming Language Translation

Practical for Week 21, beginning 15 September 2008

Hand in your solutions to this practical before lunch time on your next practical day, correctly packaged in a

transparent folder with your cover sheets. Please do NOT come to a practical and spend the first hour printing or

completing solutions from the previous week's exercises. Since the practical will have been done on a group

basis, please hand in one copy of the cover sheet for each member of the group. These will be returned to you in

due course, signed by the marker. Please make it clear whose folder you have used for the electronic

submission, for example g03A1234. Lastly, please resist the temptation to carve up the practical, with each

group member only doing one task. The group experience is best when you discuss each task together.

Objectives:

In this practical you are to

• familiarize you with simple applications of the Coco/R parser generator, and

• write grammars that describe simple language features.

You will need this prac sheet and your text book. As usual, copies of the prac sheet are also available at

http://www.cs.ru.ac.za/CSc301/Translators/trans.htm.

Outcomes:

When you have completed this practical you should understand

• how to develop context-free grammars for describing the syntax of various languages and language features;

• the form of a Cocol description;

• how to check a grammar with Coco/R and how to compile simple parsers generated from a formal grammar

description.

To hand in:

This week you are required to hand in, besides the cover sheet:

• Listings of your solutions to the grammar problems, produced on the laser printer by using the LPRINT utility

or UltraEdit in a small Courier font. Some of these listings will get quite "wide" so please set them out nicely.

• Electronic copies of your grammar files (ATG files).

I do NOT require listings of any Java code produced by Coco/R.

Keep the prac sheet and your solutions until the end of the semester. Check carefully that your mark has

been entered into the Departmental Records.

You are referred to the rules for practical submission which are clearly stated in our

Departmental Handbook. However, for this course pracs must be posted in the "hand-in" box outside the

laboratory and not given to demonstrators.

A rule not stated there, but which should be obvious, is that you are not allowed to hand in another group's or

student's work as your own. Attempts to do this will result in (at best) a mark of zero and (at worst) severe

disciplinary action and the loss of your DP. You are allowed - even encouraged - to work and study with other

students, but if you do this you are asked to acknowledge that you have done so. You are expected to be familiar

with the University Policy on Plagiarism, which you can consult at:

http://www.scifac.ru.ac.za/plag.htm

Task 1 - creating a working directory and unpacking the prac kit

There are several files that you need, zipped up this week in the file PRAC21.ZIP (Java version) or

PRAC21C.ZIP (C# version)

• Immediately after logging on, get to the command line level by using the Start -> All Programs ->
Accessories -> Command prompt option from the tool bar.

• Copy the prac kit into a newly created directory/folder in your file space

j:
md prac21
cd prac21
copy i:\csc301\trans\prac21.zip
unzip prac21.zip

You will find the executable version of Coco/R and batch files for running it, frame files, and various sample

programs and grammars, contained in files with extensions like

*.ATG, *.PAV, *.TXT *.BAD

• UltraEdit is probably your editor of choice. The version in the lab is configured to run various of the

compilers easily, and has been tweaked to run Coco/R in much the same sort of way (see below). To get this

to work properly, start UltraEdit from a command window by giving the command UEDIT32, rather than by

clicking on an icon on the desktop.

Task 2 - Simple use of Coco/R - a quick task

In the kit you will find Calc.atg. This is essentially the calculator grammar on page 106 of the text, with a

slight (cosmetic) change of name.

Use Coco/R to generate a parser for data for this calculator. You do this most simply by giving the command

cmake Calc

The primary name of the file (Calc) is case sensitive. Note that the .ATG extension is needed, but not given in

the command. Used like this, Coco/R will simply generate three important components of a calculator program -

the parser, scanner, and main driver program. Cocol specifications can be programmed to generate a complete

calculator too (ie one that will evaluate the expressions, rather than simply check them for syntactic correctness),

but that will have to wait for the early hours of another day.

(Wow! Have you ever written a program so fast in your life before?)

Of course, having Coco/R write you a program is one thing. But it might also be fun and interesting to run the

program and see that it works.

A command like

crun Calc calc.txt

will run the program Calc and try to parse the file calc.txt, sending error messages to the screen. Giving the

command in the form

crun Calc calc.bad -L

will send an error listing to the file listing.txt, which might be more convenient. Try this out.

Well, you did all that. Well done. What next?

For some light relief and interest you might like to look at the code the system generated for you (three .java

Computer Science 301 - 2008 - Practical 21 2

files are created in a subdirectory Calc) - you don't have to comment this week, simply gaze in awe. Don't take

too long over this, because now you have the chance to be more creative.

That's right - we have not finished yet. Modify the grammar so that you can use parentheses in your expressions,

can raise quantities to a "power" (as in 12↑2 + 5↑6, meaning 122 + 56) and also give the calculator a

square-root capability (as in 4 + sqrt(5 * 12)).

Of course, the application does not have any real "calculator" capability - it cannot calculate anything (yet). It

only has the ability to recognise or reject expressions at this stage. Try it out with some expressions that use the

new features, and some that use them incorrectly.

Warning. Language design and grammar design is easy to get wrong. Think hard about these problems before

you begin, and while you are doing them.

Task 3 - One for the Musicians in our Midst (but the rest of you should do it too)

After such a musical introduction to this section of the course you will be intrigued to learn that Scottish pipe

bands often compete at events called Highland Gatherings where three forms of competition are traditionally

mounted. There is the so-called "Slow into Quick March" competition, in which each band plays a single Slow

March followed by a single Quick March. There is the so-called "March, Strathspey and Reel" competition,

where each band plays a single Quick March, followed by a single Strathspey, and then by a single Reel; this set

may optionally be followed by a further Quick March. And there is also the "Medley", in which a band plays a

selection of tunes in almost any order. Each tune falls into one of the categories of March, Strathspey, Reel, Slow

March, Jig and Hornpipe but, by tradition, a group of one or more Strathspeys within such a medley is always

followed by a group of one or more Reels.

Develop a grammar to describe the activity at a Highland Gathering at which a number of competitions are held,

and in each of which at least one band performs. Competitions are held in one category at a time, with a short

break between competitors, and between events, and with a suitable announcement being made to introduce the

category of competition and the name of each band to the audience. Regard concepts like "March", "Reel",

"AnnounceCompetition", "break" and so on as terminals - in fact there are many different possible tunes of each

sort, of course, but you may have to be a piper to distinguish one tune from another.

Task 4 - Describing a set of EBNF productions in another way

The file EBNF.ATG contains a Cocol grammar that describes EBNF using EBNF conventions, which might be

familiar from lectures. Try this out "as is" to begin with, for example:

cmake EBNF
crun EBNF EBNF.TXT
crun EBNF EBNF.BAD -L

Next, use the grammar as a guide to develop a new system that will recognise or reject a set of productions like

those in EBNF.TXT, but with your Cocol grammar written in such a way that it does not itself use any of the

Wirth "meta brackets". As a hint, you will have to set up an equivalent grammar, using right-recursive

production rules.

Task 5 - So what if Parva is so restrictive - fix it!

Parva really is a horrid little language, isn't it? But its simplicity means that it is easy to devise Terry Torture on

the lines of "extend it".

In the prac kit you will find the grammar for the first level of Parva, taken from page 164. Generate a program

from this that will recognise or reject simple Parva programs, and verify that the program behaves correctly with

two of the sample programs in the kit, namely VOTER.PAV and VOTER.BAD.

cmake Parva
crun Parva voter.pav
crun Parva voter.bad -L

Computer Science 301 - 2008 - Practical 21 3

Now modify the grammar to add various features. Specifically, add (and check that the additions work):

• The % operator

• A repeat-until loop

• Increment and decrement statements like Curse++; --Temper; and Bug[N]--;

• A for loop that can execute a loop body for a range of values of a control variable

• A restriction that a number cannot start with the digit 0 (unless the number is simply 0)

• A restriction that an identifier cannot end with an underscore

• Optional elsif and else clauses for the if statement.

• A relational operator in that can test for membership of a list of values

• Multiple assignments within one statement as in Python

Here are some examples of code that should give you some ideas.

void main () {
// Demonstrate various statements, including switch
int age;
boolean beenKissed;
read("How old are you, and have you been kissed? ", age, beenKissed);
if (age == 16) {
write("sweet sixteen");
if (! beenKissed) write(" and never been kissed");

}
elsif (age == 21) {
write("party time!");
int beers = 20, headache = 0, strain = 0;
while (beers > 0) {
beers--; strain++; ++headache;
if (beers % 8 == 0) strain = 0;

}
}
elsif ((age > 21) && (age < 40)) write("over the hill, bru");
elsif (age in (4 * 10, 50 .. 60, 70))
write("take a new lover");

else
write("boring");

}

void main () {
// Demonstrate syntax for various loops and conditionals
// (not supposed to do anything useful!)

int i = 1, k = 0;
while (i < 10) {
repeat
k = k + 1;
write(k);

until (k > i);
i, k = i + 1, 0;

}
for i in (1, 2, 3, 5, 7, 11, 13)
write (i, " is a prime number");

}

These little programs are in the kit (test*.pav), and you can easily write some more of your own.

Note: Read that phrase again: "that should give you some ideas". And again. And again. Don't just rush in and

write a grammar that will recognise only some restricted forms of statement. Think hard about what sorts of

things you can see there, and think hard about how you could make your grammar fairly general.

Hint: All we require at this stage is the ability to describe these features. You do not have to try to give them

any semantic meaning or write code to allow you to use them in any way. In later pracs we might try to do that,

but please stick to what is asked for this time, and don't go being over ambitious.

Computer Science 301 - 2008 - Practical 21 4

Task 6 - Spoornet are looking for programmers

Derive a grammar to describe a list of trains. Trains fall into three categories - passenger trains, freight trains,

and mixed passenger and freight trains. A train may have one (or more) locomotives (or engines). Behind the

locomotive(s) in mixed and freight trains come one or more freight trucks. A freight train is terminated by a

guard's van; a mixed train on the other hand follows the freight trucks with one or more passenger coaches, the

last of which should be a so-called passenger brake van. A passenger train has no freight trucks, but only a

sequence of coaches and the passenger brake van behind the locomotive(s). Freight trucks come in various forms

- open trucks, fuel trucks, coal trucks, cattle trucks and cold trucks. In the interests of safety, try to build in a

regulation to the effect that fuel trucks may not be marshalled immediately behind the locomotives, or

immediately in front of a passenger coach.

Some sample trains may be found in the file TRAINS in the kit. See if you can generate a parser that will either

accept or reject these trains (or others like them).

Appendix: Practical considerations when using Coco/R

For ease of use with the Java file and directory naming conventions, please

• Do not use folder names (directory names) with spaces in them, such as "Prac 21"

• Use a fairly short name (say 5 characters) for your goal symbol (for example, Gram);

• Remember that this name must appear after COMPILER and after END in the grammar itself;

• Store the grammar in a file with the same short primary name and the extension .atg (for example

Gram.ATG).

• If required, store ancillary source code files in the subdirectory named Gram beneath your working directory.

(Nothing like this should be needed this week.)

Make sure that the grammar includes the "pragma" $CN. The COMPILER line of your grammar description

should thus always read something like

COMPILER Gram $CN

The laboratory installation of UltraEdit has been configured to link to Coco/R by using an option in the

"advanced" pull down menu. To apply Coco/R to the file in the "current window", invoke UltraEdit from your

working directory, for example

UEDIT32 Gram.atg

It is easy enough to configure a copy of UltraEdit you might have installed on your own computer to incorporate

the option to invoke Coco/R. Use the Advanced ->; Tool Configuration pull down, and set up an

option to read as in the example below

• The Command line should read cmake %n

• The Path line should read %p

• The Menu Item Name should be Coco

• Select the "Output to list box" option

• Tick the "Capture Output" option

• Remember to Insert the command into the menu

If the Coco/R generation process succeeds, the Java compiler is invoked automatically to try to compile the

application. If this does not succeed, a Java compiler error listing is redirected to the file ERRORS, where it can

be viewed easily by opening the file in UltraEdit.

Free standing use of Coco/R

You can run the Java version of Coco/R in free standing mode with a command like:

cmake Gram

Computer Science 301 - 2008 - Practical 21 5

Like that, error messages are a little cryptic. In the form

cmake Gram -options m

the system will produce you a listing of the grammar file and the associated error messages, if any, in the file

LISTING.TXT. If the Coco/R generation process succeeds the Java compiler is invoked automatically to try to

compile the application. If this does not succeed, a Java compiler error listing is redirected to the file ERRORS,
where it can be viewed easily by opening the file in UltraEdit.

Error checking

Error checking by Coco/R takes place in various stages. The first of these relates to simple syntactic errors - like

leaving off a period at the end of a production. These are usually easily fixed. The second stage consists of

ensuring that all non-terminals have been defined with right hand sides, that all non-terminals are "reachable",

that there are no cyclic productions, no useless productions, and in particular that the productions satisfy what are

known as LL(1) constraints. We shall discuss LL(1) constraints in class in the next week, and so for this

practical we shall simply hope that they do not become tiresome. The most common way of violating the LL(1)

constraints is to have alternatives for a nonterminal that start with the same piece of string. This means that a so-

called LL(1) parser (which is what Coco/R generates for you) cannot easily decide which alternative to take - and

in fact will run the risk of going badly astray. Here is an example of a rule that violates the LL(1) constraints:

assignment = variableName ":=" expression
| variableName index ":=" expression.

index = "[" subscript "]" .

Both alternatives for assignment start with a variableName. However, we can easily write production

rules that do not have this problem:

assignment = variableName [index] ":=" expression .
index = "[" subscript "]" .

A moment's thought will show that the various expression grammars that we have discussed in class - the left

recursive rules like

expression = term | expression "-" term .

also violate the LL(1) constraints, and so have to be recast as

expression = term { "-" term } .

to get around the problem.

For the moment, if you encounter LL(1) problems, please speak to the long suffering demonstrators, who will

hopefully be able to help you resolve all (or most) of them.

Computer Science 301 - 2008 - Practical 21 6

