
Computer Science 3 - 2008

Programming Language Translation

Practical for Week 24, beginning 6 October 2008 - solutions

As usual, the sources of full solutions for these problems may be found on the course web page as the file

PRAC24A.ZIP or PRAC24AC.ZIP.

While there were some splendid submissions, there were also some very weak ones, so please study the

suggestions below, as the ability to add attributes and actions to grammars is crucially important if you are to use

a tool like Coco.

Many people had not done as requested and provided specimen output, which at least would have given some

indication of how well their systems worked.

Tasks 3 and 4 - The Boolean calculator.

Most people had little difficulty with this. Most used two "parallel" arrays, one of the actual values for the

variables, and one to mark those that had not yet been assigned values.

Note that the solution below uses the Variable production to extract the index of the variable, not its name, and

the use of toUpperCase() ensures that the system ignores case completely. The IGNORECASE directive

applies only to key words.

import Library.*;
import java.util.*;

COMPILER Bool $CN
/* Boolean expression calculator Java version

P.D. Terry, Rhodes University, 2008 */

static boolean[] mem = new boolean[26];
static boolean[] defined = new boolean[26];

IGNORECASE

CHARACTERS
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .

TOKENS
variable = letter .

COMMENTS FROM "(*" TO "*)" NESTED
COMMENTS FROM "/*" TO "*/" NESTED

IGNORE CHR(0) .. CHR(31)

PRODUCTIONS
Bool (. int index = 0;

boolean value = false;
for (int i = 0; i < 26; i++) defined[i] = false; .)

= { (Variable<out index>
"=" Expression<out value> (. mem[index] = value;

defined[index] = true; .)
|
"print"
Expression<out value> (. IO.writeLine(value); .)

)
SYNC ";"

} EOF .

Variable<out int index>
= variable (. index = Character.toUpperCase(token.val.charAt(0)) - 'A'; .)
.

Expression<out boolean value> (. boolean termValue; .)
= Term<out value>
{ Or Term<out termValue> (. value = value || termValue; .)
} .

Term<out boolean value> (. boolean factValue; .)
= Factor<out value>
{ [And] Factor<out factValue> (. value = value && factValue; .)
} .

Factor<out boolean value> (. value = false; .)
= "NOT" Factor<out value> (. value = ! value; .)

| Primary<out value>
{ "'" (. value = ! value; .)
}

.

Primary<out boolean value> (. int index;
value = false; .)

= True (. value = true; .)
| False (. value = false; .)
| Variable<out index> (. if (!defined[index])

SemError("variable not defined");
value = mem[index]; .)

| "(" Expression<out value> ")"
.

True = "TRUE" | "1" .
False = "FALSE" | "0" .
And = "AND" | "&&" | "." .
Or = "OR" | "||" | "+" .

END Bool.

This has altered the grammar to demand that a semicolon follow each statement so that it can be used as a

synchronization point.

Task 5 - Playing with trains again

Some dreadfully complicated solutions were submitted. Try always to find an elegant solution. Here is one,

using a single static Boolean field to handle the safety problem:

import Library.*;

COMPILER Trains $CN
/* Grammar for railway trains with simple safety regulations

P.D. Terry, Rhodes University, 2008 */

static boolean
danger, hasFreight, safe;

static final int // type of train
passenger = 0,
freight = 1,
mixed = 2,
empty = 3;

static int type;

public static OutFile output;

IGNORECASE

COMMENTS FROM "(*" TO "*)" NESTED

IGNORE CHR(0) .. CHR(31)

PRODUCTIONS
Trains = { OneTrain } EOF .

OneTrain
= (. danger = false;

type = empty;
safe = true;
hasFreight = false; .)

LocoPart
[[GoodsPart (. hasFreight = true; .)
]
HumanPart

]
SYNC "." (. output.writeLine(" .");

switch(type) {
case passenger:

output.write("passenger train"); break;
case mixed:

output.write("mixed freight/passenger train"); break;
case freight:
output.write("freight train"); break;

case empty:
output.write("empty train"); break;

}

Computer Science 301 - 2008 - Practical 24 solutions 2

output.write(" - safety regulations ");
if (safe) output.writeLine("obeyed");
else output.writeLine("contravened");
output.writeLine(); .)

.

LocoPart
= "loco" (. output.write(" " + token.val); .)
{ "loco" (. output.write(" " + token.val); .)
} .

GoodsPart
= Truck (. if (danger) {

safe = false;
SemError("fuel truck may not follow loco");

} .)
{ Truck } .

HumanPart
= "guard" (. output.write(" " + token.val);

type = freight; .)
| (. if (danger) {

safe = false;
SemError("fuel truck may not precede coach");

} .)
{ "coach" (. output.write(" " + token.val); .)
} "brake" (. output.write(" " + token.val);

if (hasFreight) type = mixed;
else type = passenger; .)

.

Truck
= (("coal" | "cold"

| "open" | "cattle") (. danger = false; .)
| "fuel" (. danger = true; .)

) (. output.write(" " + token.val); .)
.

END Trains.

Several people were guided into using a set of state variables remembering the last kind of rolling stock parsed.

Here is a solution on those lines:

import Library.*;

COMPILER Trains2 $CN
/* Grammar for railway trains with simple safety regulations

P.D. Terry, Rhodes University, 2008 */

static boolean
hasFreight, safe;

static final int // type of train
passenger = 0,
freight = 1,
mixed = 2,
empty = 3;

static final int // kind of last component
safeTruck = 1,
fuelTruck = 2,
humans = 3,
loco = 4;

static int type, lastSeen;

public static OutFile output;

IGNORECASE

COMMENTS FROM "(*" TO "*)" NESTED

IGNORE CHR(0) .. CHR(31)

PRODUCTIONS
Trains2 = { OneTrain } EOF .

OneTrain
= (. type = empty;

safe = true;
hasFreight = false; .)

Computer Science 301 - 2008 - Practical 24 solutions 3

LocoPart
[[GoodsPart (. hasFreight = true; .)
]
HumanPart

]
SYNC "." (. output.writeLine(" .");

switch(type) {
case passenger:

output.write("passenger train"); break;
case mixed:

output.write("mixed freight/passenger train"); break;
case freight:
output.write("freight train"); break;

case empty:
output.write("empty train"); break;

}
output.write(" - safety regulations ");
if (safe) output.writeLine("obeyed");
else output.writeLine("contravened");
output.writeLine(); .)

.

LocoPart
= "loco" (. output.write(" " + token.val); .)
{ "loco" (. output.write(" " + token.val); .)
} (. lastSeen = loco; .)

.

GoodsPart
= Truck { Truck } .

HumanPart
= "guard" (. output.write(" " + token.val);

type = freight; .)
| (. if (lastSeen == fuelTruck) {

safe = false;
SemError("fuel truck may not precede coach");

}
lastSeen = humans; .)

{ "coach" (. output.write(" " + token.val); .)
} "brake" (. output.write(" " + token.val);

if (hasFreight) type = mixed;
else type = passenger; .)

.

Truck
= (("coal" | "cold"

| "open" | "cattle") (. lastSeen = safeTruck; .)
| "fuel" (. if (lastSeen == loco) {

safe = false;
SemError("fuel truck may not follow loco");

}
lastSeen = fuelTruck; .)

) (. output.write(" " + token.val); .)
.

END Trains2.

Task 6 - An assembler pretty printer

This is really rather easy once you get the general idea. A few points are worth making. Firstly, several people

attempted to get the desired spacing by arranging for the output to contain "tabs" at suitable points. These have

the disadvantage that tab setting differ from one output medium or library to another, and what might look pretty

in some situations won't look pretty in others. Better far to use the "fixed width" output routines in the

Library. Secondly, it would have been necessary to augment the grammar to handle the extended opcode set

that includes such operations as LDC_0. Thirdly (and rather subtly), comments extended from the semicolon up

to and including the CR. The convention on Wintel systems is that ends of lines are marked by a CR LF
sequence, rather then LF only. Few people had realised that this called for special treatment (and doubtless did

not notice, as most editors will handle LF or CR LF as almost equivalent.

import Library.*;

COMPILER PVMAsm $CN
/* Grammar for subset of PVM assembler language

Pretty printer
P.D. Terry, Rhodes University, 2005 */

Computer Science 301 - 2008 - Practical 24 solutions 4

public static OutFile output;
static int count = 0;

CHARACTERS
control = CHR(0) .. CHR(31) .
Printable = ANY - control .
InString = Printable - '"' .
Digits = "0123456789" .
LF = CHR(10) .
CR = CHR(13) .

TOKENS
Number = ["-"] Digits { Digits } .
String = '"' { InString } '"' .
EOL = LF .
Comment = ";" { Printable } CR .

IGNORE control - LF

PRODUCTIONS
PVMAsm
= { Statement } EOF .

Statement
= [Number]
((. output.write(count, -5); .)

Instruction
| (. output.write(" ", -27); .)

)
[Comment (. output.write(token.val.substring(0, token.val.length() - 1)); .)
] SYNC EOL (. output.writeLine(); .)

.

/* Alternative that puts the count in place even for lines with no instruction
Statement
= [Number] (. output.write(count, -5); .)

(Instruction
| (. output.write(" ", -22); .)

)
[Comment (. output.write(token.val.Substring(0, token.val.length() - 1)); .)
] SYNC EOL (. output.writeLine(); .)

.
*/

Instruction
= TwoWord | OneWord | PrintString .

TwoWord
= ("LDA" | "LDC" | "DSP"

| "LDL" | "STL"
| "BRN" | "BZE"

) (. output.write(token.val, -7); .)
Number (. output.write(token.val, -15);

count += 2; .)
.

OneWord
= ("ADD" | "AND" | "ANEW" | "CEQ"

| "CGE" | "CGT" | "CLE" | "CLT"
| "CNE" | "DIV" | "HALT" | "INPB"
| "INPI" | "LDV" | "LDXA" | "MUL"
| "NEG" | "NOP" | "NOT" | "OR"
| "PRNB" | "PRNI" | "PRNL" | "REM"
| "STO" | "SUB"

) (. output.write(token.val, -22);
count++; .)

.

PrintString
= "PRNS" (. output.write(token.val, -7); .)

String (. output.write(token.val, -15);
count += 2; .)

.

END PVMAsm.

Computer Science 301 - 2008 - Practical 24 solutions 5

Task 7 - The EBNF cross reference generator.

Once again, this is capable of a very simple elegant solution (hint: most Pat Terry problems admit to a simple

elegant solution; the trick is to find it, so learn from watching the Expert in Action, and pick up the tricks for

future reference). There are only two places in the basic grammar where non-terminals appear, and it is here that

we must arrange to insert them into the table:

import Library.*;

COMPILER EBNF $CN
/* Parse a set of EBNF productions

Generate cross reference table
P.D. Terry, Rhodes University, 2005 */

public static OutFile output;

CHARACTERS
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
lowline = "_" .
control = CHR(0) .. CHR(31) .
digit = "0123456789" .
noquote1 = ANY - "'" - control .
noquote2 = ANY - '"' - control .

TOKENS
nonterminal = letter { letter | lowline | digit } .
terminal = "'" noquote1 { noquote1 } "'" | '"' noquote2 { noquote2 } '"' .

COMMENTS FROM "(*" TO "*)" NESTED

IGNORE control

PRODUCTIONS
EBNF (. Table.clearTable(); .)
= { Production } (. Table.printTable(); .)

EOF .

Production
= SYNC nonterminal (. Table.addRef(token.val, true, token.line); .)
WEAK "=" Expression SYNC "." .

Expression
= Term { WEAK "|" Term } .

Term
= [Factor { Factor }] .

Factor
= nonterminal (. Table.addRef(token.val, false, token.line); .)
| terminal
| "[" Expression "]"
| "(" Expression ")"
| "{" Expression "}" .

END EBNF.

Of course, the bulk of the effort has to be spent in deriving a suitable table handler. Here is one that builds upon

the suggestion in the prac sheet:

// Handle cross reference table for EBNF productions
// P.D. Terry, Rhodes University, 2008

package EBNF;

import java.util.*;
import Library.*;

class Entry { // Cross reference table entries
public String name; // The identifier itself
public ArrayList<Integer> refs; // Line numbers where it appears
public Entry(String name) {
this.name = name;
this.refs = new ArrayList<Integer>();

}
} // Entry

class Table {
static ArrayList<Entry> list = new ArrayList<Entry>();

Computer Science 301 - 2008 - Practical 24 solutions 6

public static void clearTable() {
// Clears cross-reference table
list = new ArrayList<Entry>();

}

public static void addRef(String name, boolean declared, int lineRef) {
// Enters name if not already there, adds another line reference (negative if at
// a declaration point in the original set of productions

int i = 0;
while (i < list.size() && !name.equals(list.get(i).name)) i++;
if (i >= list.size()) list.add(new Entry(name));
list.get(i).refs.add(new Integer(declared ? -lineRef : lineRef));

}

public static void printTable() {
// Prints out all references in the table
StringBuilder missing = new StringBuilder();
for (int i = 0; i < list.size(); i++) {
boolean isDeclared = false; // haven't seen a definition yet
Entry e = list.get(i);
Parser.output.write(e.name, -18); // left justify in 18 spaces
for (int j = 0; j < e.refs.size(); j++) { // work through the list of references

int line = e.refs.get(j);
Parser.output.write(line, 5); // justify in 5 spaces
isDeclared = isDeclared || line < 0;

}
Parser.output.writeLine();
if (!isDeclared) missing.append(e.name + " "); // build up list of undeclared nonterminals

}
Parser.output.writeLine();
if (missing.length() > 0) { // no need if there were none
Parser.output.writeLine("The following are terminals, or undefined non-terminals");
Parser.output.writeLine();
Parser.output.writeLine(missing.toString());

}
}

} // Table

The printTable method above suffers from a possible disadvantage in that multiple occurrences of an non-

terminal on one line, as in

Term = [Factor { Factor }] .

create unnecessary duplicate entries. These could be eliminated in various ways; the simplest might be to do so at

the output stage, rather than when they are added by the addRef method. Please yourself; here is my

suggestion.

public static void printTable() {
// Prints out all references in the table (eliminate duplicates line numbers)

StringBuilder missing = new StringBuilder();
for (int i = 0; i < list.size(); i++) {
boolean isDeclared = false; // haven't seen a definition yet
Entry e = list.get(i);
Parser.output.write(e.name, -18); // left justify in 18 spaces
int last = 0; // impossible line number
for (int j = 0; j < e.refs.size(); j++) { // work through the list of references

int line = e.refs.get(j);
isDeclared = isDeclared || line < 0;
if (line != last) { // a new line reference
Parser.output.write(line, 5); // justify in 5 spaces
last = line; // remember we have printed this line

}
}
Parser.output.writeLine();
if (!isDeclared) missing.append(e.name + " "); // build up list of undeclares nonterminals

}
Parser.output.writeLine();
if (missing.length() > 0) { // no need if there were none
Parser.output.writeLine("The following are terminals, or undefined non-terminals");
Parser.output.writeLine();
Parser.output.writeLine(missing.toString());

}
}

Several solutions revealed that people either had not thought that far or were confused about the point of the

declared argument to the addRef method.

Computer Science 301 - 2008 - Practical 24 solutions 7

