
Computer Science 301 - 2009

Programming Language Translation

Practical for Week 19, beginning 31 August 2009

This prac is due for submission by lunch time on your next practical day, correctly packaged in a transparent

folder as usual (unpackaged and late practical submissions will not be accepted - you have been warned).

Pracs should please be deposited in the hand-in box outside the lab. Only one set of listings is needed for each

group, but please enclose as many copies of the cover sheet as are needed, one for each member of the group.

These will be returned to you in due course.

Objectives:

In this practical you are to

• acquaint yourselves with some command line utilities, with various editors, interpreters and compilers;

• investigate various qualities of some computer languages and their implementations, including C, C++, C#,

Java, Pascal, Modula-2 and Parva.

• obtain some proficiency in the use of the various library routines that will be used later in the course.

The exercises for this week are not really difficult, although they may take longer than they deserve simply

because you may be unfamiliar with the systems.

Copies of this handout, the cover sheet, the Parva language report, and descriptions of the library routines for

input, output, string handling and set handling in Java and C# are available on the course web site at

http://www.cs.ru.ac.za/CSc301/Translators/trans.htm.

Outcomes:

When you have completed this practical you should understand

• how and where some languages are similar or dissimilar;

• how to use various command line compilers and decompilers for these languages;

• what is meant by the term "high level compiler" and how to use one;

• how to measure the relative performance of language implementations;

• the elements and limitations of programming in Parva;

• how to use I/O and set handling routines in Java.

To hand in:

This week your group is required to hand in, besides the individual cover sheets for each member:

• Listings of your solutions to the programming exercises in tasks 7 and 12, produced by using the LPRINT

utility or by using UltraEdit in "small Courier font" mode.

• Electronic copies of your source code for those exercises, using the electronic submission system.

• Your commentary and solutions to the questions posed below. Part of this consists of results that you should

be able to collect and record on the back of the cover sheet by the end of the first afternoon.

Keep the cover sheet and your solutions until the end of the semester. Check carefully that your mark has

been entered into the Departmental Records.



You are referred to the rules for practical submission which are clearly stated in our Departmental

Handbook. However, for this course pracs must be posted in the "hand-in" box outside the laboratory

before the next practical session and not given to demonstrators during the session.

A rule not stated there, but which should be obvious, is that you are not allowed to hand in another student's or

group's work as your own. Attempts to do this will result in (at best) a mark of zero and (at worst) severe

disciplinary action and the loss of your DP. You are allowed - even encouraged - to work and study with other

students, but if you do this you are asked to acknowledge that you have done so on all cover sheets and with

suuitable comments typed into all listings. You are expected to be familiar with the University Policy on

Plagiarism, which you can consult at:

http://www.scifac.ru.ac.za/plagiarism_policy.pdf

Before you begin

In this practical course you will be using a lot of simple utilities, and usually work at the "command line" level

rather than in a GUI environment. Note in particular:

• After logging on, you can get get to the DOS command line level by using the Start -> Programs ->

Accessories -> Command prompt sequence if you don't already have a shortcut (it is probably worth

creating a short cut).

• UltraEdit is probably your editor of choice. The version in the lab is configured to run various of the

compilers easily, and it is possible to tweak it to run others in the same sort of way. To get this to work

properly, start UltraEdit from a command window by giving the command UEDIT32, rather than by clicking

on an icon on the desktop or start menu.

• Listings are conveniently produced by using the LPRINT command from a command window, for example

LPRINT Queens.pav Queens.java

The listings come out in a small font which enables long lines to be read easily and with narrow line spacing

(so that you get more listing for your money). Please use this utility or the standard UltraEdit

configuration with a small courier font to produce all listings submitted on this course, as it makes my

job of reading the submissions much easier. Program listings in "proportional font" are awkward to read.

• Before you can use LPRINT you will need to "capture" the printer, after opening a command window, by

using the command UNMAP (if necessary) followed by PRINTEAST or PRINTWEST as appropriate.

Copies of software for home use

For this prac it is recommended that you simply work in the Hamilton lab, rather than begging, borrowing or

stealing copies of a whole host of software for home use. In future pracs you will mostly use Java only, and the

prac kits will contain nearly all the extras you need.

Task 1 (a trivial one)

We shall make use of zipped prac kits throughout the course; you will typically find sources for each week's prac

in a file pracNN.zip on the server. Copy prac19.zip and xtacy.zip needed for this week, either

directly from the server on I:\CSC301\TRANS (or by using the WWW link on the course page), and extract the

sources when you need them, into your own directory/folder, by using UNZIP.

copy i:\csc301\trans\prac19.zip

unzip prac19.zip

Use UNZIP or WINZIP and not PKUNZIP, as the file contains files with long file names which PKUNZIP

cannot handle.

In the past there has been a problem with running applications generated by the C# compiler if these are stored on

the network drives. This may not yet have been completely resolved, so for those parts of the practical that

involve the use of C#, work from the local D: drive instead. After opening a command window, log onto the D:

Computer Science 301 - 2009 - Practical 19 2



drive, create a working directory and unpack a copy of the prac kit there:

d:

md d:\G01T1111

cd d:\G01T1111

unzip I:\csc301\trans\prac19.zip

In the prac kit you will find various versions of a famous program for finding a list of prime numbers using the

method known as the Sieve of Eratosthenes. You will also find various versions of a program for solving the N

Queens problem, some "empty" programs, and some other bits and pieces, including a few batch files to make

some of the following tasks easier.

Task 2 The Sieve of Eratosthenes in Pascal

You may not be a Pascal expert, but in the kit you will find some Pascal programs, including SIEVE.PAS that

determines prime numbers using a Boolean array to form a "sieve". Study and compile these programs - you can

do this from the command line quite easily by issuing commands like

FPC SIEVE.PAS

FPC QUEENS.PAS

FPC EMPTY.PAS

to use the 32-bit Windows version of the Free Pascal compiler. Make a note of the size of the executable (use the

command DIR SIEVE.EXE and DIR QUEENS.EXE and DIR EMPTY.EXE).

You may be able to produce a slightly faster version of the executable program for the Sieve example by

suppressing the index range checks that Pascal compilers normally include for code that accesses arrays:

FPO SIEVE.PAS

How do the sizes of the executables compare? Why do you suppose the "empty" program produces the amount of

code that it does?

Here is something more demanding: By experimenting with the CONST declaration, find out how large a sieve

the program can handle. What is the significance of this limit? Hint: you should find that funny things happen

when the sieve gets too large, though it may not immediately be apparent. Think hard about this one!

Task 3 The Sieve in Modula-2

You may not be a Modula-2 expert either, but examine, and then compile and run the equivalent Modula-2 code

supplied in the files SIEVE.MOD, EMPTY.MOD and QUEENS.MOD. You can do this quickly using commands

like

M2C QUEENS (note that the .MOD extension is not quoted here) or

M2O SIEVE (for the version that suppresses subscript checks)

Make a note of the size of the executables produced. How do they compare with the Pascal executables?

Approximately how big a sieve can the compiler handle? Why do you suppose there is a difference, when the

source programs are all so similar?

Task 4 The Sieve in C or C++

The kit also includes C and C++ versions of these programs. Compile these and experiment with them in the same

way:

BCC SIEVE.C (using the Borland compiler in C mode)

BCC SIEVE.CPP (using the Borland compiler in C++ mode)

CL SIEVE.C (using the WatCom compiler in C mode)

CL SIEVE.CPP (using the WatCom compiler in C++ mode)

Computer Science 301 - 2009 - Practical 19 3



Once again, make a note of the size of the executables, and in particular, compare them with the earlier versions.

Can you think of any reason why the differences are as you find them?

Task 5 Jolly Java, what

There are two Java compilers available for your use. The JDK one is called javac and there is also the (much

faster) one called jikes (Jikes will only handle Java 1.4 level source, but that covers most things). Both of these

are conveniently invoked from within UltraEdit. You can also compile a Java program directly from the

command line with commands like

javac Sieve.java (using the (slow) JDK compiler)

jikes Sieve.java (using the (fast) Jikes compiler)

Task 6 See C#

You can compile the C# versions of these programs from the command line, for example:

csharp Sieve.cs

(You may have to do this on the local D: drive) Make a note of the size of the ".NET assemblies" produced

(SIEVE.EXE, EMPTY.EXE and QUEENS.EXE). How do these compare with the other executables?

Task 7 Progress to Parva

On the course web page you will find a description of Parva, a toy language very similar to C, and a language for

variations on which we shall develop a compiler and interpreter later in the course. The main difference between

Parva and C/Java/C# is that Parva is stripped down to bare essentials.

Learn the Parva system by studying the language description where necessary, and trying the system out on the

supplied code (SIEVE.PAV and QUEENS.PAV). There are various ways to compile Parva programs. The

easiest is to use a command line command:

parva Sieve.pav simple error messages

parva -o Sieve.pav slightly optimized code

parva -l Sieve.pav error messages merged into listing.txt

You will have to do this on the local D: drive.

More conveniently, we have set up UltraEdit to allow for an option to compile Parva programs. If you want to

add this to your home systems, use the Advanced->Tool Configuration pull down, then set the following

fields

Command Line Parva %n%e
Working Directory %p
Menu Item Name Parva
Save all files first Selected
Output to List Box Selected
Capture Output Selected

and then click Insert. After this you can choose the Parva option on the Advanced menu to compile (and,

when successful, run) the program in the "current window". The demonstration programs Sieve.pav and

Queens.pav in the kit have a few fairly obvious errors. Learn the syntax and semantics of Parva by correcting

the errors until the programs run correctly. Once again, experiment to see how large a sieve you can set up.

Task 8 The N Queens problem

In the kit you will also find various equivalent programs that solve the famous N Queens problem. These use a

back-tracking approach to determine how to place N Queens on an N * N chess board in such a way that no

Queen threatens or is threatened by any other Queen - noting that a Queen threatens another Queen if the two

pieces lie on a common vertical, horizontal or diagonal line drawn on the board. Here is a solution showing how

4 Queens can be placed safely on a 4 * 4 board:

Computer Science 301 - 2009 - Practical 19 4



ÉÍÍÍÑÍÍÍÑÍÍÍÑÍÍÍ»
º ³ ³ Q ³ º
ÇÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄ¶
º Q ³ ³ ³ º
ÇÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄ¶
º ³ ³ ³ Q º
ÇÄÄÄÅÄÄÄÅÄÄÄÅÄÄÄ¶
º ³ Q ³ ³ º
ÈÍÍÍÏÍÍÍÏÍÍÍÏÍÍÍ¼

Compile one or more of these programs and try them out. For example

FPC QUEENS.PAS

QUEENS

There are two versions written in each of Pascal, Modula-2, Java and C#. One version uses parameters to pass

information between the routines, the other version uses global variables. At some stage you could usefully spend

a little time trying to work out how the programs come up with the solutions.

Complete the table on the hand-in sheet to determine the number of solutions as a function of N. Do you see a

pattern in this?

Task 9 High level translators

It may help amplify the material we are discussing in lectures if you put some simple Modula-2 programs through

a high-level translator we have available, and then look at, and compile, the C code to see the sort of thing that

happens when one performs automatic translation of a program from one high-level language to another.

We have a demonstration copy of a system (Russian in origin), that translates Modula-2 or Oberon-2 source code

into C. The system is called Extacy (a poor pun on "X to C", it seems). Whether or not the C one obtains is

usable depends, obviously, on having C translations of all of one's Modula-2 libraries as well. In principle all

one has to do is convert these libraries using the same system. Some very simple libraries came with the

demonstration kit, and we have produced one or two more, but we would have to pay many Roubles and do an

awful lot of work to get the system fully operational.

• Create a further subdirectory under your G9xAxxxx directory, say XTACY. The reason for working in

another directory is to ensure that you don't edit, change, or otherwise get corrupted versions of other files

with similar names in other sections of the prac kit.

• Log into this directory.

• Unpack the demo conversion program with the command UNZIP XTACY.ZIP. This will create a whole lot

of other files for you.

• A command of the form

XC =m SOURCE.MOD

will produce all the .H and .C files needed for a "make" of the parent program SOURCE.MOD

Convert the sample programs in this kit (SIEVE.MOD and QUEENS.MOD) and the various support modules to C,

and then use a C++ compiler to compile and run the resulting code. Most simply, run the C compiler directly

from the command line:

BCC SIEVE.C EASYIO.C X2C.C

BCC QUEENS.C EASYIO.C X2C.C

or

CL SIEVE.C EASYIO.C X2C.C

CL QUEENS.C EASYIO.C X2C.C

Take note of, and comment on, such things as the kind of C code that is generated (is it readable; is it anything

Computer Science 301 - 2009 - Practical 19 5



like you might have written yourself?), and of the relative ease or difficulty of using such a system. You might

also like to comment on the size of the object code produced.

Task 10 - How fast/slow are various language implementations?

Different compilers - even for very similar programs - can produce code of very different quality. In particular

"interpretive" systems (of which the Parva implementation is one example) produce programs that run far more

slowly than do "machine" or "native" code systems. Carry out some tests to see these effects for yourselves, and

how severe they are, by comparing the execution times of some of the programs.

Summarise your findings on page 2 of the cover sheet, explaining briefly how you come to the figures that you

quote. Do the N Queens programs using parameters perform better/worse than those using global variables? Is

Java better/worse than C# (the source code in each case is almost identical)? Do 16-bit compilers fare better or

worse than 32-bit compilers?

Hint: the machines in the Hamilton Labs are very fast, so you should try something like this: modify the

programs to comment out nearly all the output statements (since you are not interested in seeing the solutions to

the N Queens problem a zillion times, or a zillion lists of prime numbers, or measuring the speed of I/O

operations), and then run the programs and time them with a stop watch. Choose sizes for the sieve or chessboard

(and a suitable number of iterations) that will produce measurable times.

Although Java is often touted as being an interpreted language, in fact the latest versions of the Java "interpreter"

- the program executed when you give the java command - actually indulge in "just in time" compiling (see

textbook page 32) and "JIT" the code to native machine code as and when it is convenient - which results in

spectacularly improved performance. It is possible to frustrate this by issuing the java command with a

directive -Xint:

javac Sieve.java

java -Xint Sieve

to run the program in interpretive mode. Try this out as part of your experiment.

Summarise your findings on page 2 of the cover sheet, and go on to explain briefly how you come to the figures

that you quote. For example, is Java better/worse than C# (the source code in each case is almost identical)? Do

16-bit compilers fare better or worse than 32-bit compilers?

Task 11 Reverse Engineering and Decompiling

In lectures you were told of the existence of decompilers - programs that can take low-level code and attempt to

reconstruct higher level code. There are a few of these available for experiment.

jad a decompiler that tries to construct Java source from Java class files

javap a decompiler that creates pseudo assembler source from a Java class file

gnoloo a decompiler that creates JVM assembler source from a class file

oolong an assembler that creates Java class files from JVM assembler source

ildasm a decompiler that creates CIL assembler source from a .NET assembly

ilasm an assembler that creates a .NET assembly from CIL assembler source

peverify a tool for verifying .NET assemblies

Try out the following experiments or others like them:

(a) After compiling Sieve.java to create Sieve.class, decompile this:

jad Sieve.class

and examine the output, which will appear in Sieve.jad

(b) Disassemble Sieve.class

javap -c Sieve >Sieve.jvm

Computer Science 301 - 2009 - Practical 19 6



and examine the output, which will appear in Sieve.jvm

(c) Disassemble Sieve.class

gnoloo Sieve.class

and examine the output, which will appear in Sieve.j

(d) Reassemble Sieve.j

oolong Sieve.j

and try to execute the resulting class file

java Sieve

(e) Be malicious! Corrupt Sieve.j - simply delete a few line with opcodes on them. Try to reassemble the

file (as above) and to re-run it. What happens?

(f) Compile Sieve.cs and then disassemble it

csharp Sieve.cs
decompile Sieve (calls ildasm from a batch file)

and examine the output, which will appear in Sieve.cil

(g) Reassemble Sieve.cil

ilasm Sieve.cil

and try to execute the resulting class file

Sieve

(h) Be malicious! Corrupt Sieve.cil - simply delete a few line with opcodes on them. Try to reassemble

the file (as above) and to re-run it. What happens?

(i) Experiment with the .NET verifier after (h)

exeverify Sieve.exe (calls peverify from a batch file)

Task 12 Creative Parva programming - the "hailstone" sequence

Nothing so far should have extended your programming talents very much. To get the brain cells working a little

harder, and to learn more about a language we shall meet again, solve the following problem using Parva:

Suppose N is a positive number that starts a sequence defined by the following rules: If a term M is odd, the next

term in the sequence is 3M + 1. If a term M is even, the next term is M / 2. The sequence terminates when M =

1. For example, the sequence that starts with N = 6 is as follows:

6 3 10 5 16 8 4 2 1

and in this particular case the length of the sequence is 9. Write a function procedure that, given N, will return

the length L of the sequence beginning with N. Then continue to write a little program that uses this function to

determine the smallest positive integer N that produces a sequence length L greater than K, where K is a number

used as input data. For example, for K = 12, the result should be N = 7. 7 is the smallest positive integer that

generates a sequence with more than 12 members.

Pat Terry's problems are sometimes reputed to be hard. They only get very hard if you don't think very carefully

about what you are trying to do, and they get much easier if you think hard and spend time discussing the

solutions with the tutors or even the Tyrant himself. His experience of watching the current generation of

students suggests that some of you get beguiled by glitzy environments and think that programs just "happen" if

you can guess what to click on next. Don't just go in and hack. It really does not save you any time, it just

wastes it! This problem and the others that follow can be solved in just a few lines of code if you think them

through carefully before you start to code.

Computer Science 301 - 2009 - Practical 19 7



Remember a crucial theme of this course - "Keep it as simple as you can, but no simpler".

Task 13 Creative programming - How long will my journey take?

You will need to become acquainted with various library classes to solve this task, which is preferably to be done

in Java (C# if you prefer), and is designed to emphasize some useful techniques. Descriptions of these relevant

library routines can be found on the course website.

A simple sample program using some of the library routines can be found in the kit as the program

SampleIO.java (listed below).

It is important that you learn to use the IO libraries InFile, OutFile and IO. These will be used

repeatedly in this course. Please do not use other methods for doing I/O, or spend time writing lots of

exception handling code.

A suburban railway line (like the one in Cape Town) links a large number of stations. Suppose we are given the

travel time from any one station to the next (assume that this time would be the same for return journeys) and that

this information is captured in a long list of times given in minutes, with the station names (abbreviated if

necessary to 8 letters) between them. For example, if we had 8 stations we might have a list like

College 8 Hamilton 5 Oakdene 12 Gino's 25 Mews 9 Union 12 Steers 17 Athies

The railway company want to put up a poster at each station from which one can easily determine the total travel

time between any one station and any other one. For the data given this might look like this (see file TRAINS)

College Hamilton Oakdene Gino's Mews Union Steers Athies

College 0 8 13 25 50 59 71 88
Hamilton 8 0 5 17 42 51 63 80
Oakdene 13 5 0 12 37 46 58 75
Gino's 25 17 12 0 25 34 46 63
Mews 50 42 37 25 0 9 21 38
Union 59 51 46 34 9 0 12 29
Steers 71 63 58 46 21 12 0 17
Athies 88 80 75 63 38 29 17 0

Write a program to create such a table. Use the ArrayList class to store the original data - you will need a

small auxiliary class to record the successive pairs of names and travel times - and then set up a two-dimensional

matrix to contain the computed values (note that this will be symmetric).

Task 14 Creative programming - Goldbach's conjecture

Goldbach's conjecture is that every even number greater than 2 can be expressed as the sum of two prime

numbers. Write a program that examines every even integer N from 4 to Limit, attempting to find a pair of prime

numbers (A , B) such that N = A + B. If successful the program should write N, A and B; otherwise it should

write a message indicating that the conjecture has been disproved. This might be done in various ways. Since

the hidden agenda is to familiarize you with the use of a class for manipulating "sets", you must use a variation on

the sieve method suggested by the code you have already seen: create a "set" of prime numbers first in an object

of the IntSet class, and then use this set intelligently to check the conjecture.

Computer Science 301 - 2009 - Practical 19 8



Demonstration program showing use of Infile, OutFile and IntSet classes

This code is in the file SampleIO.java in the prqc kit. There is an equivalent C# one in the file

SampleIO.cs.

import library.*;

class SampleIO {

public static void main(String[] args) {
// check that arguments have been supplied
if (args.length != 2) {
IO.writeLine("missing args");
System.exit(1);

}
// attempt to open data file
InFile data = new InFile(args[0]);
if (data.openError()) {
IO.writeLine("cannot open " + args[0]);
System.exit(1);

}
// attempt to open results file

OutFile results = new OutFile(args[1]);
if (results.openError()) {
IO.writeLine("cannot open " + args[1]);
System.exit(1);

}

// various initializations
int total = 0;
IntSet mySet = new IntSet();

// next code is clumsy, but works!
IntSet smallSet = new IntSet(1, 2, 3, 4, 5);
String smallSetStr = smallSet.toString();

// read and process data file
int item = data.readInt();
while (!data.noMoreData()) {
total = total + item;
if (item > 0) mySet.incl(item);
item = data.readInt();

}
// write various results to output file

results.write("total = ");
results.writeLine(total, 5);
results.writeLine("unique positive numbers " + mySet.toString());
results.writeLine("union with " + smallSetStr

+ " = " + mySet.union(smallSet).toString());
results.writeLine("intersection with " + smallSetStr

+ " = " + mySet.intersection(smallSet).toString());
} // main

} // SampleIO

Computer Science 301 - 2009 - Practical 19 9


