
Computer Science 3 - 2009

Programming Language Translation

Practical for Week 20, beginning 14 September 2009

Hand in this prac sheet before lunch time on your next practical day, correctly packaged in a transparent folder

with your solutions and the "cover sheet". Unpackaged and late submissions will not be accepted - you have

been warned. Please do NOT come to a practical and spend the first hour printing or completing solutions from

the previous week's exercises. Since the practical will have been done on a group basis, please hand in one copy

of the cover sheet for each member of the group. These will be returned to you in due course, signed by the

marker.

Objectives:

In this practical you are to

• become familiar you with the workings of a simple machine emulator for the PVM pseudo-machine we shall

use frequently in the course.

• gain some experience with the machine, writing machine code for it, and extending it.

You will need this prac sheet and your text book. Copies of the prac sheet and of the Parva report are also

available at http://www.cs.ru.ac.za/CSc301/Translators/trans.htm.

Outcomes:

When you have completed this practical you should understand

• the opcode set for the Parva Virtual Machine (PVM);

• how to write and debug machine level code for the PVM;

• how to extend the PVM to incorporate new opcodes;

• why and how interpretive systems are slower than native code systems.

To hand in:

This week you are required to hand in, besides the cover sheet:

• Listings of the final version of the assembler/emulator system you produce (Task 7), and your solutions to the

programming exercises in Tasks 4, 6 and 8 (PVM files). (LPRINT or UltraEdit small font format please.)

• Electronic copies of your source code for those exercises, using the electronic submission system.

• Discussion of the various questions raised below in Tasks 9 and 10.

Keep the prac sheet and your solutions until the end of the semester. Check carefully that your mark has

been entered into the Departmental Records.

You are referred to the rules for practical submission which are clearly stated in our Departmental

Handbook. However, for this course pracs must be posted in the "hand-in" box outside the laboratory and

not given to demonstrators.

A rule not stated there, but which should be obvious, is that you are not allowed to hand in another group's or

student's work as your own. Attempts to do this will result in (at best) a mark of zero and (at worst) severe

disciplinary action and the loss of your DP. You are allowed - even encouraged - to work and study with other

students, but if you do this you are asked to acknowledge that you have done so. You are expected to be familiar

with the University Policy on Plagiarism, which you can consult at:

http://www.scifac.ru.ac.za/plagiarism_policy.pdf



Task 1 - creating a working directory and unpacking the prac kit

There are several files that you need, zipped up this week in the file PRAC20.ZIP.

• Immediately after logging on, get to the DOS command line level by using the Start -> Command

prompt option from the tool bar.

• Copy the prac kit into a newly created directory/folder in your file space

md prac20

cd prac20

copy i:\csc301\trans\prac20.zip

unzip prac20.zip

This will create several other directories "below" the prac20 directory:

J:\prac20

J:\prac20\Assem

J:\prac20\Library

containing the Java classes for the I/O Library, and the Java sources for an assembler/interpreter system

equivalent to the C# one described in Chapter 4. The differences between C# and Java are very minimal and it

is hoped that you will have no problems in this regard.

• UltraEdit is probably your editor of choice. The version in the lab is configured to run various of the

compilers easily, and it is possible to tweak it to run others in the same sort of way. To get this to work

properly, start UltraEdit from a command window by giving the command UEDIT32, rather than by clicking

on the icon on the desktop.

• Although I expect that most of you will program in Java for these practicals, a version of the prac kit is

available (prac20c.zip) with C# versions of this source code for people who might want to experiment

with that instead. It all works in much the same way.

Task 2

Start off by considering the following gem of a Parva program (HAIL1.PAV)

void main () {
// Finds the smallest initial term so that we get a run of more than limit
// terms in the hailstone series
// P.D. Terry, Rhodes University, 2009

int limit, start, length;
read("What is the length to exceed? ", limit);
start = 0; length = 0;
while (length <= limit) {
start = start + 1;
int term = start;
length = 1;
while (term != 1) {
length = length + 1;
if (term % 2 != 0) term = 3 * term + 1; else term = term / 2;

}
}
write("To exceed", limit, " start from", start , " to generate", length, " terms");

} // main

You can compile this (PARVA HAIL1.PAV) at your leisure to make quite sure that it works.

If you are observant you will note that this program has an "else" to the "if". The Parva compiler this week is not

the same as last week - it only allows a single main function, but it includes "else" and the modulo "%" operator

and it supports a "repeat" ... "until" statement (see later examples).

Computer Science 301 - 2009 - Practical 20 2



Task 3 - Build the assembler

In the directory prac20\Assem you will find Java files that give you a minimal assembler and emulator for the

PVM stack machine (described in Chapter 4.7). The files have the names

PVMAsm.java a simple assembler

PVM.java an interpreter/emulator very close to the one on page 63

Assem.java a driver program

You can compile and make this assembler/interpreter system by issuing the batch command

MAKEASM

It takes as input a "code file" in the sort of format shown in the examples in section 4.5. There are three very

simple example programs in the kit, so make up the minimal assembler/interpreter and try to run them with the

ASM batch command:

ASM hello.pvm

ASM lsmall.pvm

ASM divzero.pvm

Wow! Isn't Science wonderful? Try the interpretation with and without the trace option, and familiarize yourself

with the trace output and how it helps you understand the action of the virtual machine.

Task 4 - Coding the hard way

Time to do some creative work at last. Task 4 is to produce an equivalent program to the Parva one given earlier

(HAIL1.PAV), but written directly in the PVM stack-machine language (HAIL1.PVM). In other words, "hand

compile" the Parva algorithm directly into the PVM machine language. You may find this a bit of a challenge, but

it really is not too hard, just a little tedious, perhaps.

Health warning: if you get the logic of your program badly wrong, it may load happily, but then go beserk when

you try to interpret it. You may discover that the interpreter is not as "user friendly" as all the encouraging

remarks in the book might have led you to believe interpreters all to be. Later we shall improve it quite a bit. (Of

course, if your machine-code programs are correct you won't need to do so. As it has been said: "Any fool can

write a translator for source programs that are 100% correct".)

The most tedious part of coding directly in PVM code is computing the destination addresses of the various

branch instructions. As a side effect of assembly, the ASM system writes a new file with a .COD extension

showing what has been assembled and where in memory it has been stored. Study of this code will often give you

a good idea of what the targets of branch instructions should be.

---- The (suitably commented) HAIL1.PVM file must be submitted for assessment.

Task 5 - Trapping overflow

Several of the remaining tasks in this prac require you to examine the machine emulator to learn how it really

works, and to extend it to improve some opcodes and to add others.

In the prac kit you will discover two programs deliberately designed to cause chaos. DIVZERO.PVM bravely

tries to divide by zero, and MULTBIG.PVM embarks on a continued multiplication that soon goes out of range.

Try assembling and interpreting them to watch disaster happen.

Now we can surely do better than that! Modify the interpreter (PVM.java) so that it will anticipate division by

zero or multiplicative overflow, and change the program status accordingly, so that users will be told the errors of

their ways and not left wondering what has happened.

You will have to be subtle about this - you have to detect that overflow is going to occur before things "go

wrong", and you must be able to detect it for negative as well as positive overflow conditions.

Computer Science 301 - 2009 - Practical 20 3



Hint: After you edit any of the source code for the assembler you will have to issue the MAKEASM command to

recompile it, of course. It's easy to forget to do this and then wonder why nothing seems to have changed.

Task 6 - Your lecturer is quite a character

If the PVM could only handle characters as well as integers and Booleans, we could write a simple text encryption

program like the one below (ENCODE.PAV). In principle the Parva compiler could be extended to support it -

later in the course, perhaps - but for the moment let us work towards this by adding some opcodes to the PVM

and working at the assembler level. You will need ones for reading and writing a single character, and for

converting an alphabetic character to lower case and for performing the Boolean operation implied by the

isLetter() function:

void main() {
// rot13 encryption of a text terminated with a period
// P.D. Terry, Rhodes University, 2009

char ch;
repeat {
read(ch);
ch = lowerCase(ch);
if (isLetter(ch)) ch = (char) ('a' + (ch - 'a' + 13) % 26);
write(ch);

}
until (ch == '.');

}

After studying the code to see how the algorithm works, hand-compile this program into PVM code and get the

system working. How would you decrypt messages that had been encrypted by this system?

---- The (suitably commented) ENCODE1.PVM file must be submitted for assessment.

Task 7 - Improving the opcode set still further

Section 4.9 of the text discusses the improvements that can be made to the system by adding new single-word

opcodes like LDC_0 and LDA_0 in place of double-word opcodes for frequently encountered operations like

LDC 0 and LDA 0, and for using load and store opcodes like LDL N and STL N (and, equivalently,

opcodes like LDL_0 and STL_0 for frequently encountered special cases).

Enhance your PVM by incorporating the following opcodes:

LDL N STL N

LDA_0 LDA_1 LDA_2 LDA_3

LDL_0 LDL_1 LDL_2 LDL_3

STL_0 STL_1 STL_2 STL_3

LDC_M1 LDC_0 LDC_1 LDC_2 LDC_3

While you are at it, how about adding opcodes that would make for easier execution of statements

like parva++ or hunger--?

Hint: Adding "instructions" to the pseudo-machine is easy enough, especially as several of the above are very

similar to one another, but you must be careful to make sure you modify all the parts of the system that need to be

modified. Before you begin, study the code in the definition of the stack machine carefully to see where and how

the opcodes are defined, how they are mapped to the mnemonics, and in which switch/case statements they are

used.

Hint: Be careful. Think ahead! Don't limit your INC and DEC opcodes to cases where they can handle only

statements like X++. In some programs you might want to have statements like List[N+6]++.

Try out your system by developing an "improved" version of ENCODE.PVM and HAIL1.PVM, say

ENCODE1.PVM and HAIL2.PVM, that uses these new opcodes.

---- The final assembler/emulator must be submitted for assessment.

Computer Science 301 - 2009 - Practical 20 4



Task 8 - Nothing like practice to make perfect! - Arrays in the PVM

Hand translate the following program into PVM code to produce a system that will perform some array

manipulations and work with Boolean types (WORKERS.PAV).

void main () {
// Track workers as they clock in and out of an organization
// P.D. Terry, Rhodes University, 2009

const maxWorker = 100;
bool[] atWork = new bool[maxWorker];
int worker = 0;
while (worker < maxWorker) {
atWork[worker] = false;
worker++;

}
repeat {
read("Worker? (> 0 clocks in, < 0 clocks out, > 99 terminates) ", worker);
if ((worker > 0) && (worker < maxWorker)) atWork[worker] = true;
if (worker < 0)
if (!atWork[-worker]) write(worker, " has not yet clocked in!\n");
else atWork[-worker] = false;

} until (worker >= maxWorker);
write("The following workers have still not clocked out\n");
worker = 0;
while (worker < maxWorker) {
if (atWork[worker]) write(worker);
worker++;

}
} // main

What happens if you supply too large a negative value as data?

---- The final WORKERS.PVM file must be submitted for assessment.

Task 9 - Do "improvements" necessarily make things "better"?

You might think it is pretty obvious that using as many one-word opcodes as possible should make your programs

smaller, faster, better. Carry out some experiments to see how big this effect is.

In the kit you will find two versions of the program below written in PVM code. H1.PVM uses the original

opcode set; H2.PVM uses the new opcodes and is consequently rather shorter. Run both versions through your

system and obtain timings for a suitable upper vlue of maxLimit (say 100 - 200).

Your emulator will have had to assign enumeration values to the new opcodes. If you study the original source

you will see that the original opcodes have been mapped onto the numbers 30 .. 62. You could map your new

opcodes onto a set of numbers below 30, or above 62. Try the emulator both ways, and time the programs both

ways. Write a paragraph or two presenting the results of this experiment, and try to explain the effects you

observe.

Interpreters are easy to develop, but this prac should show you that they are not necessarily very "efficient". What

changes could one make to improve the efficiency of the interpreter for the PVM still further? (If you are very

keen you might try out some of your ideas, but I suppose that is wishful thinking. Sigh...)

Think carefully about all this. Please don't think you can write two lines of utter rubbish three minutes after you

were supposed to hand the prac in, and try to bluff me that you know what is going on!

Computer Science 301 - 2009 - Practical 20 5



void main () {
// Draws up a table of starting values for the hailstone series that guarantee that a
// sequence will exceed a stipulated length
// P.D. Terry, Rhodes University, 2009

int maxLimit, limit = 0;
read("What is the largest length to exceed?", maxLimit);
write("Exceed Start Length\n");
while (limit <= maxLimit) {
int start = 0, length = 0;
while (length <= limit) {
start = start + 1;
int term = start;
length = 1;
while (term != 1) {
length = length + 1;
if (term % 2 != 0) term = 3 * term + 1; else term = term / 2;

}
}
write(limit, "\t", start , "\t", length, "\n");
limit = limit + 1;

}
} // main

Task 10 - Improving the algorithm can make things much better

The program above is capable of a great deal of improvement whn you think about it. The variation below uses a

technique sometimes called "memoization" (spelled that funny way) to try to improve its performance. You can

find the PVM code for this program in the file H3.PVM (which uses the extended opcode set). Assemble the

program, compare performance with the performance of H1.PVM and H2.PVM and comment on your findings.

void main () {
// Draws up a table of starting values for the hailstone series that guarantee that a
// sequence will exceed a stipulated length
// P.D. Terry, Rhodes University, 2009

int maxLimit;
read("What is the largest length to exceed? ", maxLimit);
int[] startTable = new int[maxLimit + 1];
int[] lengthTable = new int[maxLimit + 1];
int i = 0; // set up initial lookup table
while (i <= maxLimit) {
startTable[i] = 0;
i++;

}

write("Exceed Start Length\n");

int limit = 0;
while (limit <= maxLimit) {
int start = 0, length = 0;
if (startTable[limit] != 0) {
start = startTable[limit]; length = lengthTable[limit];

} else {
while (length <= limit) {
start++;
int term = start;
length = 1;
while (term != 1) {
length++;
if (term % 2 != 0) term = 3 * term + 1; else term = term / 2;

}
}
i = limit; // predict next entries in lookup table
while ((i < length) && (i <= maxLimit)) {
startTable[i] = start;
lengthTable[i] = length;
i++;

}
}
write(limit, "\t", start , "\t", length, "\n");
limit++;

}
} // main

Have fun, and good luck.

Computer Science 301 - 2009 - Practical 20 6


