
Computer Science 3 - 2009

Programming Language Translation

Practical for Week 20, beginning 14 September 2009 - Solutions

There were some very good solutions submitted, and some energetic ones too - clearly a lot of students had put in

many hours developing their code. This is very encouraging, but there was also evidence of "sharing" out the

tasks, not really working together a proper group, and not developing an interpreter that was up to the later tasks.

And do learn to put your names into the introductory comments of programs that you write.

Full source for the solutions summarized here can be found in the ZIP files on the servers - PRAC20A.ZIP

(Java) and PRAC20AC.ZIP (C#).

Task 5

Task 5 was to hand-compile the first hailstone program into PVM code. Most people got a long way towards this.

Have a look at how I have commented this, using "high level" code, rather than detailed line by line commentary

of the form "load address of X". Many of the submissions had "commentary" that was, frankly, almost useless.

Try the following test for assembler code: Cover over the real code with a piece of paper and read only the

comments. Does what you read make sense on its own? I maintain that it should. The easiest way to do this is

by using a high level algorithmic notation.

; Finds the smallest initial term so that we get a 61 ADD ; length = length + 1
; run of more than limit terms in the hailstone series 62 STO ;

0 DSP 4 ; limit 0, start 1, length 2, term 3 63 LDA 3 ;
2 PRNS "What is the length to exceed? " 65 LDV ;
4 LDA 0 66 LDC 2 ;
6 INPI ; read("What ... ", limit); 68 REM ;
7 LDA 1 ; 69 LDC 0 ;
9 LDC 0 ; 71 CNE ;
11 STO ; start = 0 72 BZE 88 ; if (term % 2 != 0)
12 LDA 2 ; 74 LDA 3 ;
14 LDC 0 ; 76 LDC 3 ;
16 STO ; length = 0 78 LDA 3 ;
17 LDA 2 ; 80 LDV ;
19 LDV ; 81 MUL ;
20 LDA 0 ; 82 LDC 1 ;
22 LDV ; 84 ADD ;
23 CLE ; 85 STO ; term = 3 * term + 1;
24 BZE 101 ; while (length <= limit) { 86 BRN 97 ; else
26 LDA 1 ; 88 LDA 3 ;
28 LDA 1 ; 90 LDA 3 ;
30 LDV ; 92 LDV ;
31 LDC 1 ; 93 LDC 2 ;
33 ADD ; 95 DIV ; term = term / 2
34 STO ; start = start + 1; 96 STO ;
35 LDA 3 ; 97 BRN 46 ; // while
37 LDA 1 ; 99 BRN 17 ;
39 LDV ; 101 PRNS "To exceed"
40 STO ; term = start 103 LDA 0
41 LDA 2 ; 105 LDV
43 LDC 1 ; 106 PRNI ; write("To exceed", limit);
45 STO ; length = 1 107 PRNS " start from"
46 LDA 3 ; 109 LDA 1
48 LDV ; 111 LDV
49 LDC 1 ; 112 PRNI ; write(" start from", start);
51 CNE ; 113 PRNS " to generate"
52 BZE 99 ; while (term != 1) { 115 LDA 2
54 LDA 2 ; 117 LDV
56 LDA 2 ; 118 PRNI ; write(" to generate", length, " terms");
58 LDV ; 119 PRNS " terms"
59 LDC 1 ; 121 HALT

Task 5 - Trapping overflow

Checking for overflow in multiplication and division was not always well done. You cannot multiply and then try

to check overflow (it is too late by then) - you have to detect it in a more subtle way. Here is one way of doing it

- note the check to prevent a division by zero. This does not use any precision greater than that of the simulated

machine itself. Note that it is necessary to check for "division by zero" in the rem code as well!



case PVM.mul: // integer multiplication
tos = pop();
sos = pop();
if (tos != 0 && Math.abs(sos) > maxInt / Math.abs(tos)) ps = badVal;
else push(sos * tos);
break;

case PVM.div: // integer division (quotient)
tos = pop();
if (tos == 0) ps = divZero;
else push(pop() / tos);
break;

case PVM.rem: // integer division (remainder)
tos = pop();
if (tos == 0) ps = divZero;
else push(pop() % tos);
break;

It is possible to use an intermediate long variable (but don't forget the casting operations or the abs function):

case PVM.mul: // integer multiplication
tos = pop();
sos = pop();
long temp = (long) sos * (long) tos;
if (Math.abs(temp) > maxInt) ps = badVal;
else push(sos * tos);
break;

Task 6 - Your lecturer is quite a character

To be able to deal with input and output of character data we need to add two new opcodes, modelled on the INPI

and PRNI codes whose interpretation would be as below. All of the new opcodes require additions to the lists of

opcodes in the assembler and interpreter (be careful of two word opcodes that are mentioned in several places).

case PVM.inpc: // character input
adr = pop();
if (inBounds(adr)) {
mem[adr] = data.readChar();
if (data.error()) ps = badData;

}
break;

case PVM.prnc: // character output
if (tracing) results.write(padding);
results.write((char) (Math.abs(pop()) % (maxChar + 1)), 1);
if (tracing) results.writeLine();
break;

Note that the PRNC opcode outputs the character in a field width of 1, not 0 as most people tried. This has the

effect that we can output characters without intervening spaces. Note also the way in which the value is forced

"modulo 256" to become a valid ASCII value. I don't recall seeing anyone do this.

To build a really safe system there are further refinements we should make. It can be argued that we should not

try to store a value outside ot the range 0 .. 255 into a character variable. This suggests that we should have a

range of STO type instructions that check the value on the top of stack before assigning it. One of these - STOC

to act as a variation on STO - would be interpreted as follows; we would need others to handle STLC, STLC_0

and so on (these have not yet been implemented in the solution kit).

case PVM.stoc: // character checked store
tos = pop(); adr = pop();
if (inBounds(adr))
if (tos >= 0 && tos <= maxChar) mem[adr] = tos; else ps = badVal;

break;

Introducing opcodes to convert to lower case and check for a letter is simply done by using the methods from the

Java Character wrapper class (notice the need for casting operations as well):

case PVM.low: // toLowerCase
push(Character.toLowerCase((char) pop()));
break;

Computer Science 301 - 2009 - Practical 20 solutions 2



case PVM.islet: // isLetter
tos = pop();
push(Character.isLetter((char) tos) ? 1 : 0);
break;

As an example of using the new input/output opcodes, here is the encryption program. Notice that we have had

to hard-code 46 as the integer equivalent of character '.', of course, and similarly hard-coded 97 as the integer

equivalent of 'a'.

; rot13 encryption of a text terminated with a period 25 LDC 97 ;
; P.D. Terry, Rhodes University, 2009 27 SUB ;

0 DSP 1 ; ch at 0 28 LDC 13 ;
2 LDA 0 ; repeat { 30 ADD ;
4 INPC ; read(ch); 31 LDC 26 ;
5 LDA 0 ; 33 REM ;
7 LDA 0 ; 34 ADD ;
9 LDV ; 35 STOC ; ch = 'a' + (ch-'a'+13) % 26;

10 LOW ; 36 LDA 0 ;
11 STOC ; ch = lowercase(ch); 38 LDV ;
12 LDA 0 ; 39 PRNC ; write(ch)
14 LDV ; 40 LDA 0 ;
15 ISLET ; 42 LDV ;
16 BZE 36 ; if (isletter(ch)) 43 LDC 46 ;
18 LDA 0 ; 45 CEQ ;
20 LDC 97 ; 46 BZE 2 ; } until (ch == '.');
22 LDA 0 ; 48 HALT ; System.Exit(0);
24 LDV ;

Task 7 - Improving the opcode set

This is straightforward, if a little tedious, and it is easy to leave some of the changes out and get a corrupted

solution. The PVMAsm class requires modification in the switch statement that recognizes two-word opcodes:

case PVM.brn: // all require numeric address field
...
case PVM.ldc:
case PVM.ldl: // +++++++++++++++++ addition
case PVM.stl: // +++++++++++++++++ addition
codeLen = (codeLen + 1) % PVM.memSize;
if (ch == '\n') // no field could be found

error("Missing address", codeLen);
else { // unpack it and store
PVM.mem[codeLen] = src.readInt();
if (src.error()) error("Bad address", codeLen);

}
break;

The PVM class requires several additions. We must add to the enumeration of the machine opcodes:

public static final int // Machine opcodes
...
ldl = 63, // +++++++++++++++++ additions
stl = 64,
lda_0 = 65,
...

We must add to the switch statement in the trace method (several submissions missed this):

static void trace(OutFile results, int pcNow) {
switch (cpu.ir) {
...
case PVM.ldl: // +++++++++++++++++ addition
case PVM.stl: // +++++++++++++++++ addition

}
results.writeLine();

}

and we must provide case arms for all the new opcodes. A selection of these follows; the rest can be seen in the

solution kit. Notice that for consistency all the "inBounds" checks should be performed on the new opcodes too

(several submissions missed this).

Computer Science 301 - 2009 - Practical 20 solutions 3



case PVM.ldc_m1: // push constant -1
push(-1);
break;

case PVM.ldc_0: // push constant 0
push(0);
break;

case PVM.ldc_1: // push constant 1
push(1);
break;

...

case PVM.lda_0: // push local address 0
adr = cpu.fp - 1;
if (inBounds(adr)) push(adr);
break;

case PVM.lda_1: // push local address 1
adr = cpu.fp - 2;
if (inBounds(adr)) push(adr);
break;

...

case PVM.ldl: // push local value
adr = cpu.fp - 1 - next();
if (inBounds(adr)) push(mem[adr]);
break;

case PVM.ldl_0: // push value of local variable 0
adr = cpu.fp - 1;
if (inBounds(adr)) push(mem[adr]);
break;

case PVM.ldl_1: // push value of local variable 1
adr = cpu.fp - 2;
if (inBounds(adr)) push(mem[adr]);
break;

...

case PVM.stl: // store local value
adr = cpu.fp - 1 - next();
if (inBounds(adr)) mem[adr] = pop();
break;

case PVM.stl_0: // pop to local variable 0
adr = cpu.fp - 1;
if (inBounds(adr)) mem[adr] = pop();
break;

case PVM.stl_1: // pop to local variable 1
adr = cpu.fp - 2;
if (inBounds(adr)) mem[adr] = pop();
break;

We must add to the method that lists out the code (several submissions missed this). :

public static void listCode(String fileName, int codeLen) {
...
case PVM.brn:
case PVM.ldc:
case PVM.ldl: // +++++++++++++++++ addition
case PVM.stl: // +++++++++++++++++ addition
i = (i + 1) % memSize; codeFile.write(mem[i]);
break;

The INC and DEC operations are best performed by introducing opcodes that assume that an address has been

planted on the top of stack for the variable (or array element) that needs to be incremented or decremented. This

may not have been apparent to everyone.

case PVM.inc: // ++
adr = pop();
if (inBounds(adr)) mem[adr]++;
break;

case PVM.dec: // --
adr = pop();
if (inBounds(adr)) mem[adr]--;
break;

Finally we must add to the section that initializes the mnemonic lookup table:

Computer Science 301 - 2009 - Practical 20 solutions 4



public static void init() {
...
mnemonics[PVM.ldl] = "LDL"; // +++++++++++++++++ additions
mnemonics[PVM.stl] = "STL";
mnemonics[PVM.lda_0] = "LDA_0";
...

Here is the hailstone program recoded using these new opcodes (and using the INC code where appropriate).

; Finds the smallest initial term so that we get a 30 REM ;
; run of more than limit terms in the hailstone series 31 LDC_0 ;

0 DSP 4 ; limit 0, start 1, length 2, term 3 32 CNE ;
2 PRNS "What is the length to exceed? " 33 BZE 43 ; if (term % 2 != 0)
4 LDA_0 35 LDC_3 ;
5 INPI ; read("What ... ", limit); 36 LDL_3 ;
6 LDC_0 ; 37 MUL ;
7 STL_1 ; start = 0; 38 LDC_1 ;
8 LDC_0 ; 39 ADD ;
9 STL_2 ; length = 0; 40 STL_3 ; term = 3 * term + 1;
10 LDL_2 ; 41 BRN 47 ; else
11 LDL_0 ; 43 LDL_3 ;
12 CLE ; 44 LDC_2 ;
13 BZE 51 ; while (length <= limit) { 45 DIV ;
15 LDA_1 ; 46 STL_3 ; term = term / 2;
16 INC ; start++; 47 BRN 21 ; // while
17 LDL_1 ; 49 BRN 10 ;
18 STL_3 ; term = start; 51 PRNS "To exceed"
19 LDC_1 ; 53 LDL_0
20 STL_2 ; length = 1; 54 PRNI ; write("To exceed", limit);
21 LDL_3 ; 55 PRNS " start from"
22 LDC_1 ; 57 LDL_1
23 CNE ; 58 PRNI ; write(" start from", start);
24 BZE 49 ; while (term != 1) { 59 PRNS " to generate"
26 LDA_2 ; 61 LDL_2
27 INC ; length++; 62 PRNI ; write(" to generate", length, " terms");
28 LDL_3 ; 63 PRNS " terms"
29 LDC_2 ; 65 HALT ; System.exit(0);

Task 8 - Nothing like practice to make things perfect! - Arrays in the PVM

This example aimed to demonstrate the use of the Boolean and array handling opcodes. Here is a solution, also

making use of the new opcodes :

; Track workers as they clock in and out of work 45 BZE 67 ; if (worker < 0)
; atWork 0; worker 1 47 LDL_0 ;
0 DSP 2 ; 48 LDL_1 ;
2 LDC 100 ; 49 NEG ;
4 ANEW ; bool[] atWork = 50 LDXA ;
5 STL_0 ; new bool[maxWorker]; 51 LDV ;
6 LDC_0 ; 52 NOT ;
7 STL_1 ; int worker = 0 53 BZE 61 ; if (!atWork[-worker])
8 LDL_1 ; 55 LDL_1 ; write(worker)
9 LDC 100 ; 56 PRNI ;
11 CLT ; 57 PRNS " ... ; write(" has ...
12 BZE 23 ; while (worker<maxWorker) { 59 BRN 67 ; } else
14 LDL_0 ; 61 LDL_0 ;
15 LDL_1 ; 62 LDL_1 ;
16 LDXA ; 63 NEG ;
17 LDC_0 ; 64 LDXA ;
18 STO ; atWork[worker] = false; 65 LDC_0 ;
19 LDA_1 ; 66 STO ; atWork[-worker] = false;
20 INC ; worker++; 67 LDL_1 ;
21 BRN 8 ; } 68 LDC 100 ;

; repeat { 70 CGE ; } until
23 PRNS "Worker? ... ; 71 BZE 23 ; (worker>=maxWorker);
25 LDA_1 ; 73 PRNS "The ... ; write("The following ...
26 INPI ; read("...' , worker); 75 LDC_0 ;
27 LDL_1 ; 76 STL_1 ; worker = 0;
28 LDC_0 ; 77 LDL_1 ;
29 CGT ; 78 LDC 100 ;
30 LDL_1 ; 80 CLT ;
31 LDC 100 ; 81 BZE 95 ; while (worker<maxWorker) {
33 CLT ; 83 LDL_0 ;
34 AND ; if ((worker > 0) 84 LDL_1 ;
35 BZE 42 ; && (worker<maxWorker)) 85 LDXA ;
37 LDL_0 ; 86 LDV ;
38 LDL_1 ; 87 BZE 91 ; if (atWork[worker])

Computer Science 301 - 2009 - Practical 20 solutions 5



39 LDXA ; 89 LDL_1 ; write(worker);
40 LDC_1 ; 90 PRNI ;
41 STO ; atWork[worker] = true; 91 LDA_1 ;
42 LDL_1 ; 92 INC ; worker++;
43 LDC_0 ; 93 BRN 77 ; } // while
44 CLT ; 95 HALT ; System.exit(0);

Task 9 - Do "improvements" necessarily make things "better"?

Surprisingly, no. In the prac worksheet the suggestion was made that you study the original source to see that the

original opcodes had been mapped onto the numbers 30 .. 62. This meant that you could map the new opcodes

onto a set of numbers below 30, or above 62. In the prac solution kit you will find four versions of the

interpreter in which these ideas are tried out.

The following table shows various timings obtained on two translations of the HAIL2.PAV program, which was

run for an upper limit of 250. This is not an exhaustive test - observing the output one is soon aware that most of

the number crunching happens for the high values of limit, and the programs slow quite dramatically as this limit

is approached (the underlying algorithm is very much "brute force").

The "checks removed" figures were obtained using variations of the interpreter source in which all the checks that

CPU.SP remained in bounds had been suppressed, as well as the calls to next, push and pop (their effect was

achieved by "inlining" the equivalent code. The solution kits show this in detail.) In all cases, suppressing the

checks improved performance - one can see that an insistence on safety results in a considerable loss of run-time

efficiency.

But apart from that, the behaviour may seem anomalous. H1.PVM did not use any of the "new" opcodes, and it is

not at all obvious why there should be such a marked difference between the timings when these new opcodes

were mapped to different ranges. It must depend quite heavily on the way in which the switch statement is

implemented in the JVM. H2.PVM shows a sort of inverse behaviour - better performance when the new opcodes

were mapped onto lower numbers.

This behaviour - when we added new opcodes "before" any ones that are used by H1.PVM the system slowed

down, whereas when we added new opcodes "before" existing ones and then used these new ones (as we did in

H2.pvm) the system sped up - is consistent with a suggestion that the JVM implementation of the switch

statement that forms the heart of the interpretation must incorporate some sort of possibly linear search through a

branch table - and the sooner an opcode is found, the better.

In a really serious implementation of an interpreter it would be worth carrying out further experiments to

determine the optimal mapping, based, for example, on benchmarks carried out on a variety of programs and

keeping statistics of which opcodes were actually the most heavily used. I was delighted to see that one group had

actually tried something like this on a simple program in which they had deliberately used a very limited set of

opcodes.

The timings here were obtained fairly roughly on a stopwatch; one should really have run the simulations many

times over and probably excluded the IO operations, but the fact that performance is inherently dependent on the

efficiency of the interpreter is plain to see.

Several submissions suggested that the differences could be explained away by the longer list of opcodes and the

(relatively) slow lookup process that forms the basis of the opCode method in the PVM.java file (at least, that

is what I think the authors were trying to say; some explanations were very badly expressed!). But this has

nothing to do with it - that method is used by the assembly process when the source code is read in, and not at all

by the interpretation/execution process when the program is "run".

maxLimit = 250

H1.PVM H2.PVM

Opcode set Original Optimized
High numbers 9.93 10.44 105%
High numbers, checks removed 5.03 7.35 145%
Low numbers 14.83 9.67 65%
Low numbers, checks removed 10.44 6.58 63%

Computer Science 301 - 2009 - Practical 20 solutions 6



I ran the simulations again using C# implementations of the system - the source code is to all intents and purposes

identical:

H1.PVM H2.PVM

Opcode set Original Optimized
High numbers 14.57 10.18 69%
High numbers, checks removed 6.58 4.26 65%
Low numbers 14.83 10.44 70%
Low numbers, checks removed 7.09 4.00 56%

Interestingly, the C# system is a bit "faster" than the Java one when the opcodes are mapped onto low numbers,

and there is far less variation in timing between the "high" and "low" number mappings of the opcodes.

The effects of using a better algorithm (HAIL3.PAV) are quite dramatic. I used a value of maxLimit of 300

and obtained the following timings

Java C#

High numbers 4.78 4.52
High numbers, checks removed 3.74 2.19
Low numbers 4.52 4.78
Low numbers, checks removed 3.40 2.45

Once again suppressing runtime checking speeds the process up (more so for C# than for Java), but the C# system

is not always faster than the Java one.

Computer Science 301 - 2009 - Practical 20 solutions 7


