
Computer Science 3 - 2010

Programming Language Translation

Practical for Week 20, beginning 6 September 2010 - Solutions

Full source for the solutions summarized here can be found in the ZIP file on the Web page - PRAC20A.ZIP

(Java) and PRAC20AC.ZIP (C#).

Task 2

Most people had seen at least one improvement that could be made to the frequency checker. Here is one simple

suggestions (there are others, of course):

read("First number? ", item);
while (item > 0) { // terminate input with a result <= 0

if (item < limit) // if in range
count[item] = count[item] + 1; // increment appropriate count

read("Next number (<= 0 stops) ", item);
}

Task 4

Most people seemed to get to (or close to) a solution, or close to a solution. Here is one very simple one that

matches the simple improvement above:

; read a list of positive numbers, determine frequency of each 72 LDV
; P.D. Terry, Rhodes University, 2010 73 LDA 0

0 DSP 3 75 LDV
2 LDA 1 76 LDXA
4 LDC 2000 limit = 2000 (toy problem) 77 LDV
6 ANEW 78 LDC 1
7 STO count = new int[limit]; 80 ADD count[item] =
8 LDA 2 81 STO count[item] + 1;
10 LDC 0 82 PRNS "Next number (<= 0 stops) "
12 STO int i = 0; 84 LDA 0
13 LDA 2 86 INPI read("Next Number", item);
15 LDV 87 BRN 47 }
16 LDC 2000 89 LDA 2
18 CLT 91 LDC 0
19 BZE 42 while (i < limit) { 93 STO i = 0;
21 LDA 1 94 LDA 2
23 LDV 96 LDV
24 LDA 2 97 LDC 2000
26 LDV 99 CLT
27 LDXA 100 BZE 141 while (i < limit) {
28 LDC 0 102 LDA 1
30 STO count[i] = 0; 104 LDV
31 LDA 2 105 LDA 2
33 LDA 2 107 LDV
35 LDV 108 LDXA
36 LDC 1 109 LDV
38 ADD i = i + 1; 110 LDC 0
39 STO 112 CGT
40 BRN 13 } 113 BZE 130 if (count[i] > 0) {
42 PRNS "First number? " 115 LDA 2
44 LDA 0 117 LDV
46 INPI read("First number? ", item); 118 PRNI write(i);
47 LDA 0 119 LDA 1
49 LDV 121 LDV
50 LDC 0 122 LDA 2
52 CGT 124 LDV
53 BZE 89 while (item > 0) { 125 LDXA
55 LDA 0 126 LDV
57 LDV 127 PRNI write(count[i]);
58 LDC 2000 128 PRNS "\n" write("\n");
60 CLT 130 LDA 2 }
61 BZE 82 if (item < limit) 132 LDA 2
63 LDA 1 134 LDV
65 LDV 135 LDC 1
66 LDA 0 137 ADD
68 LDV 138 STO i = i + 1;
69 LDXA 139 BRN 94 }
70 LDA 1 141 HALT System.exit(0)



Notice the style of commentary - designed to show the algorithm to good advantage, rather than being a

statement by statement comment at a machine level (which is what many people did). Some people changed the

original algorithm considerably, which was acceptable, but perhaps they missed out on the intrinsic simplicity of

the translation process.

Task 5 - Checking overflow

Checking for overflow in multiplication and division was not well done. You cannot multiply and then try to

check overflow (it is too late by then) - you have to detect it in a more subtle way. Here is one way of doing it -

note the check to prevent a division by zero. This does not use any precision greater than that of the simulated

machine itself. I don't think anybody spotted that the PVM.rem opcode also involved division, and many people

who thought of using a multiplication overflow check on these lines forgot that numbers to be multiplied can be

negative as well as positive.

case PVM.mul: // integer multiplication
tos = pop(); sos = pop();
if (tos != 0 && Math.abs(sos) > maxInt / Math.abs(tos)) ps = badVal;
else push(sos * tos);
break;

case PVM.div: // integer division (quotient)
tos = pop();
if (tos == 0) ps = divZero;
else push(pop() / tos);
break;

case PVM.rem: // integer division (remainder)
tos = pop();
if (tos == 0) ps = divZero;
else push(pop() % tos);
break;

Some students used an intermediate long variable (most of them forgot that they should use the abs function as

well!)

Task 6 - Your lecturer is quite a character

Reading and writing characters was trivially easy, being essentially a simple variation on the cases for numeric

input and output. However, the output of numbers was arrranged to have a leading space; this is not as pretty

when you see i t a p p l i e d t o c h a r a c t e r s , i s i t - which is why the call to results.write uses a

second argument of 1, not 0 (this argument could have been omitted). Note the use of the modulo arithmetic to

ensure that only sensible ASCII characters will be printed:

case PVM.inpc: // character input
mem[pop()] = data.readChar();
break;

case PVM.prnc: // character output
if (tracing) results.write(padding);
results.write((char) (Math.abs(pop()) % (maxChar + 1)), 1);
if (tracing) results.writeLine();
break;

With the aid of the PVM.inpc opcode the input section of the program changes to something like that shown

below - note that we have to use the magic number 46 in the comparison (the code for "period" in ASCII):

44 INPC read(ch)
45 LDA 0
47 LDV
48 LDC 46
50 CNE
51 BZE 77 while (ch != '.') {

Task 7 - Your lecturer - what's his case?

Extending the machine and the assembler still further with opcodes CAP, INC and DEC was also straightforward.

However, many people had not considered the hint that one should not limit the INC and DEC opcodes to cases

where they can handle only statements like X++. In some programs you might want to have statements like

List[N+6]++.

Computer Science 301 - 2010 - Practical 20 solutions 2



Hence, the opcodes for the equivalent of a ++ or -- operation produced interesting answers. There are clearly two

approaches that could be used: either increment the value at the top of the stack, or increment the variable whose

address is at the top of the stack. I suspect the latter is more useful if you are to have but one of these (one could,

of course, provide both versions of the opcodes). Here is my suggestion (devoid of precautionary checking):

case PVM.cap: // toUpperCase
push(Character.toUpperCase((char) pop()));
break;

case PVM.inc: // ++
mem[pop()]++;
break;

case PVM.dec: // --
mem[pop()]--;
break;

Task 8 - Improving the opcode set still further

Once again, adding the LDL N and STL N opcodes is very easy. This required changes to be made to the

assembler in PVMAsm.java as well as to the interpreter, which clearly confused several people considerably!

case PVM.ldl: // push local value
push(mem[cpu.fp - 1 - next()]);
break;

case PVM.stl: // store local value
mem[cpu.fp - 1 - next()] = pop();
break;

Some people forgot to introduce the LDL and STL wherever they could, did not incorporate CAP and

INC/DEC and ran the last loop the wrong way! If one codes carefully, the character frequency checker reduces to

the code shown below:

; read a string and display the frequency of each letter 46 LDXA
; P.D. Terry, Rhodes University, 2010 47 INC count[toUpperCase(ch)]++;
; optimised instruction set for loading and storing 48 LDA 0

0 DSP 2 50 INPC read(ch);
2 LDC 256 limit = 256 ASCII character set 51 BRN 34 }
4 ANEW 53 LDC 90
5 STL 1 count = new int[limit]; 55 STL 0 ch = 'Z';
7 LDC 0 57 LDL 0
9 STL 0 ch = 0; 59 LDC 65

11 LDL 0 61 CGE
13 LDC 256 62 BZE 92 while (ch >= 'A') {
15 CLT 64 LDL 1
16 BZE 31 while (ch < limit) { 66 LDL 0
18 LDL 1 68 LDXA
20 LDL 0 69 LDV
22 LDXA 70 LDC 0
23 LDC 0 72 CGT
25 STO count[ch] = 0; 73 BZE 87 if (count[ch] > 0) {
26 LDA 0 75 LDL 0
28 INC ch++; 77 PRNC write(ch);
29 BRN 11 } 78 LDL 1
31 LDA 0 80 LDL 0
33 INPC read(ch); 82 LDXA
34 LDL 0 83 LDV
36 LDC 46 84 PRNI write(count[ch]);
38 CNE 85 PRNS "\n" write("\n");
39 BZE 53 while (ch != '.') { 87 LDA 0 }
41 LDL 1 89 DEC ch--;
43 LDL 0 90 BRN 57 }
45 CAP 92 HALT System.exit(0);

Computer Science 301 - 2010 - Practical 20 solutions 3



Task 9 - Nothing like practice to make things perfect

This example aimed to demonstrate the use of the Boolean opcodes. Here is a solution, also making use of the

new opcodes (a solution using the original opcodes would have been acceptable, of course). It suffices to use the

AND and OR opcodes - there was no need to use short-circuit evaluation.

0 DSP 3 ; v0 is x, v1 is y, v2 is z 34 PRNB ; write(x || !y && z);
2 PRNS " X Y Z X OR !Y AND Z\n" 35 PRNS "\n" ; write("\n");
4 LDC 0 37 LDL 2
6 STL 0 ; x = false; 39 NOT
8 LDC 0 ; repeat 40 STL 2 ; Z = ! Z;

10 STL 1 ; y = false; 42 LDL 2
12 LDC 0 repeat 44 NOT
14 STL 2 ; z = false; 45 BZE 16 ; until !Z;
16 LDL 0 ; repeat 47 LDL 1
18 PRNB ; write(x); 49 NOT
19 LDL 1 50 STL 1 ; Y = ! Y;
21 PRNB ; write(y); 52 LDL 1
22 LDL 2 54 NOT
24 PRNB ; write(z); 55 BZE 12 ; until !Y;
25 LDL 0 57 LDL 0
27 LDL 1 59 NOT
29 NOT ; (not y) 60 STL 0 ; X = !X;
30 LDL 2 62 LDL 0
32 AND ; (not y and z) 64 NOT
33 OR ; x or (not y and z) 65 BZE 8 ; until !X;

67 HALT

Task 10 - Safety first

In this task you were invited to make further modifications to the interpreter to make it "safer". This part of the

practical was not well done, however, and few groups had thought through how to trap all the disasters that might

occur if very badly incorrect code found its way to the interpreter stage.

Several groups did follow the basic advice given. Noting that many of the opcodes involve calls to the auxiliary

routines push() and pop(), it makes sense to do some checking there:

// Bumps stack pointer and pushes value onto stack
mem[--cpu.sp] = value;
if (cpu.sp < cpu.hp) ps = badMem;

}

static int pop() {
// Pops and returns top value on stack and bumps stack pointer
if (cpu.sp == cpu.fp) ps = badMem;
return mem[cpu.sp++];

}

Note that the system should not call on something like System.out.println("error message") when

errors are detected, but should simply change the status flag ps to an appopriate value that will ensure that the

fetch-execute cycle will stop immediately thereafter and invoke the postMortem method to clean up the mess.

Many people had missed this point.

However, there are many other places where checking could and should be attempted. For example, the cpu.pc

register might get badly corrupted. This can be checked by changing the start of the fetch-execute cycle as

follows:

do {
pcNow = cpu.pc; // retain for tracing/postmortem
if (cpu.pc < 0 || cpu.pc >= codeLen) {
ps = badAdr;
break;

}
cpu.ir = next(); // fetch
...

It would be just as well to protect the BRN and BZE opcodes as well:

Computer Science 301 - 2010 - Practical 20 solutions 4



case PVM.brn: // unconditional branch
cpu.pc = next();
if (cpu.pc < 0 || cpu.pc >= codeLen) ps = badAdr;
break;

case PVM.bze: // pop top of stack, branch if false
int target = next();
if (pop() == 0) {
cpu.pc = target;
if (cpu.pc < 0 || cpu.pc >= codeLen) ps = badAdr;

}
break;

There are many places where intermediate addresses are computed that really need to be checked. Several groups

had read up in the text (or looked at solutions from previous years!) and introduced a further checking function on

the lines of:

static boolean inBounds(int p) {
// Check that memory pointer p does not go out of bounds. This should not
// happen with correct code, but it is just as well to check

if (p < heapBase || p > memSize) ps = badMem;
return (ps == running);

}

which can and should be invoked in situations like the following:

case PVM.dsp: // decrement stack pointer (allocate space for variables)
int localSpace = next();
cpu.sp -= localSpace;
if (inBounds(cpu.sp)) // initialize
for (loop = 0; loop < localSpace; loop++)
mem[cpu.sp + loop] = 0;

break;
case PVM.lda: // push local address

adr = cpu.fp - 1 - next();
if (inBounds(adr)) push(adr);
break;

case PVM.ldl: // push local value
adr = cpu.fp - 1 - next();
if (inBounds(adr)) push(mem[adr]);
break;

case PVM.stl: // store local value
adr = cpu.fp - 1 - next();
if (inBounds(adr)) mem[adr] = pop();
break;

case PVM.inc: // ++
adr = pop();
if (inBounds(adr)) mem[adr]++;
break;

Several people had incorporated the refinements in the text for protecting the ANEW and LDXA opcodes:

case PVM.anew: // heap array allocation
int size = pop();
if (size <= 0 || size + 1 > cpu.sp - cpu.hp - 2)
ps = badAll;

else {
mem[cpu.hp] = size;
push(cpu.hp);
cpu.hp += size + 1;

}
break;

case PVM.ldxa: // heap array indexing
adr = pop();
int heapPtr = pop();
if (heapPtr == 0) ps = nullRef;
else if (heapPtr < heapBase || heapPtr >= cpu.hp) ps = badMem;
else if (adr < 0 || adr >= mem[heapPtr]) ps = badInd;
else push(heapPtr + adr + 1);
break;

Few, if any, thought to check that input operations might succeed or had succeeded:

Computer Science 301 - 2010 - Practical 20 solutions 5



case PVM.inpi: // integer input
adr = pop();
if (inBounds(adr)) {
mem[adr] = data.readInt();
if (data.error()) ps = badData;

}
break;

For completeness we should check the PRNS opcode (the terminating NUL character might have been omitted by a

faulty assembler):

case PVM.prns: // string output
if (tracing) results.write(padding);
loop = next();
while (ps == running && mem[loop] != 0) {
results.write((char) mem[loop]); loop--;
if (loop < stackBase) ps = badMem;

}
if (tracing) results.writeLine();
break;

Task 11 - How do our systems perform?

In the kit you were given two versions of the infamous Sieve program written in PVM code. S1.PVM used the

original opcode set; S2.PVM used the extended opcodes suggested in Task 8.

There were some intriguing claims made, several of which lead me to suspect their authors clearly think I am

naive. If your interpreters were incorrect, I doubt whether S2.PVM would have given you any meaningful

results.

The timings I obtained on an elderly 1.4GHz laptop for an upper limit of 1000 in the sieve and 2000 iterations

were as follows:

Java C#

Original opcodes + interpreter with no bounds checks 10.30 10.60
Original opcodes + interpreter with the bounds checks of Task 9 15.57 13.04

Extended opcodes + interpreter with no bounds checks 9.47 7.07
Extended opcodes + interpreter with the bounds checks of Task 9 12.80 8.69

Although the Java and C# systems use effectively exactly the same source code for each, it is interesting to see

that the ratios of these times are not the same. They all show a reasonable speedup when the extended opcode set

is used (more for the C# versions than for the Java ones) but a considerable slow down when the error checks are

introduced.

General comments

There were a few good solutions submitted, and some very energetic ones too - clearly some students had put in

many hours developing their code. This is very encouraging. But there was also evidence of load shedding and

lack of co-operation. I am looking for proper team efforts, not disjoint contributions that clearly show that some

of you did not know what the other team members were doing.

Do learn to put your names into the introductory comments of programs that you write - and to comment your

code properly!

And please learn to use LPRINT, which will save your lots of paper and printing bills.

Computer Science 301 - 2010 - Practical 20 solutions 6


