
Computer Science 3 - 2010

Programming Language Translation

Practical for Week 23, beginning 27 September 2010

Hand in your solutions to this practical before lunch time on your next practical day, correctly packaged in a

transparent folder with your cover sheets. Please do NOT come to a practical and spend the first hour printing or

completing solutions from the previous week's exercises. Since the practical will have been done on a group

basis, please hand in one copy of the cover sheet for each member of the group. These will be returned to you in

due course, signed by the marker. Please make it clear whose folder you have used for the electronic

submission, for example g03A1234. Lastly, please resist the temptation to carve up the practical, with each

group member only doing one task. The group experience is best when you discuss each task together.

Objectives:

In this practical you are to

• develop a recursive descent parser and associated ad hoc scanner "from scratch" that will analyse a set of

Modula-2 TYPE and VAR declarations.

Outcomes:

When you have completed this practical you should understand

• the inner workings of an ad hoc scanner;

• the inner workings of a recursive descent parser;

• how to test that a scanner and parser behave correctly;

To hand in:

This week you are required to hand in, besides the cover sheets (one per group member, please!):

• A listing of the final version of your source program, and some listings of input and output files;

• Electronic copies of the sources of your program.

Keep the prac sheet and your solutions until the end of the semester. Check carefully that your mark has

been entered into the Departmental Records.

You are referred to the rules for practical submission which are clearly stated in our Departmental

Handbook. However, for this course pracs must be posted in the "hand-in" box outside the laboratory and

not given to demonstrators.

A rule not stated there, but which should be obvious, is that you are not allowed to hand in another group's or

student's work as your own. Attempts to do this will result in (at best) a mark of zero and (at worst) severe

disciplinary action and the loss of your DP. You are allowed - even encouraged - to work and study with other

students, but if you do this you are asked to acknowledge that you have done so. You are expected to be familiar

with the University Policy on Plagiarism, which you can consult at:

http://www.scifac.ru.ac.za/plagiarism_policy.pdf

WARNING. This exercise really requires you to do some real thinking and planning. Please do not just sit

at a computer and hack away as most of you are wont to do. Sit in your groups and discuss your ideas with

one another and with the demonstrators. If you don't do this you will probably find that the whole exercise

turns into a nightmare, and I don't want that to happen.

Task 1 - a trivial task

Unpack the prac kit PRAC23.ZIP (Java) or {RAC23C.ZIP (C#). In it you will find the skeleton of a system

adapted for intermediate testing of a scanner (and to which you will later add a parser), and some simple test data

files - but you really need to learn to develop your own test data.

Task 2 - get to grips with the problem.

Here is a grammar for a subset of the possible ways in which types and variables can be declared in Modula-2:

COMPILER Mod2Decl
/* Grammar for a subset of Modula-2 type and variable declarations

P.D. Terry, Rhodes University, 2010 */

CHARACTERS
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
digit = "0123456789".

TOKENS
identifier = letter { letter | digit }.
number = digit { digit } .

COMMENTS FROM '(*' TO '*)'

IGNORE CHR(0) .. CHR(31)

PRODUCTIONS
Mod2Decl = { Declaration } .
Declaration = "TYPE" { TypeDecl SYNC ";" }

| "VAR" { VarDecl SYNC ";" } .
TypeDecl = identifier "=" Type .
VarDecl = IdentList ":" Type .
Type = SimpleType | ArrayType | RecordType

| SetType | PointerType .
SimpleType = QualIdent [Subrange] | Enumeration | Subrange .
QualIdent = identifier { "." identifier } .
Subrange = "[" Constant ".." Constant "]" .
Constant = number | identifier .
Enumeration = "(" IdentList ")" .
IdentList = identifier { "," identifier } .
ArrayType = "ARRAY" SimpleType { "," SimpleType } "OF" Type.
RecordType = "RECORD" FieldLists "END" .
FieldLists = FieldList { ";" FieldList } .
FieldList = [IdentList ":" Type] .
SetType = "SET" "OF" SimpleType .
PointerType = "POINTER" "TO" Type .

END Mod2Decl.

Tempting as it might be simply to use Coco/R to produce a program that will analyse Modula-2 declarations, this

week we should like you to produce such a recognizer more directly, by developing a program in the spirit of the

one you will find in the textbook on pages 175 - 177.

The essence of this program is that it will eventually have a main method that will

• use a command line parameter to retrieve the file name of a data file;

• from this file name derive an output file name with a different extension;

• open these two files;

• initialize the "character handler";

• initialize the "scanner";

• start the "parser" by calling the routine that is to parse the goal symbol;

• close the output file and report that the system parsed correctly.

In this practical you are to develop such a scanner and parser, which you should try in easy stages. So for Task 2,

study the grammar above and the skeleton program from the kit (skeleton.java) as shown below. In

particular, note how the character handler section has been programmed.

// Do learn to insert your names and a brief description of what the program is supposed to do!

// This is a skeleton program for developing a parser for Modula-2 declarations
// P.D. Terry, Rhodes University, 2010

import java.util.*;
import library.*;

class Token {
public int kind;
public String val;

Computer Science 301 - 2010 - Practical 23 2

public Token(int kind, String val) {
this.kind = kind;
this.val = val;

}

} // Token

class MOD2 {

// +++++++++++++++++++++++++ File Handling and Error handlers ++++++++++++++++++++

static InFile input;
static OutFile output;

static String newFileName(String oldFileName, String ext) {
// Creates new file name by changing extension of oldFileName to ext

int i = oldFileName.lastIndexOf('.');
if (i < 0) return oldFileName + ext; else return oldFileName.substring(0, i) + ext;

}

static void reportError(String errorMessage) {
// Displays errorMessage on standard output and on reflected output

System.out.println(errorMessage);
output.writeLine(errorMessage);

}

static void abort(String errorMessage) {
// Abandons parsing after issuing error message

reportError(errorMessage);
output.close();
System.exit(1);

}

// +++++++++++++++++++++++ token kinds enumeration +++++++++++++++++++++++++

static final int
noSym = 0,
EOFSym = 1;

// and others like this

// +++++++++++++++++++++++++++++ Character Handler ++++++++++++++++++++++++++

static final char EOF = '\0';
static boolean atEndOfFile = false;

// Declaring ch as a global variable is done for expediency - global variables
// are not always a good thing

static char ch; // look ahead character for scanner

static void getChar() {
// Obtains next character ch from input, or CHR(0) if EOF reached
// Reflect ch to output
if (atEndOfFile) ch = EOF;
else {
ch = input.readChar();
atEndOfFile = ch == EOF;
if (!atEndOfFile) output.write(ch);

}
} // getChar

// +++++++++++++++++++++++++++++++ Scanner ++++++++++++++++++++++++++++++++++

// Declaring sym as a global variable is done for expediency - global variables
// are not always a good thing

static Token sym;

static void getSym() {
// Scans for next sym from input

while (ch > EOF && ch <= ' ') getChar();
StringBuilder symLex = new StringBuilder();
int symKind = noSym;

// over to you!

sym = new Token(symKind, symLex.toString());
} // getSym

/* ++++ Commented out for the moment

Computer Science 301 - 2010 - Practical 23 3

// +++++++++++++++++++++++++++++++ Parser +++++++++++++++++++++++++++++++++++

static void accept(int wantedSym, String errorMessage) {
// Checks that lookahead token is wantedSym
if (sym.kind == wantedSym) getSym(); else abort(errorMessage);

}

++++++ */

// +++++++++++++++++++++ Main driver function +++++++++++++++++++++++++++++++

public static void main(String[] args) {
// Open input and output files from command line arguments
if (args.length == 0) {
System.out.println("Usage: MOD2 FileName");
System.exit(1);

}
input = new InFile(args[0]);
output = new OutFile(newFileName(args[0], ".out"));

getChar(); // Lookahead character

// To test the scanner we can use a loop like the following:

do {
getSym(); // Lookahead symbol

// report on the properties of the token +++++++++++++ Add something here

} while (sym.kind != EOFSym);

/* After the scanner is debugged we shall substitute this code:

getSym(); // Lookahead symbol
Mod2Decl(); // Start to parse from the goal symbol
// if we get back here everything must have been satisfactory
System.out.println("Parsed correctly");

*/
output.close();

} // main

} // MOD2

Task 3 - first steps towards a scanner

Next, develop the scanner by completing the getSym method, whose goal in life is to recognize tokens. Tokens

for this application could be defined by an enumeration of

noSym, numSym, identSym, EOFSym

The scanner can (indeed, must) be developed on the pretext that an initial character ch has been read. When

called, it must (if necessary) read past any "white space" in the input file until it comes to a character that can

form part (or all) of a token. It must then read as many characters as are required to identify a token, and assign

the corresponding value from the enumeration to the kind field of an object called, say, sym - and then read the

next character ch (remember that the parsers we are discussing always look one position ahead in the source).

Test the scanner with a program derived from the skeleton, which should be able to scan the data file and simply

tell you what tokens it can find, using the simple loop in the main method as supplied. At this stage do not

construct the parser, or attempt to deal with comments. A simple data file for testing can be found in the files

decl1.txt, a longer one can be found in decl2.txt, and you can (and probably should) invent a few more

for yourself.

You can compile your program from within UltraEdit, or by giving the command

javac skeleton.java or csc skeleton.cs Library.cs

and can run it by giving a command like

java MOD2 decl.txt or skeleton decl.txt

Computer Science 301 - 2010 - Practical 23 4

Task 4 - handling comments

Next, refine the scanner so that it can deal with (that is, safely ignore) comments in the list of programme

offerings. Suitable data files for testing are to be found in the files decl3.txt and decl4.txt.

You cannot possibly expect to start on Task 5 until such time as the scanner is working properly, so test it

thoroughly, please!

Task 5 - at last, a parser

Task 5 is to develop the associated parser as a set of routines, one for each of the non-terminals suggested in the

grammar above. These methods should, where necessary, simply call on the getSym scanner routine to deliver

the next token from the input. As discussed in chapter 8, the system hinges on the premise that each time a

parsing routine is called (including the initial call to the goal routine) there will already be a token waiting in the

variable sym, and whenever a parsing routine returns, it will have obtained the follower token in readiness for the

caller to continue parsing (see discussion on page 173). It is to make communication between all these routines

easy that we declare the lookahead character ch and the lookahead token sym to be fields "global" to the MOD2
class.

Of course, anyone can write a recognizer for input that is correct. The clever bit is to be able to spot incorrect

input, and to react by reporting an appropriate error message. For the purposes of this exercise it will be

sufficient first to develop a simple routine on the lines of the accept routine that you see on page 178, that

simply issues a stern error message, closes the output file, and then abandons parsing altogether.

Something to think about: If you have been following the lectures, you will know that associated with each

nonterminal A is a set FIRST(A) of the terminals that can appear first in any string derived from A. Alarums and

excursions (as they say in the classics). So that's why we learned to use the IntSet class in practical 19!

A note on the SymSet and IntSet class and other aspects of the library routines

The textbook code extracts are all written in C# rather than Java (bet you hadn't really noticed - the two languages

are very similar, and I have deliberately stuck to features that are almost identical in both languages). One point

of difference comes about in constructing sets. In the C# code in the book you will see code like (page 181):

static SymSet = new SymSet(eqlSym, neqSym, lssSym, leqSym, gtrSym, geqSym);

but the closest equivalent I was able to incorporate into the original Java library classes required you to write

static SymSet = new SymSet(new int[] {eqlSym, neqSym, lssSym, leqSym, gtrSym, geqSym});

However, the advent of Java 5 and 6 afforded the chance to add a "compatible" IntSet class to the library,

which in the C# case is identical to SymSet, but in the Java version now allows you to write

static IntSet = new IntSet(eqlSym, neqSym, lssSym, leqSym, gtrSym, geqSym);

although you will not be able to use this with the Jikes compiler.

The source code in skeleton.java is, of course, expressed in Java (the C# version is available in the source

kit). Other differences from what you will see in the text come about in trivial things like the use of boolean in

place of bool, main in place of Main, and so on (a lot of otherwise equivalent methods make different use of

uppercase letters in the two languages). You are reminded of the web pages like

http://www.cs.ru.ac.za/courses/CSc301/Translators/sets.htm
http://www.cs.ru.ac.za/courses/CSc301/Translators/inout.htm

Computer Science 301 - 2010 - Practical 23 5

A note on testing

To test your parser you might like to make use of the data files supplied. One of these (decl5.txt) has a

number of correct declarations. Another (decl6.txt) has a number of incorrect declarations. Your parser

should, of course, be able to parse decl5.txt easily, but parsing decl6.txt with your system will be a little

more frustrating unless you added syntax error recovery, as the parser will simply stop as soon as it finds the first

error. You might like to create a number of "one-liner" data files to make this testing stage easier. Feel free to

experiment! But, above all, do test your program out.

Task 6 - food for thought

I have decided not to ask you to add syntax error recovery techniques into your parser. The model solution might

eventually demonstrate how this could be done, and those of you with time on your hands might like to

investigate this for yourselves. Bear in mind that error recovery is fundamental to writing production quality

parsers, and that the topic is examinable.

Computer Science 301 - 2010 - Practical 23 6

