
Computer Science 3 - 2011

Programming Language Translation

Practical for Week 20, beginning 5 September 2011 - Solutions

There were some very good solutions submitted, and some very energetic ones too - clearly a lot of students had

put in many hours developing their code. This is very encouraging. Do learn to put your names into the

introductory comments of programs that you write.

Full source for the solutions summarized here can be found in the ZIP file on the Web page - PRAC20A.ZIP

(Java) and PRAC20AC.ZIP (C#).

Task 2 - A look at PVM code

Task 2 was to examine the PVM code for a simple Parva program that demonstrated de Morgan's Laws.

The code does not use short circuit evaluation, which as we shall soon see makes it easier to translate without

requiring what one of my compiler-writing friends and fellow authors, John Gough, calls "jumping code".

Since false and true are represented internally by 0 and 1, to get the table in numeric form requires only that one

change the PRNB instructions into PRNI instructions!

Have a look at how I have commented this, using "high level" code, rather than detailed line by line commentary

of the form "load address of X". Some of the submissions had "commentary" that was, frankly, almost useless.

Try the following test for assembler code: Cover over the real code with a piece of paper and read only the

comments. Does what you read make sense on its own? I maintain that it should. The easiest way to achieve this

is by using a high level algorithmic notation.

; Demonstrate de Morgan's Laws
; P.D. Terry, Rhodes University, 2011

0 DSP 2 ; bool x is v0, y is v1
2 PRNS " X Y (X.Y)\' X\'+Y\' (X+Y)\' X\'.Y\'\n\n"
4 LDA 0 ; 47 OR ;
6 LDC 0 ; 48 NOT ;
8 STO ; x = false; 49 PRNI ; write(!(x || y));
9 LDA 1 ; repeat 50 LDA 0 ;

11 LDC 0 ; 52 LDV ;
13 STO ; y = false; 53 NOT ;
14 LDA 0 ; repeat 54 LDA 1 ;
16 LDV ; 56 LDV ;
17 PRNI ; write(x); 57 NOT ;
18 LDA 1 ; 58 AND ;
20 LDV ; 59 PRNI ; write(!x && !y);
21 PRNI ; write(y); 60 PRNS "\n" ; writeLine();
22 LDA 0 ; 62 LDA 1 ;
24 LDV ; 64 LDA 1 ;
25 LDA 1 ; 66 LDV ;
27 LDV ; 67 NOT ;
28 AND ; 68 STO ; y = !y;
29 NOT ; 69 LDA 1 ;
30 PRNI ; write(!(x && y)); 71 LDV ;
31 LDA 0 ; 72 NOT ;
33 LDV ; 73 BZE 14 ; until (!y);
34 NOT ; 75 LDA 0 ;
35 LDA 1 ; 77 LDA 0 ;
37 LDV ; 79 LDV ;
38 NOT ; 80 NOT ;
39 OR ; 81 STO ; x = !x;
40 PRNI ; write(!x || !y); 82 LDA 0 ;
41 LDA 0 ; 84 LDV ;
43 LDV ; 85 NOT ;
44 LDA 1 ; 86 BZE 9 ; until (!x);
46 LDV ; 88 HALT ; System.Exit();

Task 4

Task 4 was to hand-compile the Factorial program into PVM code. Most people got a long way towards this.

Once again, look at how I have commented this, using "high level" code.

0 DSP 3 ; n is v0, f is v1, i is v2 42 MUL
2 LDA 0 43 STO
4 LDC 1 44 LDA 2 ; f = f * i;
6 STO ; n = 1; 46 LDA 2
7 LDA 0 48 LDV
9 LDV 49 LDC 1

10 LDC 20 ; // max = 20, constant 51 SUB
12 CLE ; while (n <= max) { 52 STO ; i = i - 1;
13 BZE 78 53 BRN 26 ; }
15 LDA 1 55 LDA 0
17 LDC 1 57 LDV
19 STO ; f = 1; 58 PRNI ; write(n);
20 LDA 2 59 PRNS "! = " ; write("! = ");
22 LDA 0 61 LDA 1
24 LDV 63 LDV
25 STO ; i = n; 64 PRNI ; write(f);
26 LDA 2 65 PRNS "\n" ; write("\n") (or use PRNL)
28 LDV 67 LDA 0
29 LDC 0 69 LDA 0
31 CGT ; while (i > 0) { 71 LDV
32 BZE 55 72 LDC 1
34 LDA 1 74 ADD
36 LDA 1 75 STO ; n = n + 1;
38 LDV 76 BRN 7 ; }
39 LDA 2 78 HALT
41 LDV

Note that max is a constant, not a variable. There is no need to assign it a variable loaction and store 20 into this

- simply build the value of 20 into the instructions that need to use it.

Task 5 - Trapping overflow

Checking for overflow in multiplication and division was not always well done. You cannot easily multiply and

then try to check overflow (it is too late by then) - you have to detect it in a more subtle way. Here is one way of

doing it -note the check to prevent a division by zero. This does not use any precision greater than that of the

simulated machine itself. Note that it is necessary to check for "division by zero" in the rem code as well!

case PVM.mul: // integer multiplication
tos = pop();
sos = pop();
if (tos != 0 && Math.abs(sos) > maxInt / Math.abs(tos)) ps = badVal;
else push(sos * tos);
break;

case PVM.div: // integer division (quotient)
tos = pop();
if (tos == 0) ps = divZero;
else push(pop() / tos);
break;

case PVM.rem: // integer division (remainder)
tos = pop();
if (tos == 0) ps = divZero;
else push(pop() % tos);
break;

It is possible to use an intermediate long variable (but don't forget the casting operations or the abs function):

case PVM.mul: // integer multiplication
tos = pop();
sos = pop();
long temp = (long) sos * (long) tos;
if (Math.abs(temp) > maxInt) ps = badVal;
else push(sos * tos);
break;

Task 6 - Arrays

The code as supplied for tracking students' attendance at a practical suffered from various defects - a number of

zero is useless, even though it would be accepted quite happily, a student is able to clock in more than once, the

constant StudentsInClass has a misleading value, and if a large negative number is supplied the program

crashes. A few simple changes will fix some or all of these. I was happy to accept just one or two of these

Computer Science 301 - 2011 - Practical 20 solutions 2

changes, but here is a rather radical rewrite that embraces them all, and uses the value 0 to terminate the program,

just so that you can have a look at how this would have been translated. (STUDENTS1.PAV):

void main () {
// Track students as they clock in and out of a practical - improved version
// P.D. Terry, Rhodes University, 2011
// Improved version

const StudentsInClass = 100;
bool[] atWork = new bool[StudentsInClass + 1];

int student = 1;
while (student <= StudentsInClass) {
atWork[student] = false;
student = student + 1;

}

read("Student? (> 0 clocks in, < 0 clocks out, 0 terminates) ", student);
while (student != 0) {
bool clockingIn = true;
if (student < 0) {
clockingIn = false;
student = -student;

}
if (student > StudentsInClass)
write("Invalid student number\n");

else if (clockingIn)
if (atWork[student]) write(student, " has already clocked in!\n");
else atWork[student] = true;

else
if (!atWork[student]) write(student, " has not yet clocked in!\n");
else atWork[student] = false;

read("Student? (> 0 clocks in, < 0 clocks out, 0 terminates) ", student);
}

write("The following students have still not clocked out\n");
student = 1;
while (student <= StudentsInClass) {
if (atWork[student]) write(student);
student = student + 1;

}

} // main

A translation into PVM code is a little tedious, and it is easy to leave some of the code out and get a corrupted

solution:

; Track students as they clock in and out pf a practical
; P.D. Terry, Rhodes University, 2011
; bool[] atwork is v0, int student is v1

0 DSP 3 ; 106 LDXA ;
2 LDA 0 ; 107 LDV ;
4 LDC 100 ; 108 BZE 118 ; if (atWork[student])
6 LDC 1 ; 110 LDA 1 ;
8 ADD ; 112 LDV ; write (student)
9 ANEW ; 113 PRNI ;

10 STO ; bool[] atWork = new bool[...] 114 PRNS " has already clocked in!\n"
11 LDA 1 ; 116 BRN 128 ;
13 LDC 1 ; 118 LDA 0 ; else
15 STO ; int student = 1; 120 LDV ;
16 LDA 1 ; 121 LDA 1 ;
18 LDV ; 123 LDV ;
19 LDC 100 ; 124 LDXA ;
21 CLE ; 125 LDC 1 ;
22 BZE 45 ; while (student <= 100) { 127 STO ; atWork[student] = true;
24 LDA 0 ; 128 BRN 159 ;
26 LDV ; 130 LDA 0 ; else
27 LDA 1 ; 132 LDV ;
29 LDV ; 133 LDA 1 ;
30 LDXA ; 135 LDV ;
31 LDC 0 ; 136 LDXA ;
33 STO ; atWork[Student] = false; 137 LDV ;
34 LDA 1 ; 138 NOT ;
36 LDA 1 ; 139 BZE 149 ; if (!atWork[student]
38 LDV ; 141 LDA 1 ;
39 LDC 1 ; 143 LDV ; write(student)
41 ADD ; student = student + 1; 144 PRNI ;
42 STO ; 145 PRNS " has not yet clocked in!\n"

Computer Science 301 - 2011 - Practical 20 solutions 3

43 BRN 16 ; } 147 BRN 159 ;
45 PRNS "Student? (> 0 clocks in, < 0 ... 149 LDA 0 ;
47 LDA 1 ; 151 LDV ; else
49 INPI ; read(student); 152 LDA 1 ;
50 LDA 1 ; 154 LDV ;
52 LDV ; 155 LDXA ;
53 LDC 0 ; 156 LDC 0 ;
55 CNE ; 158 STO ; atWork[student] = false];
56 BZE 166 ; while (student != 0) { 159 PRNS "Student? (> 0 clocks in, < 0 ...
58 LDA 2 ; 161 LDA 1 ;
60 LDC 1 ; 163 INPI ; read(student)
62 STO ; bool clockingIn = true; 164 BRN 50 ; } // while (student != 0)
63 LDA 1 ; 166 PRNS "The following students have still not ...
65 LDV ; 168 LDA 1 ;
66 LDC 0 ; 170 LDC 1 ;
68 CLT ; 172 STO ; student = 1;
69 BZE 83 ; if (student < 0) { 173 LDA 1 ;
71 LDA 2 ; 175 LDV ;
73 LDC 0 ; 176 LDC 100 ;
75 STO ; clockingIn = false; 178 CLE ;
76 LDA 1 ; 179 BZE 206 ; while (student <= 100
78 LDA 1 ; 181 LDA 0 ;
80 LDV ; 183 LDV ;
81 NEG ; 184 LDA 1 ;
82 STO ; student = - student 186 LDV ;
83 LDA 1 ; } 187 LDXA ;
85 LDV ; 188 LDV ;
86 LDC 100 ; 189 BZE 195 ; if (atWork[student])
88 CGT ; 191 LDA 1 ;
89 BZE 95 ; if (student > StudentsInClass) 193 LDV ;
91 PRNS "Invalid student number" 194 PRNI ; write(student);
93 BRN 159 ; 195 LDA 1 ;
95 LDA 2 ; 197 LDA 1 ;
97 LDV ; 199 LDV ;
98 BZE 130 ; else if (clockingIn) 200 LDC 1 ;
100 LDA 0 ; 202 ADD ;
102 LDV ; 203 STO ; student = student + 1;
103 LDA 1 ; 204 BRN 173 ; } // while (student <= 100
105 LDV ; 206 HALT ; System.Exit()

Task 7 - Your lecturer is quite a character

Reading and writing characters was trivially easy, being essentially a simple variation on the cases for numeric

input and output. However, the output of numbers was arrranged to have a leading space; this is not as pretty

when you see i t a p p l i e d t o c h a r a c t e r s , i s i t - which is why the call to results.write uses a

second argument of 1, not 0 (this argument could have been omitted). Note the use of the modulo arithmetic to

ensure that only sensible ASCII characters will be printed:

case PVM.inpc: // character input
mem[pop()] = data.readChar();
break;

case PVM.prnc: // character output
if (tracing) results.write(padding);
results.write((char) (Math.abs(pop()) % (maxChar + 1)), 1);
if (tracing) results.writeLine();
break;

Extending the machine and the assembler still further with opcodes CAP, INC and DEC was also straightforward.

However, many people had not considered the hint that one should not limit the INC and DEC opcodes to cases

where they can handle only statements like X++. In some programs you might want to have statements like

List[N+6]++.

Hence, the opcodes for the equivalent of a ++ or -- operation produced interesting answers. There are clearly two

approaches that could be used: either increment the value at the top of the stack, or increment the variable whose

address is at the top of the stack. I suspect the latter is more useful if you are to have but one of these (one could,

of course, provide both versions of the opcodes). Here is my suggestion (devoid of precautionary checking - see

if you can make it safer for yourself):

case PVM.cap: // toUpperCase
push(Character.toUpperCase((char) pop()));
break;

case PVM.inc: // ++
mem[pop()]++;
break;

Computer Science 301 - 2011 - Practical 20 solutions 4

case PVM.dec: // --
mem[pop()]--;
break;

In terms of these opcodes SENTENCE.PVM is quite easily written as follows:

; Read a sentence and write it in reverse in UPPER CASE
; P.D. Terry, Rhodes University, 2011
; char[] sentence is v0; leng is v1

0 DSP 2 ; 33 LDXA ;
2 LDA 0 ; 34 LDV ;
4 LDC 256 ; 35 LDC 46 ;
6 ANEW ; 37 CEQ ;
7 STO ; sentence = new char[256]; 38 BZE 13 ; until (sentence[leng-1] = '.');
8 LDA 1 ; 40 LDA 1 ;
10 LDC 0 ; 42 LDV ;
12 STO ; leng = 0; 43 LDC 0 ;
13 LDA 0 ; repeat { 45 CGT ; while (leng > 0) {
15 LDV ; 46 BZE 63 ;
16 LDA 1 ; 48 LDA 1 ;
18 LDV ; 50 DEC ; leng--;
19 LDXA ; 51 LDA 0 ;
20 INPC ; read(sentence[leng]); 53 LDV ;
21 LDA 1 ; 54 LDA 1 ;
23 INC ; leng++; 56 LDV ;
24 LDA 0 ; } 57 LDXA ;
26 LDV ; 58 LDV ;
27 LDA 1 ; 59 CAP ;
29 LDV ; 60 PRNC ; write(upper(sentence[leng]);
30 LDC 1 ; 61 BRN 40 ; }
32 SUB ; 63 HALT ; System.Exit()

Task 8 - Improving the opcode set

This is straightforward, if a little tedious, and it is easy to leave some of the changes out and get a corrupted

solution. The PVMAsm class requires modification in the switch statement that recognizes two-word opcodes:

case PVM.brn: // all require numeric address field
...
case PVM.ldc:
case PVM.ldl: // +++++++++++++++++ addition
case PVM.stl: // +++++++++++++++++ addition
codeLen = (codeLen + 1) % PVM.memSize;
if (ch == '\n') // no field could be found

error("Missing address", codeLen);
else { // unpack it and store
PVM.mem[codeLen] = src.readInt();
if (src.error()) error("Bad address", codeLen);

}
break;

The PVM class requires several additions. We must add to the enumeration of the machine opcodes:

public static final int // Machine opcodes
...
ldl = 63, // +++++++++++++++++ additions
stl = 64,
lda_0 = 65,
...

We must add to the switch statement in the trace method (several submissions missed this):

static void trace(OutFile results, int pcNow) {
switch (cpu.ir) {
...
case PVM.ldl: // +++++++++++++++++ addition
case PVM.stl: // +++++++++++++++++ addition

}
results.writeLine();

}

and we must provide case arms for all the new opcodes. A selection of these follows; the rest can be seen in the

solution kit. Notice that for consistency all the "inBounds" checks should be performed on the new opcodes too

Computer Science 301 - 2011 - Practical 20 solutions 5

(several submissions missed this).

case PVM.ldc_m1: // push constant -1
push(-1);
break;

case PVM.ldc_0: // push constant 0
push(0);
break;

case PVM.ldc_1: // push constant 1
push(1);
break;

...

case PVM.lda_0: // push local address 0
adr = cpu.fp - 1;
if (inBounds(adr)) push(adr);
break;

case PVM.lda_1: // push local address 1
adr = cpu.fp - 2;
if (inBounds(adr)) push(adr);
break;

...

case PVM.ldl: // push local value
adr = cpu.fp - 1 - next();
if (inBounds(adr)) push(mem[adr]);
break;

case PVM.ldl_0: // push value of local variable 0
adr = cpu.fp - 1;
if (inBounds(adr)) push(mem[adr]);
break;

case PVM.ldl_1: // push value of local variable 1
adr = cpu.fp - 2;
if (inBounds(adr)) push(mem[adr]);
break;

...

case PVM.stl: // store local value
adr = cpu.fp - 1 - next();
if (inBounds(adr)) mem[adr] = pop();
break;

case PVM.stl_0: // pop to local variable 0
adr = cpu.fp - 1;
if (inBounds(adr)) mem[adr] = pop();
break;

case PVM.stl_1: // pop to local variable 1
adr = cpu.fp - 2;
if (inBounds(adr)) mem[adr] = pop();
break;

We must add to the method that lists out the code (several submissions missed this). :

public static void listCode(String fileName, int codeLen) {
...
case PVM.brn:
case PVM.ldc:
case PVM.ldl: // +++++++++++++++++ addition
case PVM.stl: // +++++++++++++++++ addition
i = (i + 1) % memSize; codeFile.write(mem[i]);
break;

Finally we must add to the section that initializes the mnemonic lookup table:

public static void init() {
...
mnemonics[PVM.ldl] = "LDL"; // +++++++++++++++++ additions
mnemonics[PVM.stl] = "STL";
mnemonics[PVM.lda_0] = "LDA_0";
...

As an example of using the new opcodes, here is the Factorial program recoded in considerably fewer operations.

Some submissions only used some of the new opcodes, ignoring the INC, DEC and STL ones, for example.

Computer Science 301 - 2011 - Practical 20 solutions 6

0 DSP 3 ; n is v0, f is v1, i is v3 20 LDL_2
2 LDC_1 21 MUL
3 STL_0 ; n = 1; 22 STL_1 ; f = f * i;
4 LDL_0 23 LDA 2
5 LDC 20 ; // max = 20, constant 24 DEC ; i--;
7 CLE ; while (n <= max) { 25 BRN 14 ; i = i = 1;
8 BZE 39 27 LDL_0
10 LDC_1 28 PRNI ; write(n);
11 STL_1 ; f = 1; 29 PRNS "! = " ; write("! = ");
12 LDL_0 31 LDL_1
13 STL_2 ; i = n; 32 PRNI ; write(f);
14 LDL_2 33 PRNS "\n" ; write("\n") (or use PRNL)
15 LDC_0 35 LDA_0
16 CGT ; while (i > 0) { 36 INC ; n++;
17 BZE 27 37 BRN 4
19 LDL_1 39 HALT ; n = n + 1;

and here is SENTENCE1.PVM, which uses 40 words of memory, compared with 63 for SENTENCE.PVM.

; Read a sentence and write it in reverse in UPPER CASE
; P.D. Terry, Rhodes University, 2011
; char[] sentence is v0; leng is v1

0 DSP 2 ; 20 LDC 46 ;
2 LDC 256 ; 22 CEQ ;
4 ANEW ; sentence = new char[256]; 23 BZE 8 ; until (sentence[leng-1] = '.');
5 STL_0 ; 25 LDL_1 ;
6 LDC_0 ; 26 LDC_0 ;
7 STL_1 ; leng = 0; 27 CGT ; while (leng > 0) {
8 LDL_0 ; repeat { 28 BZE 40 ;
9 LDL_1 ; 30 LDA_1 ;
10 LDXA ; 31 DEC ; leng--;
11 INPC ; read(sentence[leng]); 32 LDL_0 ;
12 LDA_1 ; 33 LDL_1 ;
13 INC ; leng++; 34 LDXA ;
14 LDL_0 ; } 35 LDV ;
15 LDL_1 ; 36 CAP ;
16 LDC_1 ; 37 PRNC ; write(upper(sentence[leng]);
17 SUB ; 38 BRN 25 ; }
18 LDXA ; 40 HALT ; System.Exit();
19 LDV ;

(The code for STUDENTS1.PVM can be found in detail in the solution kit.)

Task 9 - Do "improvements" necessarily make things "better"?

Surprisingly, no. In the prac worksheet the suggestion was made that you study the original source to see that the

original opcodes had been mapped onto the numbers 30 .. 62. This meant that you could map the new opcodes

onto a set of numbers below 30, or above 62. In the prac solution kit you will find four versions of the

interpreter in which this has been done.

The following table shows various timings obtained on the four systems for two encodings of the infamous Sieve

of Eratosthenes, differing only in that one used the compact opcodes where possible. The behaviour is quite

remarkable. The optimized opcode set resulted in the execution of about 33% fewer instructions over counts

running into millions, and when the optimized opcodes were mapped onto "high" internal numbers the

overall execution speed improved to about 84%. However, when mapped onto low numbers the code using

the unoptimized opcode set took far longer to run, while that using the optimized opcode set slightly less

time to run. Since the only difference in the source code of the interpreter was to be found in this numerical

mapping, one is forced to conclude that the underlying implementation of the large switch statement plays a key

role in the performance one can expect. Several submissions suggested that the differences could be explained

away by the longer list of opcodes and the (relatively) slow lookup process that forms the basis of the opCode

method in the PVM.java file (at least, that is what I think the authors were trying to say; some explanations

were very badly expressed!). But this has nothing to do with it - that method is used by the assembly process

when the source code is read in, and not at all by the interpretation/execution process when the program is "run".

In a really serious implementation of an interpreter it would be worth carrying out further experiments to

determine the optimal mapping, based, for example, on benchmarks carried out on a variety of programs. (These

timings were done fairly roughly on a stopwatch; one should really have run the simulations many times over and

Computer Science 301 - 2011 - Practical 20 solutions 7

for higher numbers of iterations, but the effects show up readily enough.)

Only one team came up with any suggestions for how the interpreter could be improved still further. This can be

done in various ways, for example by "inlining" the code that is currently executed by calls to the next, push

and pop routines, and it was disappointing that nobody bothered to try this. Of course it means quite a lot of

changes have to be made. The solution kits show this in detail.

Java - 1000 iterations, 4000 upper limit, times in seconds (Win XP, 3GHz machine)

S1.PVM S2.PVM

Opcode set Limited Extended
High numbers 6.26 5.24 (84%)
Low numbers 8.99 4.74 (53%)
High numbers, checks removed 2.71 3.65 (134%)
Low numbers, checks removed 5.70 3.16 (60%)

Operations 394,334,033 263,191,026 (67%)

The "checks removed" figures were obtained using variations of the interpreter source in which all the checks that

CPU.SP remained in bounds had been suppressed, as well as the calls to next, push and pop (their effect was

achieved by "inlining" the equivalent code. One can see that an insistence on safety results in a considerable loss

of run-time efficiency.

I ran the simulations again using C# implementations of the system - the source code is to all intents and purposes

identical:

C# - 1000 iterations, 4000 upper limit, times in seconds (Win XP, 3GHz machine)

S1.PVM S2.PVM

Opcode set Limited Extended
High numbers 9.55 6.78 (71%)
Low numbers 9.73 7.02 (72%)
High numbers, checks removed 3.95 1.99 (49%)
Low numbers, checks removed 4.31 2.25 (52%)
Operations 394,334,033 263,191,026 (67%)

Interestingly, the C# system is sometime "slower" and sometimes "faster" than the Java one, and there is less

variation in timing between the "high" and "low" number mappings of the opcodes. The extended opcode set

always resulted in shorter times.

Great minds think alike - "Make it as simple as you can, but no simpler"

Computer Science 301 - 2011 - Practical 20 solutions 8

