
Computer Science 3 - 2011

Programming Language Translation

Practical for Week 23, beginning 3 October 2011 - Solutions

This practical was done fairly well by all but a few groups, These parsers are not hard to write -but, alas, they
are also easy to get wrong (putting getSym() calls in the wrong places!). One point that I noticed was that
some people were driving their parsers from the back, so to speak. Given a construction like

A = { "start" Something } "follow" .

it is far better to produce a parser routine like

while (sym.kind == startSym) { getSym(); Something(); } Accept(followSym);

than one like

while (sym.kind != followSym) { getSym(); Something(); } Accept(followSym);

for the simple reason that there might be something wrong with Something.

Complete source code for solutions to the prac are available on the WWW pages in the file PRAC23A.ZIP or
PRAC23AC.ZIP (C# version).

The scanner was not well done by some people. Comments are trickier than they look, so if you did not get that
section right study my solution below carefully and see how they could be handled. You must be able to handle
comments that are never closed, comments that follow one another with no tokens in between them, and
comments that look as they are about to finish, but then do not (like (* comment with wrong parenthesis *)). Did
your scanner handle comments like {} or {}{} or {{ } } or {a}{b} or mistakes like {)?

Secondly, the scanning of a Name is trickier than it looks - if a name contains ' or - characters one needs to check
that the next character is an uppercase letter. What if it isn't? Do we continue to scan and include a lower-case
letter or another ' or - that follws the first one or do we abort scanning, leaving the first incorrect character to be
picked up as the first character of the next toke to be scanned. For example, what should a scanner do when faced
with input like

Name { correct }
FirstName LastName { correct - pairs of two names in succession with no separator (dangerous) }
O'Malley { correct }
Mary-Beth { correct }

Name-you { incorrect, but how is it scanned? }
Name--You { incorrect, but how is it scanned? }
Name-'You { incorrect, but how is it scanned? }
Name-'you { incorrect, but how is it scanned? }
Name'-'you { incorrect, but how is it scanned? }

You might like to ponder this one and then look at the various alternatives given in the scanner that follws and try
to decide which is the best one. In any event, the scanner should be able to return a noSym if an incorrect name
is detectd. (I only thought of all this after examining the various submissions, some of which intrigued me, so
well done. It's fun to be made to think by what my students suggest!)

// +++++++++++++++++++++++++++++++ Scanner ++++++++++++++++++++++++++++++++++

// Declaring sym as a global variable is done for expediency - global variables
// are not always a good thing

static Token sym;

static int literalKind(StringBuilder lex, int defaultSym) {
String s = lex.toString();
if (s.equals("Children")) return childrenSym;
if (s.equals("Grandchildren")) return grandchildrenSym;
if (s.equals("Grandparents")) return grandparentsSym;
if (s.equals("Parents")) return parentsSym;
if (s.equals("Surname")) return surnameSym;
if (s.equals("brother")) return brotherSym;

if (s.equals("daughter")) return daughterSym;
if (s.equals("deceased")) return deceasedSym;
if (s.equals("father")) return fatherSym;
if (s.equals("husband")) return husbandSym;
if (s.equals("mistress")) return mistressSym;
if (s.equals("mother")) return motherSym;
if (s.equals("of")) return ofSym;
if (s.equals("partner")) return partnerSym;
if (s.equals("sister")) return sisterSym;
if (s.equals("son")) return sonSym;
if (s.equals("wife")) return wifeSym;
return defaultSym;

}

static void getSym() {
// Scans for next sym from input

while (ch > EOF && ch <= ' ') getChar();

if (ch == '{') { // must be a comment
int level = 1;
do {
getChar();
if (ch == '}') level--; else if (ch == '{') level++;

} while (level > 0 && ch != EOF);
if (ch == EOF)
reportError("unclosed comment"); // sym will be EOFSym

getChar(); getSym(); return;
}

/* ================ alternatively

if (ch == '{') { // must be a comment
int level = 1;
getChar();
do {
if (ch == '}') level--; else if (ch == '{') level++;
getChar();

} while (level > 0 && ch != EOF);
if (ch == EOF)
reportError("unclosed comment"); // sym will be EOFSym

getSym(); return;
}

==================== */

else {
StringBuilder symLex = new StringBuilder();
int symKind = noSym;
if (Character.isUpperCase(ch)) { // looks like a name will be scanned
symKind = nameSym;
symLex.append(ch); getChar();

// one way of proceeding:

do {
if (ch == '-' || ch == '\'') {
symLex.append(ch); getChar();
if (!Character.isUpperCase(ch)) symKind = noSym;

}
symLex.append(ch); getChar();

} while (symKind == nameSym && (ch == '-' || ch == '\'' || Character.isLowerCase(ch)));
if (symKind != noSym) symKind = literalKind(symLex, nameSym);

}

// */

/* another way of proceeding

do {
if (ch == '-' || ch == '\'') {
symLex.append(ch); getChar();
if (!Character.isUpperCase(ch)) symKind = noSym;

}
symLex.append(ch); getChar();

} while (ch == '-' || ch == '\'' || Character.isLowerCase(ch));
if (symKind != noSym) symKind = literalKind(symLex, nameSym);

}
*/

/* yet another way of proceeding

Computer Science 301 - 2011 - Practical 23 solutions 2

while (symKind == nameSym && (ch == '-' || ch == '\'' || Character.isLowerCase(ch))) {
if (Character.isLowerCase(ch)) {

symLex.append(ch); getChar();
}
else if (ch == '-' || ch == '\'') {
symLex.append(ch); getChar();
if (Character.isUpperCase(ch)) {
symLex.append(ch); getChar();

}
else symKind = noSym;

}
} // while
if (symKind != noSym) symKind = literalKind(symLex, nameSym);

}
*/

else if (Character.isLowerCase(ch)) { // presumably a word
do {
symLex.append(ch); getChar();

} while (Character.isLetter(ch));
symKind = literalKind(symLex, wordSym);

}

else if (Character.isDigit(ch)) { // presumably a number
do {
symLex.append(ch); getChar();

} while (Character.isDigit(ch));
symKind = numSym;

}

else { // presumably a single character token
symLex.append(ch);
switch (ch) {
case EOF:
symLex = new StringBuilder("EOF"); // special representation
symKind = EOFSym; break; // no need to getChar here, of course

case ',':
symKind = commaSym; getChar(); break;

case ':':
symKind = colonSym; getChar(); break;

case '(':
symKind = lparenSym; getChar(); break;

case ')':
symKind = rparenSym; getChar(); break;

case '[':
symKind = lbrackSym; getChar(); break;

case ']':
symKind = rbrackSym; getChar(); break;

case '=':
symKind = equalSym; getChar(); break;

case '.':
symKind = periodSym; getChar(); break;

default : // even here, scan to next character
symKind = noSym; getChar(); break;

}
}
sym = new Token(symKind, symLex.toString());

}
} // getSym

Here is a simple "sudden death" parser, devoid of error recovery:

// +++++++++++++++++++++++++++++++ Parser +++++++++++++++++++++++++++++++++++

static IntSet FirstRelative = new IntSet(brotherSym, daughterSym, fatherSym, husbandSym, mistressSym,
motherSym, partnerSym, sisterSym, sonSym, wifeSym);

static IntSet FirstGeneration = new IntSet(childrenSym, grandchildrenSym, grandparentsSym, parentsSym);
static IntSet FirstPossession = new IntSet(numSym, wordSym);

static void accept(int wantedSym, String errorMessage) {
// Checks that lookahead token is wantedSym
if (sym.kind == wantedSym) getSym(); else abort(errorMessage);

} // accept

static void accept(IntSet allowedSet, String errorMessage) {
// Checks that lookahead token is in allowedSet

if (allowedSet.contains(sym.kind)) getSym(); else abort(errorMessage);
} // accept

Computer Science 301 - 2011 - Practical 23 solutions 3

static void Family() {
// Family = { Generation } Surname { Generation } { Possession } "." .
while (FirstGeneration.contains(sym.kind)) Generation();
Surname();
while (FirstGeneration.contains(sym.kind)) Generation();
while (FirstPossession.contains(sym.kind)) Possession();

} // Family

static void Surname() {
// Surname = "Surname" ":" name { name } .
accept(surnameSym, " Surname expected");
accept(colonSym, " : expected");
accept(nameSym, " name expected");
while (sym.kind == nameSym) getSym();

} // Surname

static void Generation() {
// Generation = ("Parents" | "Grandparents" | "Children" | "Grandchildren") ":" NameList .
accept(FirstGeneration, "Parents, Grandparents, Children or Grandchildren expected");
accept(colonSym, " : expected");
NameList();

} // Generation

static void NameList() {
// NameList = OnePerson { "," OnePerson } .
OnePerson();
while (sym.kind == commaSym) {
getSym();
OnePerson();

}
} // NameList

static void OnePerson() {
// OnePerson = name { name } ["(" "deceased" ")"] { Description } [Spouse] .
accept(nameSym, " name expected");
while (sym.kind == nameSym) getSym();
if (sym.kind == lparenSym) {
getSym();
accept(deceasedSym, " deceased expected");
accept(rparenSym, " } expected");

}
while (sym.kind == lbrackSym) Description();
if (sym.kind == equalSym) Spouse();

} // OnePerson

static void Spouse() {
// Spouse = "=" name { name } .
accept(equalSym, " = expected");
accept(nameSym, " name expected");
while (sym.kind == nameSym) getSym();

} // Spouse

static void Description() {
// Description = "[" Relative "of" OnePerson "]" .

accept(lbrackSym, " [expected");
Relative();
accept(ofSym, " of expected");
OnePerson();
accept(rbrackSym, "] expected");

} // Description

static void Relative() {
// Relative = "son" | "daughter" | "mother" | "father" | "sister"
// | "brother" | "wife" | "husband" | "partner" | "mistress" .
accept(FirstRelative, " unknown relationship");

} // Relative

static void Possession() {
// Possession = [number] word { word } .

if (sym.kind == numSym) getSym();
accept (wordSym, " word expected");
while (sym.kind == wordSym) getSym();

} // Possession

A very comon mistake is to overlook and condone (not detect) some errors. Compare Constant above with this
(dangerous) version. If you can't see why I don't particularly like the code below, you had better come to ask!

Computer Science 301 - 2011 - Practical 23 solutions 4

static void Surname() {
// Surname = "Surname" ":" name { name } .
getSym();
accept(colonSym, " : expected");
accept(nameSym, " name expected");
while (sym.kind == nameSym) getSym();

} // Surname

The point to make is that a parsing method should not assume that it will always be called if its "precondition" is
met. That should be the case, but remember that anyone can write a compiler if the user will never make mistakes
- but users invariably do make mistakes. So if you have a production like

Something = "one" SomethingElse .

it is safer to code the parsing method as

void Something() }
accept(oneSym, "one expected");
SomethingElse();

}

and not as

void Something() {
getSym();
SomethingElse();

}

Of course, in this example, many of the methods would only have been called if the token had satisfied the
precondition, as some sort of test would have been made in the caller. Another point that is easily missed can be
illustrated by the production

Something = "one" FollowOne | "two" FollowTwo

If you code the parsing method as

void Something() {
if (sym.kind == oneSym) {
getSym(); FollowOne();

}
else {
getSym(); FollowTwo();

}
}

you run the risk of not detecting the error if Something() is called with sym corresponding to something other
than "one" or "two". The code would be much better as

void Something() {
if (sym.kind == oneSym) {
getSym(); FollowOne();

}
else if (sym.kind == twoSym) {

getSym(); FollowTwo();
}
else abort("invalid start to Something");

}

or as

Computer Science 301 - 2011 - Practical 23 solutions 5

void Something() {
switch(sym.kind)
case oneSym :
getSym(); FollowOne(); break;

case twoSym) :
getSym(); FollowTwo(); break;

default :
abort("invalid start to Something"); break;

}
}

although you could almost "get away" with

void Something() {
if (sym.kind == oneSym) {
getSym(); FollowOne();

}
else {
accept(twoSym, "invalid start to Something"); FollowTwo();

}
}

because an error message will be generated if the token is not one of "one" or "two".

If in doubt, use the accept() method rather than a simple getSym() - and make sure all your switch
statements always have a default clause.

You might be interested in the following variation on the Spouse() and parsers, which illustrate the use of a
do-while loop in a safe situation synchronisation.

static void Spouse() {
// Spouse = "=" name { name } .
accept(equalSym, " = expected");
do
accept(nameSym, " name expected");

while (sym.kind == nameSym);
} // Spouse

static void Possession() {
// Possession = [number] word { word } .

if (sym.kind == numSym) getSym();
do
accept (wordSym, " word expected");

while (sym.kind == wordSym);
} // Possession

Finally, notice that it was useful to overload the accept() method to have a version that tests a single token as
well as a second version that tests for membership of a set. This was not mentioned in The Book, although the
code was supplied in the kit.

static void accept(int wantedSym, String errorMessage) {
// Checks that lookahead token is wantedSym
if (sym.kind == wantedSym) getSym(); else abort(errorMessage);

}

static void accept(IntSet allowedTokens, String errorMessage) {
// Checks that lookahead token is in a set of allowedTokens
if (allowedTokens.contains(sym.kind)) getSym(); else abort(errorMessage);

}

Computer Science 301 - 2011 - Practical 23 solutions 6

