
Computer Science 301 - 2012

Programming Language Translation

Practical for Week 19, beginning 27 August 2012

This prac is due for submission by lunch time on your next practical day, correctly packaged in a transparent

folder as usual (unpackaged and late practical submissions will not be accepted - you have been warned).

Pracs should please be deposited in the hand-in box outside the lab. Only one set of listings is needed for each

group, but please enclose as many copies of the cover sheet as are needed, one for each member of the group.

These will be returned to you in due course.

Objectives:

In this practical you are to

• acquaint yourselves with some command line utilities, with various editors, interpreters and compilers;

• investigate various qualities of some computer languages and their implementations, including C, C++, C#,

Java, Pascal, Modula-2 and Parva.

• obtain some proficiency in the use of the various library routines that will be used later in the course.

The exercises for this week are not really difficult, although they may take longer than they deserve simply

because you may be unfamiliar with the systems.

Copies of this handout, the cover sheet, the Parva language report, and descriptions of the library routines for

input, output, string handling and set handling in Java and C# are available on the course web site at

http://www.cs.ru.ac.za/courses/CSc301/Translators/trans.htm .

Outcomes:

When you have completed this practical you should understand

• how and where some languages are similar or dissimilar;

• how to use various command line compilers and decompilers for these languages;

• what is meant by the term "high level compiler" and how to use one;

• how to measure the relative performance of language implementations;

• the elements and limitations of programming in Parva;

• how to use I/O and set handling routines in Java.

To hand in:

This week your group is required to hand in, besides the individual cover sheets for each member:

• One copy of the listings of your solutions to the programming exercises in tasks 6 and 11 - 14, produced by

using the LPRINT utility from the command line (which prints listings economically).

• Electronic copies of your source code for those exercises, using the electronic submission system.

• Your commentary and solutions to the questions posed below. Part of this consists of results that you should

be able to collect and record on the back of the cover sheet by the end of the first afternoon.

Keep the cover sheet and your solutions until the end of the semester. Check carefully that your mark has

been entered into the Departmental Records.



You are referred to the rules for practical submission which are clearly stated in our Departmental

Handbook. However, for this course pracs must be posted in the "hand-in" box outside the laboratory

before the next practical session and not given to demonstrators during the session.

A rule not stated there, but which should be obvious, is that you are not allowed to hand in another student's or

group's work as your own. Attempts to do this will result in (at best) a mark of zero and (at worst) severe

disciplinary action and the loss of your DP. You are allowed - even encouraged - to work and study with other

students, but if you do this you are asked to acknowledge that you have done so on all cover sheets and with

suitable comments typed into all listings. You are expected to be familiar with the University Policy on

Plagiarism, which you can consult by following a link from

http://www.scifac.ru.ac.za/ or http://www.ru.ac.za/

Before you begin

In this practical course you will be using a lot of simple utilities, and usually work at the "command line" level

rather than in a GUI environment. Note in particular:

• After logging on, you can get get to the DOS command line level by using the Start -> Programs ->

Accessories -> Command prompt sequence if you don't already have a shortcut (it is probably worth

creating a short cut).

• If UltraEdit is your editor of choice, note that the version in the lab can be configured to run various of the

compilers easily. To get this to work properly, you may need to start UltraEdit from a command window by

giving the command UEDIT32, rather than by clicking on an icon on the desktop or start menu.

• Listings are conveniently produced by using the LPRINT command from a command window, for example

LPRINT Fibo.cs Fibo.java

The listings come out in a small font which enables long lines to be read easily and with narrow line spacing

(so that you get more listing for your money). Please use this utility, which prints listings in a small

courier font to produce all listings submitted on this course, as it makes my job of reading the

submissions much easier. Program listings in "proportional font" are awkward to read.

• Before you can use LPRINT you will need to "capture" the printer, after opening a command window, by

using the command UNMAP (if necessary) followed by PRINTEAST or PRINTWEST as appropriate.

Copies of software for home use

For this prac it is recommended that you simply work in the Hamilton lab, rather than begging, borrowing or

stealing copies of a whole host of software for home use. In future pracs you will mostly use Java or C# only,

and the prac kits will, hopefully, contain all the extras you need.

Task 1 (a trivial one)

We shall make use of zipped prac kits throughout the course; you will typically find sources for each week's prac

in a file pracNN.zip on the server. Copy prac19.zip and xtacy.zip needed for this week, either

directly from the server on I:\CSC301\TRANS (or by using the WWW link on the course page), and extract the

sources when you need them, into your own directory/folder, perhaps by using UNZIP from a command line

prompt.

j:> copy i:\csc301\trans\prac19.zip

j:> unzip prac19.zip

In the past there has occasionally been a problem with running applications generated by the C# compiler if these

are stored on the network drives. If you have difficulties in this regard, for those parts of the practical that

involve the use of C#, work from the local D: drive instead. After opening a command window, log onto the D:

drive, create a working directory and unpack a copy of the prac kit there:

Computer Science 301 - 2012 - Practical 19 2



j:> d:

d:> md d:\G01T1111

d:> cd d:\G01T1111

d:> unzip I:\csc301\trans\prac19.zip

In the prac kit you will find various versions of a famous program for finding a list of prime numbers using the

method known as the Sieve of Eratosthenes. You will also find various versions of a program for computing

Fibonacci numbers recursively, some "empty" programs, and some other bits and pieces, including a few batch

files to make some of the following tasks easier.

Task 2 The Sieve of Eratosthenes in Pascal

You may not be a Pascal expert, but in the kit you will find some Pascal programs, including SIEVE.PAS that

determines prime numbers using a Boolean array to form a "sieve". Study and compile these programs - you can

do this from the command line quite easily by issuing commands like

FPC SIEVE.PAS

FPC FIBO.PAS

FPC EMPTY.PAS

to use the 32-bit Windows version of the Free Pascal compiler. Make a note of the size of the executable (use the

command DIR SIEVE.EXE and DIR FIBO.EXE and DIR EMPTY.EXE).

You may be able to produce a slightly faster version of the executable program for the Sieve example by

suppressing the index range checks that Pascal compilers normally include for code that accesses arrays:

FPO SIEVE.PAS

How do the sizes of the executables compare? Why do you suppose the "empty" program produces the amount of

code that it does?

Here is something more demanding: By experimenting with the CONST declaration, find out how large a sieve

the program can handle. What is the significance of this limit? Hint: you should find that funny things happen

when the sieve gets too large, though it may not immediately be apparent. Think hard about this one!

Task 3 The Sieve in C or C++

The kit also includes C and C++ versions of these programs. Compile these and experiment with them in the same

way with the 32 bit Windows compliers:

BCC SIEVE.C (using the Borland compiler in C mode)

BCC SIEVE.CPP (using the Borland compiler in C++ mode)

CL FIBO.C (using the WatCom compiler in C mode)

CL FIBO.CPP (using the WatCom compiler in C++ mode)

Once again, make a note of the size of the executables, and in particular, compare them with the earlier versions.

Can you think of any reason why the differences are as you find them?

Task 4 Jolly Java, what

There are two Java compilers available for your use. The JDK one is called javac and there is also the (much

faster) one called jikes (Jikes will only handle Java 1.4 level source, but that covers most things). Both of these

are conveniently invoked from within UltraEdit. You can also compile a Java program directly from the

command line with commands like

javac Sieve.java (using the (slow) JDK compiler)

jikes Sieve.java (using the (fast) Jikes compiler)

Computer Science 301 - 2012 - Practical 19 3



Task 5 See C#

You can compile the C# versions of these programs from the command line, for example:

csharp Sieve.cs

(You may have to do this on the local D: drive) Make a note of the size of the ".NET assemblies" produced

(SIEVE.EXE, EMPTY.EXE and FIBO.EXE). How do these compare with the other executables?

Task 6 Progress to Parva

On the course web page you will find a description of Parva, a toy language very similar to C, and a language for

variations on which we shall develop a compiler and interpreter later in the course. The main difference between

Parva and C/Java/C# is that Parva is stripped down to bare essentials.

Learn the Parva system by studying the language description where necessary, and trying the system out on the

supplied code (SIEVE.PAV and FIBO.PAV). There are various ways to compile Parva programs. The easiest is

to use a command line command:

parva Sieve.pav simple error messages

parva -o Sieve.pav slightly optimized code

parva -l Sieve.pav error messages merged into listing.txt

You will have to do this on the local D: drive.

More conveniently you might like to set up UltraEdit to allow for an option to compile Parva programs. If you

want to do this, use the Advanced->Tool Configuration pull down, then set the following fields

Command Line Parva %n%e
Working Directory %p
Menu Item Name Parva
Save all files first Selected
Output to List Box Selected
Capture Output Selected

and then click Insert. After this you can choose the Parva option on the Advanced menu to compile (and,

when successful, run) the program in the "current window". The demonstration programs Sieve.pav and

Fibo.pav in the kit have a few fairly obvious errors. Learn the syntax and semantics of Parva by correcting the

errors until the programs run correctly. Once again, experiment to see how large a sieve you can set up.

Task 7 A blast from the past - two 1980s vintage 16 bit DOS compilers

We have three early compilers which we want you to explore.

These compilers will not run directly on 64 bit Windows systems with 4 GB of memory. They were constructed

at a time when 64 KB of memory was considered "large", and as such they are masterpieces of software

engineering.

We can run 16 bit software in various ways. The simplest - adequate for our purpose - is to run the DOS 6.2

emulator known as DosBox as a Windows application. To do this, use the Start -> Programs-> All

Programs -> DosBox sequence, which will open an 80 x 25 text window and present you with a DOS

prompt.

(Advance warning - sometimes the mouse pointer disappears when you are using DOSBox. The Mouse does not

work within the system at all. If you lose the mouse, CTRL+F10 usually gets it back again).

At this prompt you can execute various familiar DOS commands, like DIR and DEL, but you cannot execute 32

bit software designed for Windows. No matter - you can edit files on the D: drive using 32 bit software, and they

will be visible in the DosBox window for further processing.

Computer Science 301 - 2012 - Practical 19 4



Turbo Pascal 6.0

Start by recompiling the Pascal source code mentioned previously, executing the code, and making the same

measurements as before, using the commands

TPC SIEVE.PAS

TPC FIBO.PAS

TPC EMPTY.PAS

and comment on any major differences that you notice from your use of Free Pascal. TPC executes a version of

Turbo Pascal last developed in 1990, by which stage the Pascal language it compiled was quite a lot more

complex than the original language of 1970.

Turbo Pascal 1.0

For some real fun, try out the early Turbo Pascal system, by giving the command

TURBO

This system is all contained in 39 KB, and that includes the compiler, a full screen editor, and runtime support.

Once the first screen loads you can import a source file, then press C to compile it and R to run the compiled

program.

Everything - even the object code - is kept in RAM, which partly explains the blazing speed. To save the

machine code version as a .COM file (another blast from the past) you will have to use the Options available in a

fairly obvious way.

TopSpeed Modula-2

You may not be a Modula-2 expert either, but examine, and then compile and run the equivalent Modula-2 code

supplied in the files SIEVE.MOD, EMPTY.MOD and FIBO.MOD. You can do this quickly using commands

under DOSBox like

M2C FIBO (note that the .MOD extension is not quoted here) or

M2O SIEVE (for the version that suppresses subscript checks)

Make a note of the size of the executables produced. How do they compare with the Pascal executables?

Approximately how big a sieve can the compiler handle? Why do you suppose there is a difference, when the

source programs are all so similar?

This compiler - known as TopSpeed Modula-2 - was another brilliant implementation, done partly by the same

team as developed Turbo Pascal. Once again, it was designed to run on small systems and exploit every ounce of

speed possible. Rhodes used this compiler for teaching between 1986 and about 1994, and I occasionally still do.

Nostalgia ain't what it used to be.

Task 8 High level translators

It may help amplify the material we are discussing in lectures if you put some simple Modula-2 programs through

a high-level translator we have available, and then look at, and compile, the C code to see the sort of thing that

happens when one performs automatic translation of a program from one high-level language to another.

We have a demonstration copy of a system (Russian in origin), that translates Modula-2 or Oberon-2 source code

into C. The system is called Extacy (a poor pun on "X to C", it seems). Whether or not the C one obtains is

usable depends, obviously, on having C translations of all of one's Modula-2 libraries as well. In principle all

one has to do is convert these libraries using the same system. Some very simple libraries came with the

demonstration kit, and we have produced one or two more, but we would have to pay many Roubles and do an

awful lot of work to get the system fully operational.

Once again, this is a 16-bit system, and you will have to execute it under DOSBox (and then compile the

generated C code using a 32-bit compiler under Windows).

Computer Science 301 - 2012 - Practical 19 5



• Unpacking the ZIP file onto the D: drive will have created a further subdirectory XTACY under the first

directory, with the parts of the Xtacy system ready for use.

• Log into this directory under DOSBox and then give the command

XC =m SOURCE.MOD

This should produce all the .H and .C files needed for a "make" of the parent program SOURCE.MOD

Convert the sample programs in this kit (SIEVE.MOD and FIBO.MOD) and the various support modules to C,

and then use a C++ compiler under Windows to compile and run the resulting code. Most simply, run the C

compiler directly from the command line:

BCC SIEVE.C EASYIO.C X2C.C

BCC FIBO.C EASYIO.C X2C.C

or

CL SIEVE.C EASYIO.C X2C.C

CL FIBO.C EASYIO.C X2C.C

Take note of, and comment on, such things as the kind of C code that is generated (is it readable; is it anything

like you might have written yourself?), and of the relative ease or difficulty of using such a system. You might

also like to comment on the size of the object code produced.

Task 9 - How fast/slow are various language implementations?

Different compilers - even for very similar programs - can produce code of very different quality. In particular

"interpretive" systems (of which the Parva implementation is one example) produce programs that run far more

slowly than do "machine" or "native" code systems. Carry out some tests to see these effects for yourselves, and

how severe they are, by comparing the execution times of some of the programs.

Hint: the machines in the Hamilton Labs are very fast, so you should try something like this: modify the sieve

programs to comment out nearly all the output statements (since you are not interested in seeing a zillion lists of

prime numbers, or measuring the speed of I/O operations), and then run the programs and time them with a stop

watch. Similarly, choose an upper limit for the list of Fibonacci numbers (and a suitable number of iterations and

sizes for the sieve) that will produce measurable times.

Although Java is often touted as being an interpreted language, in fact the latest versions of the Java "interpreter"

- the program executed when you give the java command - actually indulge in "just in time" compiling (see

textbook page 32) and "JIT" the code to native machine code as and when it is convenient - which results in

spectacularly improved performance. It is possible to frustrate this by issuing the java command with a

directive -Xint:

javac Sieve.java

java -Xint Sieve

to run the program in interpretive mode. Try this out as part of your experiment.

Summarise your findings on page 2 of the cover sheet, and go on to explain briefly how you come to the figures

that you quote. For example, is Java better/worse than C# (the source code in each case is almost identical)? Do

16-bit compilers fare better or worse than 32-bit compilers?

Task 10 - Reverse Engineering and Decompiling

In lectures you were told of the existence of decompilers - programs that can take low-level code and attempt to

reconstruct higher level code. There are a few of these available for experiment.

jad a decompiler that tries to construct Java source from Java class files

javap a decompiler that creates pseudo assembler source from a Java class file

Computer Science 301 - 2012 - Practical 19 6



gnoloo a decompiler that creates JVM assembler source from a class file

oolong an assembler that creates Java class files from JVM assembler source

ildasm a decompiler that creates CIL assembler source from a .NET assembly

ilasm an assembler that creates a .NET assembly from CIL assembler source

peverify a tool for verifying .NET assemblies

Try out the following experiments or others like them:

(a) After compiling Sieve.java to create Sieve.class, decompile this:

jad Sieve.class

and examine the output, which will appear in Sieve.jad

(b) Disassemble Sieve.class

javap -c Sieve >Sieve.jvm

and examine the output, which will appear in Sieve.jvm

(c) Disassemble Sieve.class

gnoloo Sieve.class

and examine the output, which will appear in Sieve.j

(d) Reassemble Sieve.j

oolong Sieve.j

and try to execute the resulting class file

java Sieve

(e) Be malicious! Corrupt Sieve.j - simply delete a few lines in the section that corresponds to the Main

function (use lines with opcodes on them). Try to reassemble the file (as above) and to re-run it. What

happens?

(f) Compile Sieve.cs and then disassemble it

csharp Sieve.cs
Disassemble Sieve (calls ildasm from a batch file, produces Sieve.cil)

and examine the output, which will appear in Sieve.cil

(g) Reassemble Sieve.cil

Reassemble Sieve (calls ilasm from a batch file, produces new Sieve.exe))

and try to execute the resulting class file

Sieve

(h) Be malicious! Corrupt Sieve.cil - simply delete a few lines in the section that corresponds to the Main

function (use lines with opcodes on them). Try to reassemble the file (as above) and to re-run it. What

happens?

(i) Experiment with the .NET verifier after step (g) and again after step (h)

NetVerify Sieve (calls peverify from a batch file)

And now for something completely different! (where have you heard that before?)

- and don't use a search engine!

Computer Science 301 - 2012 - Practical 19 7



Nothing you have done so far should have extended your programming talents very much. To get the old brain

cells working a little harder, turn your minds to the following tasks.

Pat Terry's problems are sometimes reputed to be hard. They only get very hard if you don't think very carefully

about what you are trying to do, and they get much easier if you think hard and spend time discussing the

solutions with the tutors or even the Tyrant himself. His experience of watching the current generation of

students suggests that some of you get beguiled by glitzy environments and think that programs just "happen" if

you can guess what to click on next. Don't just go in and hack. It really does not save you any time, it just

wastes it. Each of the problems can be solved elegantly in a relatively small number of lines of code if you think

them through carefully before you start to use the editor, and I shall be looking for elegant solutions.

Remember a crucial theme of this course - "Keep it as simple as you can, but no simpler". I am looking for

imaginative, clear, simple solutions to the problems.

Task 11 Creative Parva programming - the "hailstone" sequence

Nothing so far should have extended your programming talents very much. To get the brain cells working a little

harder, and to learn more about a language we shall meet again, solve the following problem using Parva:

Suppose N is a positive number that starts a sequence defined by the following rules: If a term M is odd, the next

term in the sequence is 3M + 1. If a term M is even, the next term is M / 2. The sequence terminates when M =

1. For example, the sequence that starts with N = 6 is as follows:

6 3 10 5 16 8 4 2 1

and in this particular case the length of the sequence is 9. Write a function procedure that, given N, will return

the length L of the sequence beginning with N. Then continue to write a little program that uses this function to

determine the smallest positive integer N that produces a sequence length L greater than K, where K is a number

used as input data. For example, for K = 12, the result should be N = 7. 7 is the smallest positive integer that

generates a sequence with more than 12 members.

Task 12 Something more creative - Lucky Numbers

Consider a sequence originally containing the N ordinal numbers

1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... N

Removing every second number produces the new sequence

1 3 5 7 9 11 13 15 17 19 21 23 25 27 ...

and now removing every third number from that sequence generates another new sequence

1 3 7 9 13 15 19 21 25 27 ...

and removing every fourth number from this sequence produces another new sequence

1 3 7 13 15 19 25 27 ...

This process continues indefinitely, or more exactly, as long as numbers are still there to be removed. For

example if N = 12 the process would terminate once we had generated the sequence 1 3 7.

The numbers which survive the culling process indefinitely are deemed to be "lucky".

Write a Parva program to determine the lucky numbers less than some number provided as input data.

Hint: Write a function that will generate a list of such numbers in an array parameter when supplied with an upper

limit N, and use this in a program that displays such a list.

Computer Science 301 - 2012 - Practical 19 8



Please read the next section carefully before you continue:

You will need to become acquainted with various library classes to solve these next problems - classes that we

shall use a great deal from here on as the rest of the software depends crucially on them. A simple sample

program using some of the library routines can be found in the kit as the program SampleIO.java, which is

listed below. Descriptions of these and other library routines can be found on the course website.

So please don't just rush into this, and please don't just "do your own thing" and use System.out.write and

Console.Write and all those old friends. In particular the I/O must be done using the IO, InFile and

OutFile classes and not all sorts of other classes and I/O and parsing methods that you might know of or read

up about. Study the SampleIO or SampleIO.cs program carefully and familiarize yourself with routines like

readChar, readString and readWord.

And now, to refresh your Java or C# skills, here are two more exercises:

Task 13 Something more creative - "Pig Latin"

fIay ouyay ancay eadray histay, ouyay ancay robablypay igurefay utoay hatway hetay roblempay siay. uorYay

eallyray eednay otay riteway wotay rogramspay; neoay otay ncodeeay ndaay neoay otay ecodedday enntencessay!

Task 14 Timetable clashes

A recurrent problem that students have is to check timetables for clashes. Wouldn't it be nice if we had programs

that could do this for us?

Well, of course we have, if we are prepared to write them. In the prac kit you will find a data file that describes

the Rhodes Timetable, and a program CLASH.EXE (originally written in C#; you may have to run it from the D:

drive) that reads this file, and then allows you to type in pairs of subjects, for each of which it will report whether

there are any clashes, and when these occur. A session with the program might go something like this

D:>CLASH

Subject 1 (or STOP) ? csc 1

Subject 2 (or STOP) ? gog 2

CSC 1 Mon 1 Tue 2 Wed 3 Thu 4 Fri 5

GOG 2 Mon 3 Tue 4 Wed 5 Wed 7 Wed 8 Wed 9 Wed 10 Thu 1 Fri 2

0 clashes

Subject 1 (or STOP) ? csc 1

Subject 2 (or STOP) ? gog 1

CSC 1 Mon 1 Tue 2 Wed 3 Thu 4 Fri 5

GOG 1 Tue 2 Wed 3 Thu 4 Fri 5

4 clashes Tue 2 Wed 3 Thu 4 Fri 5

Subject 1 (or STOP) ? stop

D:>

Your biggest task this week is to write a Java or C# program that achieves the same effect.

Warning - although this exercise is actually quite easy, I suspect that this may be a non-trivial problem for many

of you. So make sure you understand what is required before you rush in to writing code. Discuss the approach

you will take with the demonstrator team, and with each other.

The program involves various aspects of reading and parsing data - that is, recognizing components of data buried

in a large input file and extracting them for further processing. Parsing is a fundamental component of

programming language translation as well.

The problem is neatly solved if you make use of sets - each subject has a set of fixed time table slots (and a

possible set of alternative time-table slots, but we can ignore those; you can also ignore any periods out of the

Computer Science 301 - 2012 - Practical 19 9



range 1 ... 10 in any day). So the program can sensibly make use of an array of suitable records or structures,

one field of which is a set of integers.

Part of the data file is listed out below. You will need to study it before you begin. Notice that there is a lot of

information on each line that is effectively ignorable for this exercise.

22 February 2012 ; date of last modification
;
; Data file used by the CLASH program 2008 (all semesters too)
; and by WHEN, VENUE, VENALL and WHERE
;
; This file should only be edited with a "flat ASCII" editor, not a word
; processor. Use QEdit if all else fails (a very easy editor!)
;
; Format is as follows - spacing important before the "periods" start
;
; Line starting ; in column 1 is just commentary. Blank lines not allowed!!
;
; Sem = blank (both) or 1/F (1st) or 2/S (second)
; 1 and 2 for courses only offered in one semester
; F and S for components of a year course
; A and B for components of a year course for venues only
;
; * or + are subjects ignored by DUMPVEN and DUMPTIM
; col 2 non blank if you want to highlight changes
;
; Mnemonic of 7 chars is the one that is typed into Pat's programs
; Mnemonic of 7 chars is the one that is useful for venue loading/display
; Protea course code
; Mnemonic of 7 chars is the one that is used by Protea programs
; Followed by guesstimate of size and 5-letter venue code
;
; counts 3 or >4 are used in the venue programs (mixed venue subjects need a count of 2)
; counts 3 and 4 mean the subject is ignored when testing for clashes in Pat's helper options
; counts 2 or >4 are used in the timetable print program (only for blank, 1 or 2 type subjects)
;
; List of timetabled periods followed, terminated with .
; This is a little cryptic, but not too bad once you get used to it
; It's all linked to the TIMES file if there is no + or -
; L = alternative lecture
; T = alternative tut
; A = alternative prac
; P = fixed prac
; no letter - fixed period
;
; 11 = day 1 period 1; 35 = day 3 period 5; 59 = day 5 period 9; 1A = day period 10
;
; Mnemonic Booked Code Protea Size Venue Full Name Cryptic stuff with . at end
;2345678901234567890123456789012345678901234567890123456789012345678901234567890
; vvvvvvv vvvvvvv vvvvvvv vvvvvvv vvv vvvvv vvvvvvvvvvvvvvvvvvvvvvvvvvvv vvvvvvvvvvvvvvvvv
ACC 1 ACC 1 4101100 ACC 1 20 Barr2 Accounting 1 L31 L35 L42 L46 L52 L53 A17 A18 A27 A28 A4

1 ACC 101 ACC 101 4101101 ACC 101 20 Barr2 Accounting 101 (Sem 1) L31 L35 L42 L46 L52 L53 A17 A18 A27 A28 A4
2 ACC 102 ACC 102 4101102 ACC 102 20 Barr2 Accounting 102 (Sem 2) L31 L35 L42 L46 L52 L53 A17 A18 A27 A28 A4
* CSC 1 CSC 1 5101100 CSC 1 1 CheMa Computer Science 1 11 22 33 44 55 A17 A18 A19 A1A A27 A28 A29
* CSC 2 CSC 2 5101200 CSC 2 5 Glg11 Computer Science 2 13 24 35 41 52 P37 P38 P39 P3A .
* CSC 3 CSC 3 5101300 CSC 3 5 Glg11 Computer Science 3 12 23 34 45 51 P47 P48 P49 P4A .
.DRA 1 DRA 1 2301100 DRA 1 20 Gog10 Drama 1 22 33 44 A29 A2A A39 A3A A49 A4A .
;
1 EAR 101 EAR 101 26011G1 EAR 101 20 GLT Earth Science 101 (Sem 1) 11 22 33 44 55 A17 A18 A19 A27 A28 A29 A2A
;
; These next are not really "subjects" but are useful in marking special
; periods when fiddling
+ MON 1 MON 1 1 11 .
+ TUE 1 TUE 1 1 21 .
+ WED 1 WED 1 1 31 .
+ MON 10 MON 10 1 1A .
+ SLOT 1 SLOT 1 1 11 22 33 44 55 .
+ SLOT 2 SLOT 2 1 12 23 34 45 51 .

You may also like to experiment with the program WHEN.EXE in the prac kit, which creates a graphical output of

a timetable for selected subjects and explores whether apparent clashes can be resolved. It does this by using a

recursive "backtracking" approach to that used to solve the N Queens problem that you may have seen elsewhere.

The file KEY summarizes the mnemonic codes used for choosing subjects in the WHEN and CLASH programs.

Computer Science 301 - 2012 - Practical 19 10



Demonstration program showing use of InFile, OutFile and IntSet classes

This code is in the file SampleIO.java in the prac kit. There is an equivalent C# one in the file

SampleIO.cs.

import library.*;

class SampleIO {

public static void main(String[] args) {
// check that arguments have been supplied
if (args.length != 2) {
IO.writeLine("missing args");
System.exit(1);

}
// attempt to open data file
InFile data = new InFile(args[0]);
if (data.openError()) {
IO.writeLine("cannot open " + args[0]);
System.exit(1);

}
// attempt to open results file
OutFile results = new OutFile(args[1]);
if (results.openError()) {
IO.writeLine("cannot open " + args[1]);
System.exit(1);

}

// various initializations
int total = 0;
IntSet mySet = new IntSet();
IntSet smallSet = new IntSet(1, 2, 3, 4, 5);
String smallSetStr = smallSet.toString();

// read and process data file
int item = data.readInt();
while (!data.noMoreData()) {
total = total + item;
if (item > 0) mySet.incl(item);
item = data.readInt();

}
// write various results to output file
results.write("total = ");
results.writeLine(total, 5);
results.writeLine("unique positive numbers " + mySet.toString());
results.writeLine("union with " + smallSetStr

+ " = " + mySet.union(smallSet).toString());
results.writeLine("intersection with " + smallSetStr

+ " = " + mySet.intersection(smallSet).toString());
} // main

} // SampleIO

Computer Science 301 - 2012 - Practical 19 11


