Computer Science 301 - 2014
Programming Language Translation
Practical 1, Week beginning 24 March 2014 - Solutions

The submissions received were very varied, but on the whole of rather poor quality. There was some innovative
work handed in, but there was evidence that people had missed several important points. You can find complete
source versions of the program solutions in the solution kit PRAC1A.ZIP on the server. This file also contains
C# versions of the solutions for people who might be interested.

Some general comments:
(a) You should always put your names and a brief description of the program into your source code.

(b) Several submissions had almost no commentary at all, and this is just unacceptable. In particular, supply
commentary at the start of each method as to what it sets out to do, and on the significance of the
parameters/arguments.

(c) The pracs in this course are deliberately set to extend you, in the hope that you will learn a lot from each
one. Their completion requires that you apply yourself steadily throughout the week, and not just on
Thursday afternoon and the following Thursday morning!

(d) Some submissions were received that had not made proper use of the IO, InFile and OutFile classes
as you had been told to do. These library classes are designed to make text based I/O as simple as possible
without having to deal with buffered readers, scanners, exceptions, string tokenizers and all that stuff that
you were probably subjected to in CSC 102, but without realizing that the best thing to do with bizarre
code is to hide its details in a well-designed library. Have a look at the solutions below, where hopefully
you will see that the I/O aspects have been made very simple indeed.

(e) Please learn to use the LPRINT facility for producing source listings economically. In later practicals the
listings get very wide, and they are hard to read if they wrap round!

Tasks 2 to 7 - The Sieve of Eratosthenes

The first tasks were fairly straightforward, though several groups probably had not bothered to see whether the
extended sieve programs would execute properly. The Pascal compiler only uses 16-bit INTEGER arithmetic
from (-32768 .. 32767), but it may appear to allow large array sizes, as arrays can also be indexed by so-called
long variables. And, in fact (probably comes as a surprise to you C-language types), Pascal and Modula also
allowed arrays to have negative indices, so that one could declare, for example

VAR RomePopulation : ARRAY [-45 .. 3201 OF INTEGER; (* an array with 366 elements *);
BigArrayOfRealValues : ARRAY [0 .. 655341 OF REAL; (* an array with 65535 elements *)

Since Pascal represented INTEGER values as signed 16-bit numbers, an extra limitation was imposed - an array
indexed by an INTEGER variable could not get access to an element whose subscript is greater than 32767.

The question was, perhaps, badly worded. The Sieve size could get pretty large - in principle 65534 - but the
Sieve algorithm as supplied could and did easily collapse when applied to large primes, using the standard
INTEGER type. Consider the code:

K := I (* now cross out multiples of I *);
REPEAT

Uncrossed[K] := FALSE; K := K + I
UNTIL (K > N);

When I becomes large enough, K+I should really be larger than 32767, but the overflow means that it appears to
go negative (think back to your CSC 201 course). This happens for the first time after detecting the prime
number 16411, so that the maximum effective sieve algorithm with the code above seems to be limited to primes
from 1 to 16411.

We can extend the range of the algorithm by a trick which I did not really expect you to discover, but which is
worth pointing out. Simply replace the above code by

K := I (* now cross out multiples of I *);
REPEAT

Uncrossed[K] := FALSE; K := K + I
UNTIL ((K > N) OR (K < 0))

Some students get intrigued by all this and probe further (well done). If you try interesting things like "turn off
the range checks" the algorithms appear to allow you to generate higher prime numbers. Trouble is, they don't
do it properly, and you find that for some "bigger" sieve arrays you actually seem to get fewer prime numbers
generated.

Frankly, learning to program in "non-bondage" languages like C++ is like trying to learn to drive in a car without
brakes - very exciting, you go faster and faster, and then you die, sooner or later. Fortunately C# and Java are
much safer.

The 32-bit compilers don't seem to have this problem (or at least, it is much harder to reproduce it), but, of
course, the amount of real memory available to them may be limited).

There were several specious reasons thought up to explain why the executables were of such differing sizes. It is
not true that this is a function of the sieve size to any marked degree, as the code and data areas are handled
separately. The real reasons are that the efficiency of code generation differs markedly from one compiler to
another, and that some implementations build in a great deal more extraneous code than others - you can see this
in the smaller executable when some compilers are run in "optimizing" mode. The C and C++ executables differ
enormously in size - no doubt due to the vast amounts of code needed to support the iostream library - and the
Turbo Pascal 6.0 compiler produces amazingly tight code.

The Borland 5.5 and WatCom C/C++ compilers are 32-bit ones, rather than 16-bit ones. But even allowing for
this, they suffer from bizarre code bloat for small applications. There are command line parameters and options
that one can set to try to produce tighter code, if one bothers to experiment further. In fact, the scripts in the prac
kit were not quite correct, as I discovered later - my apologies. Some (most) of the overheads may relate to the
fact that they have to produce "Windows" compatible programs. Compilers like this are clearly designed with an
"everyone has 8GB of memory and 3TB of disk space, and if they don't they should go and buy more"
philosophy.

The "executables" produced from the C# compiler are not true executables in the same sense as those produced by
the C++ and Pascal compilers, as the code in them still has to be "jitted" into its final form. Interestingly, an
earlier release a few years ago produced sizes of 28 672, 28 672 and 16 896 for these programs.

The limitation imposed by the Parva system on the sieve size is entirely due to the fact that the interpreter system
only allows for about 50 000 words of simulated memory - which has to hold the pseudo-code and all variables.
The limit on the sieve size was a bit over 49 000. This could have been extended simply by modifying the
interpreter, and then recompiling it, but you were not in a position to do that.

Sieve Fibo Empty

Code Size | Code Size | Code Size
Turbo Pascal 1 11 751 11 601 11 386 Max prime ? 16411 .COM file sizes
Turbo Pascal 6 3 184 2 640 1 472 Max prime ? 16411 .EXE file sizes
Optimized
Turbo Pascal 6 3 104 2 640 1 472 Max prime ? 16411 .EXE file sizes
Free Pascal 34 612 33 588 30 516 Max Prime ? 16411 .EXE file sizes
Optimized
Free Pascal 34 100 33 588 30 516 Max prime ? 16411 .EXE file sizes
Borland C 66 560 66 048 52 224 .EXE file sizes
Borland C++ 149 504 148 480 47 104 .EXE file sizes
Watcom C 34 816 34 816 21 504 .EXE file sizes
Watcom C++ 50 688 50 176 21 504 .EXE file sizes
c# 32 768 32 256 31 744 .EXE file sizes
Parva N/A N/A N/A Sieve Limit 49000

Computer Science 301 - 2014 - Practical 1 2

The "executables" produced from the C# compiler are not true executables in the same sense as those produced by
the C++ and Pascal compilers, as the code in them still has to be "jitted" into its final form. Interestingly, an
earlier release a few years ago produced sizes of 28 672, 28 672 and 16 896 for these programs.

The limitation imposed by the Parva system on the sieve size is entirely due to the fact that the interpreter system
only allows for about 50 000 words of simulated memory - which has to hold the pseudo-code and all variables.
The limit on the sieve size was a bit over 49 000. This could have been extended simply by modifying the
interpreter, and then recompiling it, but you were not in a position to do that.

Task 6 - The Sieve in Parva

The corrected code is very simple. A few groups got it badly wrong, with braces in the wrong places. Note that
the body of a do-while loop has to be executed at least once, which means that the code should really have been
transformed to achieve this. However, even if this is not done it "works". Why?

void main() {
/| Sieve of Eratosthenes for finding primes 2 <= n <= 49000 (Parva version)
// P.D. Terry, Rhodes University, 2014
const Max = 49000;
bool[] Uncrossed = new bool[Max1; /] the sieve
int i, n, k, it, iterations, primes = 0; // counters
read("How many iterations? ", iterations);
read("Supply largest number to be tested ", n);
if (n > Max) {
write("n too large, sorry");
return;
b
it = 1;
while (it <= iterations) {
primes = 0;
write("Prime numbers between 2 and " , n, "\n");

write(" \n");
i=2;
while (i <= n) { /] clear sieve

Uncrossedl[i-2]1 = true;
i=1+1;
X
i=2;
while (i <= n) { /| the passes over the sieve
if (Uncrossedl[i-21) {
if (primes - (primes/8)*8 == 0) // this is equivalent to primes % 8 - not many knew this!!
write("\n"); // ensure Lline not too long
primes = primes + 1;
write(i, "\t");
k =i; // now cross out multiples of i
Uncrossed[k-21 = false;
k =k + i;
while (k <= n) {
Uncrossed[k-2]1 = false;
K=k + i

it =it + 1;
write("\n");
X
write(primes,
¥ // main

primes");

Task 8 - High level translators

Some of what may perceived as "unreadability" presumably relates to the fact that Parva2ToJava is obliged to
translate the read and write multiple parameter functions into a collection of equivalent IO operations from the
supporting library. Some people commented that Parva2ToJava seemed capable of generating Java code that
could not be compiled, but had not noticed that in this case there had been error messages during the translation
into Java. Of course, what should have happened in this case was that the bad Java code should have been deleted
before the program ceased execution, and this has now been done. (Did I not tell you that the best way to test a
compiler is to let a lot of students loose trying to use it?)

Computer Science 301 - 2014 - Practical 1 3

Not everyone may have seen the point of that using a tool like this would allow you to develop and maintain your
programs in Parva and then simply convert them to Java when you want to get them compiled on some other
machine (berhaps so that they can run quickly!). So normally a user of Parva2ToJava would not read or edit
the Java code at all. Because of this it is not necessary for the converted code to incorporate the original
comments.

Task 10 - How fast/slow are various implementations?

Some times (seconds) taken to execute the various programs are shown below. for running these systems over
several years, computers and operating systems. In earlier times the systems ran Windows XP-32. I suspect that
not all these times are accurate, but we don't have the original systems to run more trials.

We note several points of interest:

(a) The Parva interpreted system is about two orders of magnitude slower than the native-code systems. Even
here we can see the benefits of using an optimizing system, simple though this is (later we shall discuss this
in more detail).

(b) In deriving these figures some experimentation was first needed so as to find parameters that would yield
times sufficiently long to make comparisons meaningful. The times were obtained by simple use of a
stopwatch, and of course there is always an element of reaction time in such measurements which we
should minimize. The output statements were commented out so that all that was really being measured
was the time for the algorithms themselves (I suspect not everybody realized this, as some submitted
timings were very way out). There was a script timer .bat in the kit which some people tried using to
overcome these problems, which really requires slight further modification of the code being timed so as to
eliminate the interactive input phase.

(©) The Java system, when JITted, is way better than when the JVM runs in pure interpreter mode.

(d) Even allowing for the reaction time phenomenon, there are some anomalies here. One might expect the
execution times to be very closely related to the processor clock speeds, and that the ratio of times
measured on the laptops and the lab machines for each application would have been the same, but clearly
they are not. I expect that the differences - which are quite marked - can be put down to the different
interior architectures of the processors themselves, but I have not had time to explore this further.

Sieve: Iterations 10 000 Size of Sieve 16 000
1GHz LT 2GHz LT 3GHz PC 3GHz i7 3GHz I5 3GHz I5
XP 32 XP 32 XP 32 XP 32 Win7 64 | DosBox
Turbo Pascal 1.0 2.90 3.2 73
Turbo Pascal 6.0 43.70 25.4 500
Turbo Pascal 6.0 (opt) 3.23 3.0 69
Free Pascal 9.2 6.09 [4.1
Free Pascal (optimized) 8.6 4.57 4.2 3.4
4 3.8 1.54 2.2 1.2 1.1
C++ 4.1 1.55 2.1 1.1 1.0
c# 3.7 1.72 3.2 1.6 1.2
Java (with JIT) 6.6 1.55 3.0 1.2 1.0
Java -Xint (interpret) 74.3 10.64 46.6 1.4 9.0
Parva 1080 475 448 335 240
Parva (optimized) 810 375 360 275 210

(e) The times taken by the 16-bit systems running under the DOSBox emulator show quite clearly the adverse
effects of emulation. This system was apparently developed to allow game freaks to run "old" computer
games designed in the 8086, 80386 and 80486 era to run on modern computers running at vastly greater

Computer Science 301 - 2014 - Practical 1 4

clock speeds. There must be better ways of running old number-crunchers on the latest operating systems,

and this will be investigated further in the future if I get the chance.

Fibo: Upper Llimit 40
1GHz LT 2GHz LT 3GHz PC 2GHz i7 3GHz I5 3GHz I5
XP 32 XP 32 XP 32 XP 32 Win7 64 | DosBox
Turbo Pascal 1.0 7.60 4.1 323 Ignore overflow
Turbo Pascal 6.0 31.00 17.7 275
Turbo Pascal 6.0 (opt) 31.00 17.7 275
Free Pascal 12.7 4.54 4.2 2.6 2.4
Free Pascal (optimized) 12.3 4.33 4.1 2.5 2.1
c 12.3 5.60 3.9 2.5 1.7
C++ 12.2 5.44 4.0 2.3 1.6
c# 9.8 5.00 5.1 2.3 1.6
Java (with JIT) 9.3 2.56 2.7 1.3 1.2
Java -Xint (interpret) 92.6 26.00 48.2 17.4 13.3
Parva 692 317 277.0 122.0
Parva (optimized) 257 225.0 100.0

Of course, it is fairly dangerous to draw conclusive results from such a crude set of tests
the main effects show up quite clearly.

Task 13 One way of speeding up tedious recursion

and limited sample, but

A number of people missed the point badly. Their solutions simply became equivalent to a "fast iterative"
method, which worked simply because the while loop on the main routine worked upwards! Next time I use this

exercise I shall try to remember to suggest that it work downwards.
The sort of solution I was looking for is as follows:

// Print a table of Fibonacci numbers using (fast) recursive definition
// and memoisation
// P.D. Terry, Rhodes University, 2014
int[]l fibmem = new intL[40001;
int fib(int m) {
// Compute m-th term in Fibonacci series 0,1,1,2 ...
if (m == 0) return 0;
if (m 1) return 1;
if (fibmemCml == 0)
fibmemLml = fib(m-1) + fib(m-2);
return fibmem[m];
> /] fib

/] store the recursion value

void main() {
int Limit;
read("Supply upper Llimit ",
int i = 0;
while (i <= Limit) {
fibmem[il = O;
i=1i+1;

Limit);

X
i=0;
while (i <= Limit) {
write(i, "\t", fib¢i), "\n");
i=1d+1;
} // while
¥ // main

Even if the function were to be called for the first time with a large value of the arguments, as in this variation

Computer Science 301 - 2014 - Practical 1 5

i = Llimit;

while (i >= 0) {
write(i, "\t", fib(i), "\n");
i=1i-1;

¥ // while

it would force a recursive chain that would rapidly fill the entire array (puzzle this one out if it is not obvious) and

further calls for smaller arguments could then pick the values stored in the array.

The technique is called "memoization".
strange name.

I was pleased to see that some students had come across this rather

Task 14 Creative programming - How long will my journey take?

The main point of this exercise was to give some exposure to the I/O libraries - especially the input routines - and
the ArrayList class, which we shall use repeatedly later on as a simple container class for building up symbol
tables and the like. For ease of use, the little BusStop class in the suggested code below has exposed its data

members as "public”, thus eliminating the need for "getter" methods.

Data is of the form

NSNS
s

// P.D. Terry, Rhodes University, 2014

import Llibrary.*;
import java.util.*;

class BusStop {
public String name;
public int toNext;

public BusStop(String name, int toNext) {
this.name = name;
this.toNext = toNext;

¥ // constructor

} // BusStop
class Poster {
public static void main(String[] args) {

ArrayList<BusStop> list =
int i, j, toNext;

Set up a poster of travel times between any two stops on a bus route

College 8 Hamilton 5 Oakdene 12 Gino's 25 Mews 9 Union 12 Steers 17 Athies

new ArrayList<BusStop>();

// Construct list of bus stop and travel times

do {
String stationName = IO.readWord();
toNext = I0.readInt();
if (I0.noMoreData()) toNext = 0;
list.add(new BusStop(stationName, toNext));
} while (toNext > 0);

/]| easy way to read a simple word
easy way to read and decode an integer
easy way to detect when data is exhausted

// Construct symmetric matrix of accumulated travel times

int[]1L] matrix =
for (i = 0; i <= list.size(); i++) {
matrix[ilL[il = 0;

new intLlist.size() + 1] [list.size() + 11;

for (j =1 + 1; j < list.size() + 1; j++)
matrixC[jICil = matrixCilLj] = matrix[iJCj-11 + Llist.get(j-1).toNext;
>
// Output bus stop names and matrix

I0.write(" ", 12);

for (i = 0; i < list.size(); i++)
I0.write(list.get(i).name, 10);

I0.writeLine();

I0.writeLine();

for (i = 0; i < list.size(); i++) {
I0.write(list.get(i).name, -10);
for (j = 0; j < list.size(); j++)

I0o.write(matrix[ilLjl, 10);

I0.writeLine();

¥ // main

} // Poster

Computer Science 301 - 2014 - Practical 1

/]| easy way to use a fixed size output field

/] -10
/] +10

left justified for neatness

right justified for neatness

Some submissions made use of the inFile and outFile libraries, rather than relying on redirection from the
command prompt. Just for fun, here is the C# version of such an implementation from which you will see how
close C# and Java are. (I happen to think array/matrix subscripting is easier in C#.)

Frankly, some of the submissions were bizarre. The I/O input routines in the Terry library are very versatile.
There is no need to read everything as strings, or as one long line, and then convert to and from strings and
integers all over the show. I guess you do this because in spite of my best efforts to persuade colleagues
otherwise, you were persuaded by said colleagues to use the Scanner class ...

// Set up a poster of travel times between any two stops on a bus route

// Dpata is of the form

// college 8 Hamilton 5 Oakdene 12 Gino's 25 Mews 9 Union 12 Steers 17 Athies

// This version uses InFile and OutFile Llibraries rather than redirecting I/0 with the I0 Llibrary
// P.D. Terry, Rhodes University, 2014

using System;
using Library;
using System.Collections.Generic;

class BusStop {
public string name;
public int toNext;

public BusStop(string name, int toNext) {
this.name = name;
this.toNext = toNext;

} // constructor

} // BusStop
class Poster {

public static void Main(string[]l args) {
List<BusStop> list = new List<BusStop>();
int i, j, toNext;

// Command line argument processing
Check that arguments have been supplied
if (args.Length != 2) {
Console.WriteLine("missing args");
System.Environment.Exit(1);

// Attempt to open data file

InFile data = new InFile(args[01);

if (data.OpenError()) {
Console.WriteLine("cannot open " + args[01);
System.Environment.Exit(1);

b

Attempt to open results file
OutFile results = new OutFile(args[11);
if (results.OpenError()) {
Console.WriteLine("cannot open " + args[1]1);
System.Environment.Exit(1);
b

// Construct List of bus stop and travel times
do {

string stationName = data.ReadWord();

toNext = data.ReadInt();

if (data.NoMoreData()) toNext = 0;

list.Add(new BusStop(stationName, toNext));
} while (toNext > 0);

// Construct symmetric matrix of accumulated travel times
int[,] matrix = new intLlist.Count + 1, list.Count + 11;
for (i = 0; i <= list.Count; i++) {
matrixCi, il = 0;
for (j =i+ 1; j < list.Count + 1; j++)
matrix[j, i1 = matrix[i, j1 = matrix[i, j-11 + Llist[j-1].toNext;

Output bus stop names and matrix
results.Write(" ", 12);
for (i = 0; i < list.Count; i++) results.Write(listLil.name, 10);
results.WriteLine();
results.WriteLine();
for (i = 0; i < list.Count; i++) {
results.Write(list[il.name, -10);
for (j = 0; j < list.Count; j++) results.Write(matrix[i, j1, 10);
results.WriteLine();
b
results.Close();
¥ // main

} // Poster

Computer Science 301 - 2014 - Practical 1 7

Task 15 Creative programming - Goldbach's conjecture

Where they had bothered to try this one, several groups had grasped the concept of setting up a set to contain the
prime numbers. Many had not realised that one could use a set in place of the boolean array in order to apply the
Sieve algorithm in the first place, so have a look at the code below and see how easy this is to do, and how the the
sieve is constructed from a simple adaptation of the code given to you earlier. There is, of course, no need for the
primes method to do any output, or even to count how many prime numbers are added to the set. The IntSet
class, like the ArrayList (Java) or List class (C#) is "elastic, expanding automagically when necessary,
unlike a simple array as used in the original code.

There was some very tortuous and confused code submitted thereafter for the very simple task of trying to find
whether an even number could be expressed as the sum of two of those primes. You only need one loop for each
attempt - if N is to be expressed as the sum of two numbers A and B, then there is no need to try out all possible
combinations of A and B (since B must = N - A). Additionally, we need only test values for A from 2 to at most
N/2 (think about it!). And we can make the system even more efficient if we use while loops rather than fixed
Jfor loops, and stop the loops early when it is clear that there is no need to continue.

So one way of programming this exercise would be as below.

/]| sieve of Eratosthenes (in a set) for testing Goldbach's conjecture
// P.D. Terry, Rhodes University, 2014

import Llibrary.*;
class Goldbach {

public static void main(String L[] args) {
int Llimit = I0.readInt("Supply largest number to be tested ");
IntSet primeSet = primes(limit);
boolean conjecture = true; // optimistic
int test = 4;
while (conjecture && test <= Llimit) {
boolean found = false; // try to find the pair
int i = 2;
while (i <= test / 2 && !found) {
if (primeSet.contains(i) && primeSet.contains(test - i)) { // short-circuit helps too!
found = true;
I0.writeLine(" " + test + "\t" + i + "\t" + (test - i));
X
else i++;
b
if (Ifound) {
I0.writeLine("conjecture fails for ", test);
conjecture = false;

>
test = test + 2; // move on to next even number
>
I0o.writeLine("Conjecture seems to be " + conjecture); // final result of test
¥ // main

static IntSet primes(int max) <{
// Returns the set of prime numbers smaller than max
IntSet primeSet = new IntSet(); [/ the prime numbers
IntSet crossed = new IntSet(); /] the sieve
for (int i = 2; i <= max; i++) { [/ the passes over the sieve
if (lcrossed.contains(i)) {
primeSet.incl(i);

int k = i; // now cross out multiples of i
do {
crossed.incl(k);
k += 1;
} while (k <= max && k > 0);
b
b
return primeSet;
} // primes

} // Goldbach

Terry Theorem 1: You can improve on almost any program if you think about it. The code above still does
about twice as much work as it needs to do. Why - and how could you improve it by a very simple modification?

Computer Science 301 - 2014 - Practical 1 8

