
Computer Science 3 - 2014

Programming Language Translation

Practical 3, Week beginning 14 April 2014

Hand in your solutions to this practical before lunch time on your next practical day, correctly packaged in a

transparent folder with your cover sheets. Unpackaged and late submissions will not be accepted - you have

been warned. Please do NOT come to a practical and spend the first hour printing or completing solutions from

the previous week's exercises. Since the practical will have been done on a group basis, please hand in one copy

of the cover sheet for each member of the group. These will be returned to you in due course, signed by the

marker. Please make it clear whose folder you have used for the electronic submission, for example

g03A1234. Lastly, please resist the temptation to carve up the practical, with each group member only doing one

task. The group experience is best when you discuss each task together.

Objectives:

In this practical you are to

• familiarize you with simple applications of the Coco/R parser generator, and

• write grammars that describe simple language features.

You will need this prac sheet and your text book. As usual, copies of the prac sheet are also available at

http://www.cs.ru.ac.za/courses/CSc301/Translators/trans.htm .

Outcomes:

When you have completed this practical you should understand

• how to develop context-free grammars for describing the syntax of various languages and language features;

• the form of a Cocol description;

• how to check a grammar with Coco/R and how to compile simple parsers generated from a formal grammar

description.

To hand in:

This week you are required to hand in, besides the cover sheet:

• Listings of your solutions to the grammar problems, produced on the laser printer by using the LPRINT utility

Some of these listings will get quite "wide" so please set them out nicely.

• Electronic copies of your grammar files (ATG files).

I do NOT require listings of any Java or C# code produced by Coco/R.

Keep the prac sheet and your solutions until the end of the semester. Check carefully that your mark has

been entered into the Departmental Records.

You are referred to the rules for practical submission which are clearly stated in our Departmental

Handbook. However, for this course pracs must be posted in the "hand-in" box outside the laboratory and

not given to demonstrators.

A rule not stated there, but which should be obvious, is that you are not allowed to hand in another group's or

student's work as your own. Attempts to do this will result in (at best) a mark of zero and (at worst) severe

disciplinary action and the loss of your DP. You are allowed - even encouraged - to work and study with other

students, but if you do this you are asked to acknowledge that you have done so. You are expected to be familiar

with the University Policy on Plagiarism, which you can consult by following the links at:

http://www.scifac.ru.ac.za/ or from http://www.ru.ac.za/

Task 1 - creating a working directory and unpacking the prac kit

There are several files that you need, zipped up this week in the file PRAC3.ZIP (Java version) or

PRAC3C.ZIP (C# version).

• Immediately after logging on, get to the DOS command line level by using the Start -> Command
prompt option from the tool bar.

• Copy the prac kit into a newly created directory/folder in your file space

j:
md prac3
cd prac3
copy i:\csc301\trans\prac3.zip (Java) or prac3c.zip (C#)
unzip prac3.zip

You will find the executable version of Coco/R and batch files for running it, frame files, and various sample

programs and grammars, contained in files with extensions like

*.ATG, *.PAV, *.TXT *.BAD

Task 2 - Simple use of Coco/R - a quick task

In the kit you will find Calc.atg. This is essentially the calculator grammar on page 106 of the text, with a

slight (cosmetic) change of name.

Use Coco/R to generate a parser for data for this calculator. You do this most simply by giving the command

cmake Calc

The primary name of the file (Calc) is case sensitive. Note that the .ATG extension is needed, but not given in

the command. Used like this, Coco/R will simply generate three important components of a calculator program -

the parser, scanner, and main driver program. Cocol specifications can be programmed to generate a complete

calculator too (ie one that will evaluate the expressions, rather than simply check them for syntactic correctness),

but that will have to wait for the early hours of another day.

(Wow! Have you ever written a program so fast in your life before?)

Of course, having Coco/R write you a program is one thing. But it might also be fun and interesting to run the

generated program and see what it is capable of doing.

A command like

crun Calc calc.txt

will run the program Calc and try to parse the file calc.txt, sending error messages to the screen. Giving the

command in the form

crun Calc calc.bad -L

will send an error listing to the file listing.txt, which might be more convenient. Try this out.

Well, you did all that. Well done. What next?

For some light relief and interest you might like to look at the code the system generated for you (three .java
files are created in a subdirectory Calc (Java) or the parent directory (C#) - you don't have to comment this

week, simply gaze in awe. Don't take too long over this, because now you have the chance to be more creative.

That's right - we have not finished yet. Modify the grammar so that you can use parentheses in your expressions,

allow leading unary + or - signs, can raise quantities to a "power" (as in 12↑2 + 5↑6, meaning 122 + 56)

Computer Science 301 - 2014 - Practical 3 2

and also give the calculator a square-root capability (as in 4 + sqrt(5 * 12)). Oh, and while you are at it.

allow it to recognize numbers that incorporate a decimal point, as in 3.4 or 3. or .45

Of course, the application does not have any real "calculator" capability - it cannot calculate anything (yet). It

only has the ability to recognise or reject expressions at this stage. Try it out with some expressions that use the

new features, and some that use them incorrectly.

Warning. Language design and grammar design is easy to get wrong. Think hard about these problems.

Task 3 - Meet the staff of the Hamilton Building

Develop a Cocol grammar that will describe a list of the names of staff who have optional titles, first names

and/or initials, surnames, and (usually) qualifications, for example (Staff.txt):

R. J. Foss, BSc, MSc, PhD.

Professor Philip Machanick, PhD.

Professor P. D. Terry, MSc, PhD.

George Clifford Wells, BSc(Hons), MSc, PhD.

Greg G. Foster, PhD.

James Connan, MSc.

Ms Michelle Coupe.

Dr Karen Lee Bradshaw, MSc, PhD.

Mrs Mici Halse, MSc.

C. Hubert H. Parry, BMus.

Professor Hannah Thinyane, BA, BSc, PhD.

Dr Barry V. W. Irwin, PhD.

Miss Busi Mzangwa.

Hint: notice the rather critical placing of commas and periods in this file. The exercise is partly one of being able

to define tokens sensibly. Try to do this realistically so far as names are concerned, and limit yourself to a few

examples of qualifications only.

Task 4 - So what if Parva is so restrictive - fix it!

Parva really is a horrid little language, isn't it? But its simplicity means that it is easy to devise Terry Torture on

the lines of "extend it".

In the prac kit you will find the grammar for the first level of Parva, taken from page 164. Generate a program

from this that will recognise or reject simple Parva programs, and verify that the program behaves correctly with

two of the sample programs in the kit, namely VOTER.PAV and VOTER.BAD.

cmake Parva
crun Parva voter.pav
crun Parva voter.bad -L

Now modify the grammar to add various features. Specifically, add (and check that the additions work):

• The % operator that you missed so much!

• All those fun arithmetic assignment operators: +=, -= *= and /=.

• A repeat-until loop, a do-while loop, and break and continue statements

• Increment and decrement statements like Curse++; --Temper; and Bug[N]--; (treat these as

variants of assignment statements, not as components of expressions).

• A for loop inspired by the one in Java and, as an alternative, one inspired by the one in Python.

• A restriction that an identifier may contain underscore characters, but may not end with one, so that

My_Name_is_Pat would be acceptable, but not Pat_is_my_name___.

• An expression operator hierarchy that matches the one in C/Java rather than the one in Pascal/Modula.

• Optional elseif clauses and an else clause for the if statement.

• A character type, and some way of converting from character values to integer values and vice versa.

Computer Science 301 - 2014 - Practical 3 3

Here are some silly examples of code that should give you some ideas. Maybe try them - but test your

system on some correct source code and on some deliberately incorrect code. Please note that in this

course I have a nasty habit on occasions of giving you sample data that is sometimes correct and sometimes

incorrect, as compilers have to be able to deal with both kinds.

void main () {
// (not supposed to do anything useful!)

int i = 1, k = 0;
while (i < 10) {
do {
k = k + 1;
if (k > 5) break;

} while (k < i);
i = i + 1;

}
repeat
read(k);
write(i, i * k);

until (k == 100);
for (i = 1; i <= 10; i += 2) write(i);
for i in (3, 5, 7, k, 2 * k) write(i);

} // main

void main () {
// (not supposed to do anything useful!)

int i = 0, j = 8;
char ch;
for (ch = 'z' ; ch >= 'a'; ch--) {
write(ch);;;;
write(char(ch + 4), int(ch), i + j * ch);

}
} // main

void main () {
// (not supposed to do anything useful!)

int age;
bool been_Kissed;
read("How old are you, and have you been kissed? ", age, been_Kissed);
if (age == 16) {
write("sweet sixteen");
if (! been_Kissed) write(" and never been kissed");

}
else
if (age == 21) {
write("party time!");
int headache = 0, strain = 0;
for (beers = 20; beers > 0; beers--) {

strain++; ++headache;
if (strain % 8 == 0) {
write("That\'s better"); strain = 0;

}
}

}
elseif (age > 21 && age < 40)
write("over the hill, bru");

elseif (age > 70)
write("take a new lover");

else
write("boring");

} // main

These little programs and some other like them are in the kit, and you can easily write some more of your own.

Note: Read that phrase again: "that should give you some ideas". And again. And again. Don't just rush in and

write a grammar that will recognise only some restricted forms of statement. Think hard about what sorts of

things you can see there, and think hard about how you could make your grammar fairly general.

Hint: All we require at this stage is the ability to describe these features. You do not have to try to give them

any semantic meaning or write code to allow you to use them in any way. In later pracs we might try to do that,

but please stick to what is asked for this time, and don't go being over ambitious.

Computer Science 301 - 2014 - Practical 3 4

Task 5 - When all else fails, look up what you need in the index

Intheprackityouwill findanextract fromtheindexto thenexteditionofmyall-timebestseller"HackingoutaDegree",in

the file Index.txt. It looks something like this:

abstract class 12, 45
abstraction, data 165
advantages of Java and Modula-2 1-99, 100-500, Appendix 4
aegrotat examinations -- see unethical doctors
aggregate pass, chances of 0
class attendance, intolerable 15, 745
class members 31
deadlines, compiler course -- see sunrise
horrible design (C and C++) 34, 45, 56-80
lectures, missed 1, 3, 5-9, 12, 14-17, 21-25, 28
loss of DP certificate 2014
no chance of supp 2014
prac tests 10, 25, 27, 30
probable exclusion from Rhodes 2015
recursion -- see recursion
senility, onset of 21-24, 105
subminimum 40
supplementary exams (first courses only) 45 - 49
wasted years 2011 - 2014

Develop a grammar Index.atg that describes this and similar indexes (indices?) and create a program that will

analyse an index and accept or reject it (syntactically). Answer this as far as possible in the sprit in which it is

intended - clearly a real index could have almost any combinations of characters making up tokens, so restrict

yourself to permitting relatively simple words and numbers that might come between between punctuation marks.

Appendix: Practical considerations when using Coco/R

For ease of use with the Java file and directory naming conventions, please

• Do not use folder names (directory names) with spaces in them, such as "Prac 3"

• Use a fairly short name (say 5 characters) for your goal symbol (for example, Gram);

• Remember that this name must appear after COMPILER and after END in the grammar itself;

• Store the grammar in a file with the same short primary name and the extension .atg (for example

Gram.ATG).

• If required, store ancillary source code files in the subdirectory named Gram beneath your working directory.

(Nothing like this should be needed this week.)

Make sure that the grammar includes the "pragma" $CN. The COMPILER line of your grammar description

should always read something like

COMPILER Gram $CN

It is easy enough to configure a copy of UltraEdit to incorporate the option to invoke Coco/R. Use the

Advanced ->; Tool Configuration pull down, and set up an option to read as in the example below

• The Command line should read cmake %n

• The Path line should read %p

• The Menu Item Name should be Coco

• Select the "Output to list box" option

• Tick the "Capture Output" option

• Remember to Insert the command into the menu

If the Coco/R generation process succeeds, the Java compiler is invoked automatically to try to compile the

application. If this does not succeed, a Java compiler error listing is redirected to the file ERRORS, where it can

be viewed easily by opening the file in UltraEdit.

Computer Science 301 - 2014 - Practical 3 5

Free standing use of Coco/R

You can run either the Java or C# version of Coco/R in free standing mode with a command like:

cmake Gram

Like that, error messages are a little cryptic. In the form

cmake Gram -options m

the system will produce you a listing of the grammar file and the associated error messages, if any, in the file

LISTING.TXT. If the Coco/R generation process, succeeds the Java compiler is invoked automatically to try to

compile the application. If that compilation does not succeed, a Java compiler error listing is redirected to the file

ERRORS, where it can be viewed easily by opening the file in your favourite editor.

Error checking

Error checking by Coco/R takes place in various stages. The first of these relates to simple syntactic errors - like

leaving off a period at the end of a production. These are usually easily fixed. The second stage consists of

ensuring that all non-terminals have been defined with right hand sides, that all non-terminals are "reachable",

that there are no cyclic productions, no useless productions, and in particular that the productions satisfy what are

known as LL(1) constraints. We shall discuss LL(1) constraints in class in the next week, and so for this

practical we shall simply hope that they do not become tiresome. The most common way of violating the LL(1)

constraints is to have alternatives for a nonterminal that start with the same piece of string. This means that a so-

called LL(1) parser (which is what Coco/R generates for you) cannot easily decide which alternative to take - and

in fact will run the risk of going badly astray. Here is an example of a rule that violates the LL(1) constraints:

assignment = variableName ":=" expression
| variableName index ":=" expression.

index = "[" subscript "]" .

Both alternatives for assignment start with a variableName. However, we can easily write production

rules that do not have this problem:

assignment = variableName [index] ":=" expression .
index = "[" subscript "]" .

A moment's thought will show that the various expression grammars that are discussed in the text in chapter 6 -

the left recursive rules like

expression = term | expression "-" term .

also violate the LL(1) constraints, and so have to be recast as

expression = term { "-" term } .

to get around the problem.

For the moment, if you encounter LL(1) problems, please speak to the long suffering demonstrators, who will

hopefully be able to help you resolve all (or most) of them.

Computer Science 301 - 2014 - Practical 3 6

