
Computer Science 3 - 2014

Programming Language Translation

Practical 3, Week beginning 14 April 2014 - Solutions

Complete sources to these solutions can be found on the course WWW pages in the files PRAC3A.ZIP or
PRAC3AC.ZIP

Task 2 - Extensions to the Simple Calculator

In the source kit you were given Calc.atg. This is essentially the calculator grammar on page 106 of the
textbook, and you were invited to extend it to allow for exponentiation, parentheses, leading unary + or -
operators, a sqrt() function, numbers with decimal points and so on.

Exponentiation is a stronger operation than multiplication, so it has to be introduced deeper into the hierarchy (in
fact this is discussed in the textbook, if you'd only thought of looking!) Functions like sqrt also take
precedence over other operations.

Extending the calculator grammar can be done in several ways. Here is one of them, which corresponds to the
approach taken to expressions in languages like Pascal, which do not allow two signs to appear together:

COMPILER Calc1 $CN
/* Simple four function calculator (extended)

P.D. Terry, Rhodes University, 2014 */

CHARACTERS
digit = "0123456789" .
hexdigit = digit + "ABCDEF" .

TOKENS
decNumber = digit { digit } ["." { digit }]

| "." digit { digit } .
hexNumber = "$" hexdigit { hexdigit } .

IGNORE CHR(0) .. CHR(31)

PRODUCTIONS
Calc1 = { Expression "=" } EOF .
Expression = ["+" | "-"] Term { "+" Term | "-" Term } .
Term = Factor { "*" Factor | "/" Factor } .
Factor = Primary ["�" Factor] .
Primary = (decNumber | hexNumber | "(" Expression ")"

| "sqrt" "(" Expression ")"
) .

END Calc1.

Another approach, similar to that taken in C++, is as follows:

PRODUCTIONS
Calc2 = { Expression "=" } EOF .
Expression = Term { "+" Term | "-" Term } .
Term = Factor { "*" Factor | "/" Factor } .
Factor = ("+" | "-") Factor | Primary ["�" Factor] .
Primary = (decNumber | hexNumber | "(" Expression ")"

| "sqrt" "(" Expression ")"
) .

END Calc2.

This allows for expressions like 3 + - 7 or even 3 * -4 or even 3 / + - 4. Because of the way the grammar is
written, the last of these is equivalent to 3 / (+ (- (4))).

Here are some other attempts. What, if any, differences are there between these and the other solutions presented
so far?

PRODUCTIONS
Calc3 = { Expression "=" } EOF .
Expression = ["+" | "-"] Term { "+" Term | "-" Term } .
Term = Factor { "*" Factor | "/" Factor } .
Factor = Primary ["�" Factor]

| "sqrt" "(" Expression ")" .
Primary = decNumber | hexNumber | "(" Expression ")" .

END Calc3.

PRODUCTIONS
Calc4 = { Expression "=" } EOF .
Expression = Term { "+" Term | "-" Term } .
Term = Factor { "*" Factor | "/" Factor } .
Factor = ("+" | "-") Factor | Primary ["�" Factor]

| "sqrt" "(" Expression ")") .
Primary = decNumber | hexNumber | "(" Expression ")" .

END Calc4.

It may be tempting to suggest a production like this

Primary = (decNumber | hexNumber | "(" Expression ")"
| "sqrt(" Expression ")"

) .

However, a terminal like "sqrt(" is restrictive. It is invariably better to allow white space to appears between
method names and parameter lists if the user prefers this style.

Task 3 - Meet the staff in my department

This can be attempted in several ways. As always, it is useful to try to introduce non-terminals for the items of
semantic interest. Here is one attempt at a solution:

COMPILER Staff1 $CN
/* Describe a list of academic staff in a department

Non-LL(1), and will not work properly
P.D. Terry, Rhodes University, 2014 */

CHARACTERS
uLetter = "ABCDEFGHIJKLMNOPQRSTUVWZYZ" .
lLetter = "abcdefghijklmnopqrstuvwzyz" .
letter = uLetter + lLetter .

TOKENS
name = uLetter { letter | "'" uLetter | "-" uLetter } .
initial = uLetter "." .

IGNORE CHR(0) .. CHR(31)

PRODUCTIONS
Staff1 = { Person } EOF .
Person = [Title] { name | initial } surname { "," Degree } SYNC "." .
Title = "Professor" | "Dr" | "Mr" | "Mrs" | "Ms" | "Miss" .
surname = name .
Degree = "BA" | "BSc" | "BCom" | "BMus" | "BEd" | "BSocSci"

| "BSc(Hons)" | "BCom(Hons)" | "MA" | "MSc" | "PhD" .
END Staff1.

Note that this allows for names like Smith and Malema and also for names like MacKay, O'Neill and Lee-Ann.

Although this correctly describes a staff list, it is useless for a simple parser, as surnames and names are lexically
indistinguishable. This is another example of an LL(1) violation.

Attempting to define a better grammar affords interesting insights. It is not difficult to come up with productions
that permit full names with leading initials (only) or to contain complete names only:

PRODUCTIONS
Staff2 = { Person } EOF .
Person = [Title] FullName { "," Degree } SYNC "." .
FullName = InitialsName | name { name } .
InitialsName = initial { initial } name .
Title = "Professor" | "Dr" | "Mr" | "Mrs" | "Ms" | "Miss" .
Degree = "BA" | "BSc" | "BCom" | "BMus" | "BEd" | "BSocSci"

| "BSc(Hons)" | "BCom(Hons)" | "MA" | "MSc" | "PhD" .
END Staff2.

but this is too restrictive. Another attempt might drop the distinction between initials and complete names:

Computer Science 301 - 2014 - Practical 3 solutions 2

PRODUCTIONS
Staff3 = { Person } EOF .
Person = [Title] FullName { "," Degree } SYNC "." .
FullName = (initial | name) { initial | name } .
Title = "Professor" | "Dr" | "Mr" | "Mrs" | "Ms" | "Miss" .
Degree = "BA" | "BSc" | "BCom" | "BMus" | "BEd" | "BSocSci"

END Staff3.

but this has the unfortunate effect that it allows a name made of initials only, or a name to have an initial as its
last component, as exemplified by

P. Terry D.

One might be tempted to be very rigid about punctuation, and insist that a surname incorporate a final period (if
the person has no qualifictions) or a final comma (for persons that have qualifications. This is very restrictive,
however.

Fortunately, it is easy to find a much better solution:

PRODUCTIONS
Staff4 = { Person } EOF .
Person = [Title] FullName { "," Degree } SYNC "." .
FullName = NameLast { NameLast } .
NameLast = { initial } name .
Title = "Professor" | "Dr" | "Mr" | "Mrs" | "Ms" | "Miss" .
Degree = "BA" | "BSc" | "BCom" | "BMus" | "BEd" | "BSocSci"

| "BSc(Hons)" | "BCom(Hons)" | "MA" | "MSc" | "PhD" .
END Staff4.

Task 4 - So what if Parva is so restrictive - fix it!

The Parva extensions produced some interesting submissions., and your lack of experience showed through -
don't worry: learn from it! Many submissions (understandably!) were too restrictive in certain respects, while
others were too permissive. And some submissions had some very strange and misleading non-terminal names
(like ElseStatemen - it isn't a statement in its own right). Here is a suggested solution:

COMPILER Parva1 $CN
/* Parva level 1.5 grammar (Extended)

This version uses C/Java/C#-like precedences for operators
P.D. Terry, Rhodes University, 2014 */

CHARACTERS
lf = CHR(10) .
backslash = CHR(92) .
control = CHR(0) .. CHR(31) .
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
digit = "0123456789" .
nonZeroDigit = "123456789" .
hexDigit = digit + "abcdefABCDEF" .
stringCh = ANY - '"' - control - backslash .
charCh = ANY - "'" - control - backslash .
printable = ANY - control .

TOKENS

/* Extending the definition of identifiers to all internal underscores is done like this */

identifier = letter { { "_" } (letter | digit) } .

/* Restricting the form of numbers to forbid leading zeros is another useful extension */

number = "0" | nonZeroDigit { digit } .

/* But be careful. There is a temptation to define
digit = "123456789" .
number = "0" | digit { digit | "0" } .

and then forget that
identifier = letter { letter | digit | "_" .

would not allow identifiers to have 0 in them */

stringLit = '"' { stringCh | backslash printable } '"' .
charLit = "'" (charCh | backslash printable) "'" .

Computer Science 301 - 2014 - Practical 3 solutions 3

COMMENTS FROM "//" TO lf
COMMENTS FROM "/*" TO "*/"

IGNORE control

PRODUCTIONS
Parva1 = "void" identifier "(" ")" Block .
Block = "{" { Statement } "}" .

/* The options in Statement are easily extended to handle the new forms */

Statement = (Block
| ConstDeclarations | VarDeclarations
| AssignmentStatement | IfStatement
| WhileStatement | DoWhileStatement
| ReturnStatement | HaltStatement
| ReadStatement | WriteStatement
| ForStatement | BreakStatement
| ContinueStatement | RepeatStatement
| ";"
) .

/* Declarations remain the same as before */

ConstDeclarations = "const" OneConst { "," OneConst } ";" .
OneConst = identifier "=" Constant .
Constant = number | charLit | "true" | "false" | "null" .
VarDeclarations = Type OneVar { "," OneVar } ";" .
OneVar = identifier ["=" Expression] .

/* AssignmentStatements are factored like this so that we can write a simple grammar for the "for" loop */

AssignmentStatement = Assignment ";" .

/* Assignment requires care to avoid LL(1) problems */

Assignment = Designator (AssignOp Expression | "++" | "--")
| "++" Designator
| "--" Designator .

/* In all these it is useful to maintain generality by using Designator, not identifier */

Designator = identifier ["[" Expression "]"] .

/* The if-then-else construction is most easily described as follows. Although
this is not LL(1), this works admirably - it is simply the well-known dangling
else ambiguity, which the parser resolves by associating the else clauses
with the most recent if */

IfStatement = "if" "(" Condition ")" Statement
{ "elseif" "(" Condition ")" Statement }
["else" Statement] .

/* The Pascal-like "repeat" statement is almost trivial. Note that we can use
"repeat" { Statement } "until" ...

rather than being restricted to
"do" Statement "while" ...

as in the C languages. Why is this so?
Many submissions omitted the final ";" But they didn't have problems. Why not? */

RepeatStatement = "repeat" { Statement } "until" "(" Condition ")" ";" .
DoWhileStatement = "do" Statement "while" "(" Condition ")" ";" .

/* The ForStatement needs careful factorization. C for loops are even more general, because in C
what we have called "assignments" are called "expressions" (with a side effect of an assignment) */

ForStatement = "for"
([BasicType] identifier "in" ExpList
| "(" [[BasicType] identifier "=" Expression]

";" [Condition]
";" [Assignment] ")"

)
Statement .

/* Break and Continue statements are very simple. They are really "context dependent" but we
cannot impose such restrictions in a context free grammar */

BreakStatement = "break" ";" .
ContinueStatement = "continue" ";" .

Computer Science 301 - 2014 - Practical 3 solutions 4

/* Some of the rest of the grammar remains unchanged: */

WhileStatement = "while" "(" Condition ")" Statement .
ReturnStatement = "return" ";" .
HaltStatement = "halt" ";" .
ReadStatement = "read" "(" ReadElement { "," ReadElement } ")" ";" .
ReadElement = stringLit | Designator .
WriteStatement = "write" "(" WriteElement { "," WriteElement } ")" ";" .
WriteElement = stringLit | Expression .
Condition = Expression .

/* To handle Expressions with Java-inspired precedence we might proceed as follows. Note the
use of the { } metabrackets in all but one of the following productions.
Type conversion functions are easy to add syntactically.
We are not using the (type) casting syntax as found in the C family.
(It is left as an exercise to define the grammar so that you can do so.)
I think a function (or pseudo-function) should be notated as a function! */

Expression = AndExp { "||" AndExp } .
AndExp = EqlExp { "&&" EqlExp } .
EqlExp = RelExp { EqlOp RelExp } .
RelExp = AddExp [RelOp AddExp

| "in" ExpList
] . // This must use [] not { } Do you see why?

AddExp = MulExp { AddOp MulExp } .
MulExp = Factor { MulOp Factor } .
Factor = Primary | ("+" | "-" | "!") Factor .
Primary = Designator

| Constant
| "new" BasicType "[" Expression "]"
| ["char" | "int"] "(" Expression ")" .

ExpList = "(" Range { "," Range } ")" .
Range = Expression [".." Expression] .

Type = BasicType ["[]"] .

/* char is simply added as an optional BasicType */

BasicType = "int" | "bool" | "char" .

/* We need to classify the various operators differently if we extend the levels of preference. */

MulOp = "*" | "/" | "%" .
AddOp = "+" | "-" .
EqlOp = "==" | "!=" .
RelOp = "<" | "<=" | ">" | ">=" .
AssignOp = "=" | "+=" | "-=" | "*=" | "/=" | "%=" | "&=" | "|=" .

END Parva1.

Task 5 - When all else fails, look up what you need in the index

The description of a book index has always produced some innovative and imaginative solutions whenever I have
used it as an example. There is no simple correct answer - looking at the example given usually leads to students
deriving a set of productions to which one can respond "but what if you had an entry in the index reading like
this" and finding another plausible one. Here is one suggested solution, in which I have played tricks with the
selection of character sets. An important idea is to factorize the solution to reflect the important ideas that the
entries in an index have two main components - a "subject" and a "list of references".

It may be tempting to try to define a "space token". This is futile; spaces between tokens are always ignored by
scanners produced by Coco. One can define tokens that contain spaces, but this is only of much use in tokens
like strings, which are demarcated by matching quotes or brackets.

But we really do need to define an "end of line" token, or we won't be able to distinguish where one Entry stops
and the next one starts. Not many people saw this.

Computer Science 301 - 2014 - Practical 3 solutions 5

COMPILER Index1 $CN
/* Grammar describing index in a book

P.D. Terry, Rhodes University, 2014 */

CHARACTERS
/* Notice the careful and unusual choice of character sets */
control = CHR(0) .. CHR(31) .
digit = "0123456789" .
startword = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz('" + '"' .
inword = startword + digit + "-+)" .
lf = CHR(10) .

TOKENS
/* Notice the careful and unusual definition for word */
word = startword { inword } .
number = digit { digit } .
EOL = lf .

IGNORE control - lf

PRODUCTIONS
Index1 = { Entry } EOF .
Entry = Key References SYNC EOL .
Key = word { "," word | word } .
References = DirectRefs | CrossRef .
DirectRefs = PageRefs { "," PageRefs } .
PageRefs = number ["-" number] | Appendix .
Appendix = "Appendix" number .
CrossRef = "--" "see" Key .

END Index1.

One year when I set this exercise, I received an intriguing submission on the following lines (this has been
modified very slightly from the original submission). Compare it with the one above and try to work out whether
this is better, or whether it is incorrect.

COMPILER Index2 $CN
/* Grammar describing index in a book

Based on code by Wright, Nottingham, Ngwaile and Charlton
This version by P.D. Terry, Rhodes University, 2007 */

CHARACTERS
control = CHR(0) .. CHR(31) .
digit = "0123456789" .
inword = ANY - control - digit - ",- " .
lf = CHR(10) .
cr = CHR(13) .

TOKENS
word = inword { inword | digit | "-" } .
number = digit { digit } .
EOL = cr [lf] | lf .

IGNORE control - cr - lf

PRODUCTIONS
Index2 = { Entry } EOF .
Entry = Key References SYNC EOL .
Key = Words { "," Words } .
Words = word { word } .
References = DirectRefs | CrossRef .
DirectRefs = PageRefs { "," PageRefs } .
PageRefs = number ["-" number] | Appendix .
Appendix = "Appendix" number .
CrossRef = "--" "see" Key .

END Index2.

Task 6 - Spoornet are looking for programmers

The problem suggested a Cocol grammar that describes correctly marshalled trains (Trains.atg):

COMPILER Trains $CN
/* Grammar for simple railway trains

P.D. Terry, Rhodes University, 2014 */

IGNORECASE

COMMENTS FROM "(*" TO "*)" NESTED

Computer Science 301 - 2014 - Practical 3 solutions 6

IGNORE CHR(0) .. CHR(31)

PRODUCTIONS
Trains = { OneTrain } EOF .
OneTrain = LocoPart [[GoodsPart] HumanPart] SYNC "." .
LocoPart = "loco" { "loco" } .
GoodsPart = Truck { Truck } .
HumanPart = "brake" | { "coach" } "guard" .
Truck = "coal" | "closed" | "open" | "cattle" | "fuel" .

END Trains.

and went on to suggest modifying the grammar to build in restrictions that fuel trucks may not be marshalled
immediately behind the locomotives, or immediately in front of a passenger coach.

In my experience the wheels come off in many attempts at solving this problem. It is quite hard to get right, and
at first one may not easily find an LL(1) grammar that really matches the problem as set.

Given that passenger trains do not have a safety complication, one might be tempted to refactor the grammar to
give the equivalent one below, which seems more closely to define a train in terms of the three ways in which it
can be classified:

COMPILER Train1 $CN
/* Grammar for simple railway trains

P.D. Terry, Rhodes University, 2014 */

IGNORECASE

COMMENTS FROM "(*" TO "*)" NESTED

IGNORE CHR(0) .. CHR(31)

PRODUCTIONS
Train1 = { OneTrain } EOF .
OneTrain = LocoPart [Passengers | FreightOrMixed] SYNC "." .
LocoPart = "loco" { "loco" } .
FreightOrMixed = Truck { Truck } ("brake" | Passengers) .
Passengers = { "coach" } "guard" .
Truck = "closed" | "coal" | "open" | "cattle" | "fuel" .

END Train1.

Here is an attempt at safety. But this one insists on at least two safe trucks in any train, and is not LL(1):

PRODUCTIONS
Train2 = { OneTrain } EOF .
OneTrain = LocoPart [Passengers | FreightOrMixed] SYNC "." .
LocoPart = "loco" { "loco" } .
FreightOrMixed = SafeTruck { AnyTruck } LastPart .
LastPart = "brake" | SafeTruck Passengers .
Passengers = { "coach" } "guard" .
SafeTruck = "closed" | "coal" | "open" | "cattle" .
AnyTruck = SafeTruck | "fuel" .

END Train2.

Why is it not LL(1) compliant? We could apply all the theory of Chapter 7 of the textbook, but maybe an
example will suffice. Suppose we have a valid train like

loco coal coal coal coal coach guard

The first coal truck is parsed by the leading SafeTruck in GoodsPart. The next two coal trucks must be
parsed by the repetitive part { AnyTruck }, but you can probably see that the last coal truck would have to
be parsed by the alternative within LastPart. Unfortunately an LL(1) parser can't see far enough ahead to
make that decision, and would be tempted to treat this last coal truck as part of the { AnyTruck } sequence.

Here is one that is LL(1)

PRODUCTIONS
Train3 = { OneTrain } EOF .
OneTrain = LocoPart [Passengers | FreightOrMixed] SYNC "." .
LocoPart = "loco" { "loco" } .
FreightOrMixed = SafeTruck MoreTrucks HumanPart .
MoreTrucks = { "fuel" { "fuel" } SafeTruck | SafeTruck } .
HumanPart = "brake" | Passengers .
Passengers = { "coach" } "guard" .
SafeTruck = "coal" | "closed" | "open" | "cattle" .

END Train3.

Computer Science 301 - 2014 - Practical 3 solutions 7

At first you might thing that this is, at last, a correct solution. But no, it isn't quite. This solution does not allow
you to have a train like:

loco loco open fuel fuel brake .

as the last fuel truck in a sequence has now to be followed by at least one safe truck. The grammar does,
however, allow trains like

loco open coach coach guard .

with only one truck in the freight section.

It is remarkable that something that at first sight looks so simple might turn out to be frustratingly difficult. Not
being able to find an LL(1) grammar is not a train smash - one quite often cannot find an LL(1) grammar for a
language. But it's usually worth a try, as parsers for LL(1) grammars are so easy to write. The clue is to be
found in a suggestion that one should factorize the grammar not to concentrate on the "obvious" types of train,
but on the requirement that at any point along a train that might incorporate fuel trucks, the last part of the train
should be "safe". Thus:

PRODUCTIONS
Train4 = { OneTrain } EOF .
OneTrain = LocoPart [SafeLoad | "brake" | Passengers] SYNC "." .
LocoPart = "loco" { "loco" } .
Passengers = { "coach" } "guard" .
SafeLoad = SafeTruck { SafeTruck } ("brake" | Passengers | SafeFuel) .
SafeFuel = "fuel" { "fuel" } (SafeLoad | "brake") .
SafeTruck = "coal" | "closed" | "open" | "cattle" .

END Train4.

Every year, when I give this course, some students come up with better solutions that I had not thought of, and
this year is no exception. I am not sure which of the five students who seem to have contributed to the solution
below had the "Aha!" moment, but I was very impressed and hope that it really was a joint effort. This solution
makes neat use of right recursion without using the {..} meta-brackets, a technique that is worth bearing in mind.

COMPILER Train5 $CN
/* Grammar for simple railway trains

Original by P.D. Terry, Rhodes University, 2013
Corrected, aided and abetted by Mikha Zeffert, Jessica Kent, Alisa Lochner,
Kelvin Freese and Michael Abbott, 2013 class */

IGNORECASE

COMMENTS FROM "(*" TO "*)" NESTED

IGNORE CHR(0) .. CHR(31)

PRODUCTIONS
Train5 = { OneTrain } EOF .
OneTrain = LocoPart [GoodsPart | HumanPart | "brake"] SYNC "." .
LocoPart = "loco" { "loco" } .
HumanPart = { "coach" } "guard" .
GoodsPart = SafeTruck [HumanPart | GoodsPart | FuelPart | "brake"] .
FuelPart = "fuel" [GoodsPart | FuelPart | "brake"] .
SafeTruck = "coal" | "closed" | "open" | "cattle" .

END Train5.

Terry Theorem One ("You can always tidy things up a bit more") might apply, and here is a slightly refactored
version of the productions.

PRODUCTIONS
Train6 = { OneTrain } EOF .
OneTrain = LocoPart [GoodsPart | HumanPart | "brake"] SYNC "." .
LocoPart = "loco" { "loco" } .
HumanPart = { "coach" } "guard" .
GoodsPart = SafeTruck [HumanPart | SafePart] .
SafePart = GoodsPart | FuelPart | "brake" .
FuelPart = "fuel" [SafePart] .
SafeTruck = "coal" | "closed" | "open" | "cattle" .

END Train6.

Computer Science 301 - 2014 - Practical 3 solutions 8

