
Computer Science 3 - 2011

Programming Language Translation

Practical 7 - Week beginning 19 May 2014 - solutions

Sources of full solutions for these problems may be found on the course web page as the file PRAC7A.ZIP

(Java) or PRAC7AC.ZIP (C#).

Task 2 - Use of the debugging and other pragmas

The extra pragmas needed in the refined Parva compiler are easily introduced. We need some static fields:

public static boolean
debug = false,

* listCode = false,
* warnings = true;

The definitions of the pragmas are done in terms of these:

PRAGMAS
DebugOn = "$D+" . (. debug = true; .)
DebugOff = "$D-" . (. debug = false; .)

* CodeOn = "$C+" . (. listCode = true; .)
* CodeOff = "$C-" . (. listCode = false; .)
* WarnOn = "$W+" . (. warnings = true; .)
* WarnOff = "$W-" . (. warnings = false; .)

It is convenient to be able to set the options with command line parameters as well. This involves a

straightforward change to the Parva.frame file:

for (int i = 0; i < args.length; i++) {
if (args[i].toLowerCase().equals("-l")) mergeErrors = true;
else if (args[i].toLowerCase().equals("-d")) Parser.debug = true;

* else if (args[i].toLowerCase().equals("-w")) Parser.warnings = false;
* else if (args[i].toLowerCase().equals("-c")) Parser.listCode = true;

else inputName = args[i];
}
if (inputName == null) {
System.err.println("No input file specified");

* System.err.println("Usage: Parva [-l] [-d] [-w] [-c] source.pav [-l] [-d] [-w] [-c]");
System.err.println("-l directs source listing to listing.txt");

* System.err.println("-d turns on debug mode");
* System.err.println("-w suppresses warnings");
* System.err.println("-c lists object code (.cod file)");

System.exit(1);
}

Finally, the following change to the frame file gives the option of suppressing the generation of the .COD listing.

* if (Parser.listCode) PVM.listCode(codeName, codeLength);

Task 3 - How long is a piece of string?

The prac sheet asked why languages generally impose a restriction that a literal string must be contained on a

single line of code. The reason is quite simple - it becomes difficult to see or track the control characters and

spaces that would otherwise be buried in the string. It is easier and safer for language designers to use the escape

sequence idea if they need to cater for non-graphic characters in strings and character literals.

Concatenating strings is simple. The place to do it is in the StringConst production which calls on a OneString

parser to obtain the substrings (which have had their leading quotes and internal escape characters processed by

the time the concatenation takes place):

StringConst<out String str> (. String str2; .)
= OneString<out str>
{ ["+"] OneString<out str2> (. str = str + str2; .)
} .

OneString<out String str>
= stringLit (. str = token.val;

str = unescape(str.substring(1, str.length() - 1)); .) .

Task 4 - Things are not always what they seem

Issuing warnings for empty statements or empty blocks at first looks quite easy. At this stage we could try:

Statement<StackFrame frame>

= SYNC (Block<frame>

| ConstDeclarations

| VarDeclarations<frame>

| AssignmentStatement

| IfStatement<frame>

| WhileStatement<frame>

| HaltStatement

| ReturnStatement

| ReadStatement

| WriteStatement

* | ";" (. if (warnings) Warning("empty statement"); .)

.

* Block<StackFrame frame>

= (. Table.openScope();

* boolean empty = true; .)

* "{" { Statement<frame> (. empty = false; .)

* } (. if (empty && warnings) Warning("empty {} block");

WEAK "}" (. Table.closeScope(); .) .

Spotting an empty block or the empty statement in the form of a stray semicolon, is partly helpful. Detecting

blocks that really have no effect might be handled in several ways. One suggestion is to count the executable

statements in a Block. This means that the Statement parser has to be attributed so as to return this count, and this

has a knock-on effect in various other productions as well. Since we might have all sorts of nonsense like

{ { int k; } { { int j; } int i; ; ; { } {{}} } }

counting has to proceed carefully. Details are left as a further exercise! Once you have started seeing how stupid

some code can be, you can develop a flare for writing bad code suitable for testing compilers without asking your

friends in CSC 102 to do it for you!

Task 5 - The final word in declarations

The problem called for the introduction of the final keyword in variable declarations, so as to allow code of the

form:

final int max = 2;
int i = 5;
final int iPlusMax = i + max;
final int[] list = new int[iPlusMax];

The key to this is to add an extra field to those in the Entry class used by the table handling routines:

class Entry {
// All fields initialized, but are modified after construction (by semantic analyser)

public int kind = Kinds.Var;
public String name = "";
public int type = Types.noType;
public int value = 0; // constants
public int offset = 0; // variables
public boolean declared = true; // true for all except sentinel entry

* public boolean canChange= true; // false if value cannot be changed
public Entry nextInScope = null; // link to next entry in current scope

} // end Entry

A similar addition is needed in the DesType class

Computer Science 301 - 2014 - Practical 7 solutions 2

class DesType {
// Objects of this type are associated with l-value and r-value designators

public Entry entry; // the identifier properties
public int type; // designator type (not always the entry type)

* public boolean canChange; // false if entry is marked constant

public DesType(Entry entry) {
this.entry = entry;
this.type = entry.type;

* this.canChange = entry.canChange;
}

} // end DesType

With these in place the parsers for handling VarDeclarations can set the fields correctly:

VarDeclarations<StackFrame frame> (. int type;
boolean canChange = true; .)

* = ["final" (. canChange = false; .)
*] Type<out type>
* OneVar<frame, type, canChange>
* { WEAK "," OneVar<frame, type, canChange> }

WEAK ";" .

OneVar<StackFrame frame, int type, boolean canChange>
(. int expType;

Entry var = new Entry(); .)
= Ident<out var.name> (. var.kind = Kinds.Var;

var.type = type;
* var.canChange = canChange;

var.offset = frame.size;
frame.size++; .)

(AssignOp (. CodeGen.loadAddress(var); .)
Expression<out expType> (. if (!compatible(var.type, expType))

SemError("incompatible types in assignment");
CodeGen.assign(var.type); .)

* | (. if (!canChange)
* SemError("defining expression required"); .)

) (. Table.insert(var); .) .

where, it should be noted, it is an error to apply final to a variable declaration if the initial definition of a value

for that variable is omitted. The canChange field is then checked at the points where one might attempt to alter

a variable marked as final, namely within AssignmentStatements and ReadElements:

Assignment (. int expType;
DesType des; .)

= Designator<out des> (. if (des.entry.kind != Kinds.Var)
SemError("invalid assignment");

* if (!des.canChange)
* SemError("may not alter this variable");

AssignOp
Expression<out expType> (. if (!compatible(des.type, expType))

SemError("incompatible types in assignment");
CodeGen.assign(des.type); .) .

ReadElement (. String str;
DesType des; .)

= StringConst<out str> (. CodeGen.writeStr(str); .)
| Designator<out des> (. if (des.entry.kind != Kinds.Var)

SemError("wrong kind of identifier");
* if (!des.canChange)
* SemError("may not alter this variable");

switch (des.type) {
case Entry.intType:
case Entry.boolType:
CodeGen.read(des.type); break;

default:
SemError("cannot read this type"); break;

} .) .

There is one further subtlety. Marking an "array" as final implies only that the reference to the array may not

be altered, not that individual elements may not be altered. This necessitates a tweak to the Designator parser:

Computer Science 301 - 2014 - Practical 7 solutions 3

Designator<out DesType des> (. String name;
int indexType; .)

= Ident<out name> (. Entry entry = Table.find(name);
if (!entry.declared)

SemError("undeclared identifier");
des = new DesType(entry);
if (entry.kind == Kinds.Var) CodeGen.loadAddress(entry); .)

* ["[" (. des.canChange = true;
if (isArray(des.type)) des.type--;
else SemError("unexpected subscript");
if (entry.kind != Kinds.Var)
SemError("unexpected subscript");

CodeGen.dereference(); .)
Expression<out indexType> (. if (!isArith(indexType))

SemError("invalid subscript type");
CodeGen.index(); .)

"]"
] .

Task 6 - Suppressing some error messages

The suggestion was made that when an identifier was not found in the symbol table, a suitable entry could quietly

be inserted into the table in the hope of reducing the number of irritating "undeclared identifier" messages that

might otherwise pop up. This is quite easily done from within the production for Designator. Note the way in

which we modify the newly inserted entry if we establish that the undeclared identifier appears to be of a

reference type. Care must be taken not to mess up the original sentinel node; note how entry is reallocated.

Designator<out DesType des> (. String name;
int indexType; .)

= Ident<out name> (. Entry entry = Table.find(name);
* boolean notDeclared = !entry.declared;
* if (notDeclared) {
* SemError("undeclared identifier");
* entry = new Entry(); // new is critical
* entry.name = name;
* entry.kind = Kinds.Var;
* entry.type = Types.noType;
* entry.offset = 0;
* Table.insert(entry);
* }

des = new DesType(entry);
if (entry.kind == Kinds.Var) CodeGen.loadAddress(entry); .)

* ["[" (. if (notDeclared) entry.type++;
* else if (isArray(des.type)) des.type--;

else SemError("unexpected subscript");
if (entry.kind != Kinds.Var)
SemError("unexpected subscript");

CodeGen.dereference(); .)
Expression<out indexType> (. if (!isArith(indexType)) SemError("invalid subscript type");

CodeGen.index(); .)
"]"

] .

Task 7 - A task to keep you on the right lines

The extensions to ReadStatement and WriteStatement are very simple. It is useful to allow both the

readLine() and writeLine() forms of these statements to have empty argument lists, something a little

meaningless for the former read() and write() statements. The extensions needed to the code generator and

the PVM should be obvious, but it was clear from some submissions that some of you are unfamiliar with the

concept of readLine() as a device for ignoring the rest of a line in the data file (not, for heaven's sake, in the

grammar!). And while we are at it, let's make the HaltStatement as general as possible.

* ReadStatement
* = ("read" "(" ReadList ")"
* | "readLine" "(" [ReadList] ")" (.CodeGen.readLine(); .)
*)
* WEAK ";" .
*
* ReadList
* = ReadElement { WEAK "," ReadElement } .
*

Computer Science 301 - 2014 - Practical 7 solutions 4

* WriteStatement
* = ("write" "(" WriteList ")"
* | "writeLine" "(" [WriteList] ")" (. CodeGen.writeLine(); .)
*)
* WEAK ";" .
*
* WriteList
* = WriteElement { WEAK "," WriteElement } .
*
* HaltStatement /* optional arguments! */
* = "halt" ["(" [WriteList] ")"]
* WEAK ";" (. CodeGen.leaveProgram(); .) .
*

Task 8 - You had better do this one or else....

The problem, firstly, asked for the addition of an else option to the IfStatement. Adding an else option to the

IfStatement efficiently is easy once you see the trick. Note the use of the "no else part" option associated with an

action, even in the absence of any terminals or non-terminals. This is a very useful technique to remember.

IfStatement<StackFrame frame> (. int count;
Label falseLabel = new Label(!known);
Label outLabel = new Label(!known); .)

= "if" "(" Condition ")" (. CodeGen.branchFalse(falseLabel); .)
* Statement<frame>
* ("else" (. CodeGen.branch(outLabel);
* falseLabel.here(); .)
* Statement<frame> (. outLabel.here(); .)
* | /* no else part */ (. falseLabel.here(); .)
*) .

Many - perhaps most - people in attempting this problem come up with the following sort of thing instead. This

can generate BRN instructions where none are needed. Devoid of checking, just to save space:

IfStatement<StackFrame frame> (. Label falseLabel = new Label(!known);
Label outLabel = new Label(!known); .)

= "if" "(" Condition ")" (. CodeGen.branchFalse(falseLabel); .)
Statement<frame> (. CodeGen.branch(outLabel);

falseLabel.here(); .)
["else" Statement<frame>] (. outLabel.here(); .) .

For example, source code like

if (i == 12) k = 56;

leads to object code like

12 LDA 0
14 LDV
15 LDC 12
17 CEQ
18 BZE 27
20 LDA 5
22 LDC 56
24 STO
25 BRN 27 // unnecessary
27

Tasks 9 and 10 - This has gone on long enough - time for a break, and then continue

The syntax of the BreakStatement and ContinueStatement is, of course, trivial. The catch is that one has to allow

these statements only in the context of loops. Trying to find a context-free grammar with this restriction is not

worth the effort.

One approach that incorporates context-sensitive checking in conjunction with code generation is based on passing

labels as arguments to various subparsers. We change the parser for Statement and for Block as follows:

Computer Science 301 - 2014 - Practical 7 solutions 5

* Statement<StackFrame frame, Label breakLabel, Label continueLabel>
* = SYNC (Block<frame, breakLabel>

| ConstDeclarations
| VarDeclarations<frame>
| AssignmentStatement

* | IfStatement<frame, breakLabel>
| WhileStatement<frame>

* | BreakStatement<breakLabel>
* | ContinueStatement<continueLabel>

| HaltStatement
| ReturnStatement
| ReadStatement
| WriteStatement
| ";" (. if (warnings) Warning("empty statement"); .)

) .

* Block<StackFrame frame, Label breakLabel, Label continueLabel>
= (. Table.openScope(); .)

"{"
* { Statement<frame, breakLabel, continueLabel>

}
WEAK "}" (. Table.closeScope(); .) .

The very first call to Statement passes null as the value for these labels:

StackFrame frame = new StackFrame();
Table.openScope();
Label DSPLabel = new Label(known);
CodeGen.openStackFrame(0); .)

* WEAK "{" { Statement<frame, null, null> }
WEAK "}"

The parsers for the statements that are concerned with looping, breaking, and making decisions become

* IfStatement<StackFrame frame, Label breakLabel, Label continueLabel>
(. Label falseLabel = new Label(!known);

Label outLabel = new Label(!known); .)
= "if" "(" Condition ")" (. CodeGen.branchFalse(falseLabel); .)

* Statement<frame, breakLabel, continueLabel>
* ("else" (. CodeGen.branch(outLabel);
* falseLabel.here(); .)
* Statement<frame, breaklabel, continueLabel>
* (. outLabel.here(); .)
* | /* no else part */ (. falseLabel.here(); .)
*) .

.

WhileStatement<StackFrame frame> (. Label loopExit = new Label(!known);
Label loopStart = new Label(known); .)

= "while" "(" Condition ")" (. CodeGen.branchFalse(loopExit); .)
* Statement<frame, loopExit, loopStart>

(. CodeGen.branch(loopStart);
loopExit.here(); .) .

BreakStatement<Label breakLabel>
* = "break" (. if (breakLabel == null)
* SemError("break is not allowed here");
* else CodeGen.branch(breakLabel); .)

WEAK ";" .

ContinueStatement<Label continueLabel>
* = "continue" (. if (continueLabel == null)
* SemError("continue is not allowed here");
* else CodeGen.branch(continueLabel); .)

WEAK ";" .

There is at least one other way of solving the problem, which involves using local variables in the parsing

methods to "stack" up the old labels, assigning new ones, and then restoring the old ones afterwards.

Computer Science 301 - 2014 - Practical 7 solutions 6

Task 11 - Some ideas are worse than a snake in the grass

Handling the Python-like multiple assignment statement calls for a modification to the Assignment

parser. Essentially the idea is to generate code that will first push a set of destination addresses onto the stack,

followed by a matching list of expression values. A special assignment opcode can then arrange to work through

the list making the required number of assignments.

Assignment (. int expType;
DesType des;

* int count = 0;
* int desCount = 1, expCount = 1;
* ArrayList<Integer> typeList = new ArrayList<Integer>(); .)

= Designator<out des> (. if (des.entry.kind != Kinds.Var)
SemError("invalid assignment");

* if (!des.canChange)
* SemError("may not alter this variable");
* typeList.add(des.type); .)

(
* { "," Designator<out des> (. if (des.entry.kind != Kinds.Var)
* SemError("invalid assignment");
* if (!des.canChange)
* SemError("may not alter this variable");
* typeList.add(des.type);
* desCount++; .)
* }

AssignOp
* Expression<out expType> (. if (count < typeList.size()
* && !assignable(typeList.get(count++), expType))
* SemError("incompatible types in assignment"); .)
* { "," Expression<out expType> (. if (count < typeList.size()
* && !assignable(typeList.get(count++), expType))
* SemError("incompatible types in assignment");
* expCount++; .)
* } (. if (expCount != desCount)
* SemError("left and right counts disagree");
* CodeGen.assignN(desCount); .)

)
WEAK ";" .

Notice the semantic checks to ensure that the numbers of designators and expressions agree, and that the types of

the expressions are compatible with the types of the designators. This last check requires that we build up a list of

the designator types - and when we examine this list later we must take care to avoid disaster in retrieving more

designator types than have been added to the list! Note that not all the assignments have to be of the same "type",

which seems to have been overlooked in some of the submissions that attempted this exercise. The code generator

routine is simple, but note the special check for the case where there is only one designator and one expression!

public static void assignN(int n) {
// Generates code to store n values currently on top-of-stack on the n addresses
// below these, finally discarding 2*n elements from the stack.
if (n > 1) { emit(PVM.ston); emit(n); }
else emit(PVM.sto);

}

Interpretation is fairly straightforward:

case PVM.ston: // store n values at top of stack on addresses below them on stack
int n = next();
for (int i = n - 1; i >= 0; i--)

mem[mem[cpu.sp + n + i]] = mem[cpu.sp + i]; // do the assignments
// then bump stack pointer to

cpu.sp = cpu.sp + 2 * n; // discard addresses and values
break;

Task 12 - Your professor is quite a character

To allow for a character type involves one in a lot of straightforward alterations, as well as some more elusive

ones and few, if any, submissions were even vaguely correct. in fact, most were pretty terrible, suggesting tha

many students had simply not grasped the concept of type and compatibility at all. These are important

concepts in compiling, so make sure you study what follows very carefully.

Computer Science 301 - 2014 - Practical 7 solutions 7

Firstly, we extend the definition of the Types class:

class Types {
public static final int
noType = 0, // identifier (and expression) types. The numbering is
nullType = 2, // significant as array types are denoted by these
intType = 4, // numbers + 1
boolType = 6,

* charType = 8,
* voidType = 10;

} // end Types

The Table class requires a similar small change to introduce the new type name needed if the symbol table is to be

displayed:

* Types.addType("char");

A minor change to the Constant production is needed to allow character literals to be regarded as of the new

charType. Most submissions at least got this far:

Constant<out ConstRec con> (. con = new ConstRec(); .)
= IntConst<out con.value> (. con.type = Types.intType; .)

* | CharConst<out con.value> (. con.type = Types.charType; .)
| "true" (. con.type = Types.boolType; con.value = 1; .)
| "false" (. con.type = Types.boolType; con.value = 0; .)
| "null" (. con.type = Types.nullType; con.value = 0; .) .

Reading and writing single characters is easy, unless as some submissions did, you just missed this!

DesType des; .)
= StringConst<out str> (. CodeGen.writeStr(str); .)
| Designator<out des> (. if (des.entry.kind != Kinds.Var)

SemError("wrong kind of identifier");
* if (!des.canChange)
* SemError("may not alter this variable");

switch (des.type) {
case Entry.intType:
case Entry.boolType:

* case Entry.charType:
CodeGen.read(des.type); break;

default:
SemError("cannot read this type"); break;

} .) .

WriteElement (. int expType;
String str; .)

= StringConst<out str> (. CodeGen.writeStr(str); .)
| Expression<out expType> (. switch (expType) {

case Entry.intType:
case Entry.boolType:

* case Entry.charType:
CodeGen.write(expType); break;

default:
SemError("cannot write this type"); break;

} .) .

The associated code generating methods require matching additions:

public static void read(int type) {
// Generates code to read a value of specified type
// and store it at the address found on top of stack

switch (type) {
case Types.intType: emit(PVM.inpi); break;
case Types.boolType: emit(PVM.inpb); break;

* case Types.charType: emit(PVM.inpc); break;
}

}

public static void write(int type) {
// Generates code to output value of specified type from top of stack

switch (type) {
case Types.intType: emit(PVM.prni); break;
case Types.boolType: emit(PVM.prnb); break;

* case Types.charType: emit(PVM.prnc); break;
}

}

Computer Science 301 - 2014 - Practical 7 solutions 8

The major part of this exercise was concerned with the changes needed to apply various constraints on operands of

the char type. Essentially, and annoyingly perhaps, in the C family of languages it is a sort of arithmetic type

when this is convenient (this is called "auto-promotion"). Explicitly, it ranks as an arithmetic type, in that

expressions of the form

character + character

character > character

character + integer integer + character

character > integer integer > character

are all allowable. This can be handled by modifying the helper methods in the parser as follows:

static boolean isArith(int type) {
* return type == Types.intType || type == Types.charType || type == Types.noType;

}

static boolean compatible(int typeOne, int typeTwo) {
* // Returns true if typeOne is compatible (and comparable for equality) with typeTwo

return typeOne == typeTwo
* || isArith(typeOne) && isArith(typeTwo)

|| typeOne == Types.noType || typeTwo == Types.noType
|| isArray(typeOne) && typeTwo == Types.nullType
|| isArray(typeTwo) && typeOne == Types.nullType;

}

The preceding discussion relates to expression compatibility. However, assignment compatibility is more

restrictive. Assignments of the form

integer = integer expression

integer = character expression

character = character expression

are allowed, but

character = integer expression

is not allowed. This may be checked with the aid of a further helper method, assignable(). I don't recall

any submission making this distinction, preferring to tweak compatible incorrectly.

* static boolean assignable(int typeOne, int typeTwo) {
* // Returns true if a variable of typeOne may be assigned a value of typeTwo
* return typeOne == typeTwo
* || typeOne == Types.intType && typeTwo == Types.charType
* || typeOne == Types.noType || typeTwo == Types.noType
* || isArray(typeOne) && typeTwo == Types.nullType;
* }

The assignable() function call now takes the place of the compatible() function call in the many places

in OneVar and AssignmentStatement where, previously, calls to compatible() appeared.

We turn finally to consideration of the changes needed to the various sub-parsers for expressions.

A casting mechanism is introduced to handle the situations where it is necessary explicitly to convert integer

values to characters, so that

character = (char) integer

is allowed, and for completeness, so are

integer = (int) character

integer = (char) character

character = (char) character

Computer Science 301 - 2014 - Practical 7 solutions 9

A great many submissions made the mistake of thinking that a cast can only appear in the context of a simple

assignment, that is, restricted to statements like

char ch;
int x, y, z;

ch = (char) SomeExpression
ch = (char) x + y + z; // understood wrongly to "mean"

// ch = (char) (x + y + z); // a character assignment

but that is not the case. Casting applies to a component of an expression, so that the above really "means":

ch = ((char) x) + y + z; // an incorrect integer assignment again
// integer expressions are incompatible with
// character target designators

and as a further example it is quite legal to write

boolean b = 'A' < (char) (x + (int) 'B') ;

Of course, the C family syntax is crazy (in spite of what some of my colleagues think). It would have been

infinitely better to use a notation like

boolean b = 'A' > char(x + int('B'));

but they would not have been able to do that easily (do you see why? It might be an exam question; you never

know my devious mind).

To get it right requires that casting be handled within the Primary production, which has to be factored to deal with

the potential LL(1) trap in distinguishing between components of the form "(" "char" ")" and

"(" Expression ")":

Casting operations are accompanied by a type check and a type conversion; the (char) cast also introduces the

generation of run-time code for checking that the integer value to be converted lies within range.

Primary<out int type> (. type = Types.noType;
int size;
DesType des;
ConstRec con; .)

= Designator<out des> (. type = des.type;
switch (des.entry.kind) {

case Kinds.Var:
CodeGen.dereference();
break;

case Kinds.Con:
CodeGen.loadConstant(des.entry.value);
break;

default:
SemError("wrong kind of identifier");
break;

} .)
| Constant<out con> (. type = con.type;

CodeGen.loadConstant(con.value); .)
| "new" BasicType<out type> (. type++; .)
"[" Expression<out size> (. if (!isArith(size))

SemError("array size must be integer");
CodeGen.allocate(); .)

"]"

* | "("
* ("char" ")"
* Factor<out type> (. if (!isArith(type))
* SemError("invalid cast");
* else type = Types.charType;
* CodeGen.castToChar(); .)
* | "int" ")"
* Factor<out type> (. if (!isArith(type))
* SemError("invalid cast");
* else type = Types.intType; .)
* | Expression<out type> ")"
*) .

Computer Science 301 - 2014 - Practical 7 solutions 10

Strictly speaking the above grammar departs slightly from the Java version, where the casting operator is regarded

as weaker than the parentheses around an Expression, but in practice it makes little difference.

Various of the other productions need modification. The presence of an arithmetic operator correctly placed

between character or integer operands must result in the sub-expression so formed being of integer type (and

never of character type). So, for example:

AddExp<out int type> (. int type2;
int op; .)

= MultExp<out type>
{ AddOp<out op>
MultExp<out type2> (. if (!isArith(type) || !isArith(type2)) {

SemError("arithmetic operands needed");
type = Types.noType;

}
* else type = Types.intType;

CodeGen.binaryOp(op); .)
}

.

Similarly a prefix + or - operator applied to an integer or character Factor creates a new factor of integer type

(see full solution for details).

The extra code generation method we need is as follows:

public static void castToChar() {
// Generates code to check that TOS is within the range of the character type
emit(PVM.i2c);

} // CodeGen.castToChar

and within the switch statement of the emulator method we need:

case PVM.i2c: // check convert character to integer
if (mem[cpu.sp] < 0 || mem[cpu.sp] > maxChar) ps = badVal;
break;

The interpreter has another opcode for checked storage of characters, but if the i2c opcodes are inserted correctly

it appears that we do not really need stoc:

case PVM.stoc: // character checked store
tos = pop(); adr = pop();
if (inBounds(adr))
if (tos >= 0 && tos <= maxChar) mem[adr] = tos;
else ps = badVal;

break;

Task 13 - Absolutely, yes, ja, yebo ...

Add a simple abs function to the expression grammar (take care to get the precedence and semantic checking

correct, as it is trivial to add it to the grammar. The code generator and PVM will need some simple

extensions too, of course.

int
i = abs(-24),
j = abs(abs(i) * abs(-24 * i));

Once again, this is all easily achieved by additions to the options in the Primary production. Note the

auto-promotion to integer type regardless. Do you suppose one should promote to noType instead?

| "abs"
"(" Expression<out type> (. if (!isArith(type))

SemError("Arithmetic argument needed");
type = Types.intType;
CodeGen.abs(); .)

")"

The code generator is easily extended

Computer Science 301 - 2014 - Practical 7 solutions 11

public static void abs() {
// Generates code to leave abs(tos) on top of stack
emit(PVM.abs);

} // CodeGen.abs

and the PVM is extended to have another option in the emulator for the max operation and a similar one (not

shown) for the min operation.

case PVM.abs: // replace TOS by its absolute value
if (mem[cpu.sp] < 0) mem[cpu.sp] = - mem[cpu.sp];
break;

Task 14 - What are we doing this for?

This exercise suggested adding a simple Pascal-style ForStatement to Parva, to allow statements whose concrete

syntax is defined by

ForStatement = "for" Ident "=" Expression ("to" | "downto") Expression Statement .

The problem as posed already suggested part of a solution. Pascal was a much "safer" language than C, and the

semantics of the Pascal-style ForStatement are better described as follows. The statements

for Control = Expression1 to Expression2 Statement

for Control = Expression1 downto Expression2 Statement

should be regarded as more closely equivalent to

Temp1 := Expression1 Temp1 := Expression1
Temp2 := Expression2 Temp2 := Expression2
IF Temp1 > Temp2 THEN GOTO EXIT IF Temp1 < Temp2 THEN GOTO EXIT
Control := Temp1; Control := Temp1;

BODY: Statement BODY: Statement
IF Control = Temp2 THEN GOTO EXIT IF Control = Temp2 THEN GOTO EXIT
Control := Control + 1 Control := Control - 1
GOTO BODY GOTO BODY

EXIT: EXIT:

These arrangements can be handled by the following parsing method

ForStatement<StackFrame frame> (. int expType;
boolean savedCanChange;
Label loopBody = new Label(!known);
Label loopExit = new Label(!known);
Label loopContinue = new Label(!known);
String name; .)

= "for" Ident<out name> (. Entry var = Table.find(name);
if (!var.declared)

SemError("undeclared identifier");
if (var.kind != Kinds.Var)

SemError("illegal control variable");
if (!var.canChange)

SemError("may not alter this variable");
if (!isArith(var.type))

SemError("control variable must be of arithmetic type");
CodeGen.loadAddress(var);
savedCanChange = var.canChange;
var.canChange = false; .)

AssignOp
Expression<out expType> (. if (!assignable(var.type, expType))

SemError("incompatible with control variable");
boolean up = true; .)

("to" | "downto" (. up = false; .)
) Expression<out expType> (. if (!assignable(var.type, expType))

SemError("incompatible with control variable");
CodeGen.startForLoop(up, loopExit);
loopBody.here(); .)

Statement<frame, loopExit, loopContinue>
(. loopContinue.here();

CodeGen.endForLoop(up, loopBody);
var.canChange = savedCanChange;
loopExit.here();
CodeGen.pop(3); .) .

Computer Science 301 - 2014 - Practical 7 solutions 12

The code generation routines, as usual, are quite simple:

public static void startForLoop(boolean up, Label destination) {
// Generates prologue test for a for loop (either up or down)
if (up) emit(PVM.sfu); else emit(PVM.sfd);
emit(destination.address());

} // CodeGen.startForLoop

public static void endForLoop(boolean up, Label destination) {
// Generates epilogue test and increment/decrement for a for loop (either up or down)

if (up) emit(PVM.efu); else emit(PVM.efd);
emit(destination.address());

} // CodeGen.endForLoop

public static void pop(int n) {
// Generates code to discard top n elements from the stack
emit(PVM.dsp); emit(-n);

} // CodeGen.pop

but the magic that makes this work is contained in the interpreter with opcodes that are probably more complex

than others you have seen to this point:

case PVM.sfu: // start for loop "to"
if (mem[cpu.sp + 1] > mem[cpu.sp]) cpu.pc = mem[cpu.pc]; // goto exit
else {
mem[mem[cpu.sp + 2]] = mem[cpu.sp + 1]; cpu.pc++; // assign to control

}
break;

case PVM.sfd: // start for loop "downto" // goto exit
if (mem[cpu.sp + 1] < mem[cpu.sp]) cpu.pc = mem[cpu.pc];
else {
mem[mem[cpu.sp + 2]] = mem[cpu.sp + 1]; cpu.pc++; // assign to control

}
break;

case PVM.efu: // end for loop "to"
if (mem[mem[cpu.sp + 2]] == mem[cpu.sp]) cpu.pc++; // loop complete
else {
mem[mem[cpu.sp + 2]]++; cpu.pc = mem[cpu.pc]; // increment control

}
break;

case PVM.efd: // end for loop "downto"
if (mem[mem[cpu.sp + 2]] == mem[cpu.sp]) cpu.pc++; // loop complete
else {
mem[mem[cpu.sp + 2]]--; cpu.pc = mem[cpu.pc]; // decrement control

}
break;

Notes

• At run time, just before the Statement is executed, the top elements on the stack are set up in a manner that is

exemplified by the statement

for i = 35 to 64 write(i); // loop to be executed 30 times

ÄÄÄÄÄÄÂÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄ
... ³ ... ³ ... ³ ... ³ 64 ³ 35 ³ adr i ³

ÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄ

• The form of code generated by this system may be understood by reference to the following example

for i = initial to final statement

which generates code

LDA i
initial
final
SFU L3

L1 statement
L2 EFU L1
L3 DSP -3

• This solution allows for the introduction of guards againt accidental or deliberate corruption of the control

variable within the Statement that forms the body of the loop.

Computer Science 301 - 2014 - Practical 7 solutions 13

• In Pascal the word do is also required, as illustrated below, and you were asked whether it would be a good

idea to insist on it in Parva as well. Unfortunately the word do in the C family of languages is already

bespoke for the DoWhileStatement, so if one were also to allow the latter it would not be a good idea!

ForStatement = "for" Ident "=" Expression ("to" | "downto") Expression "do" Statement .

• Why do you suppose the ForStatement has been specified to have an Identifier as a control variable and not

a Designator?

Task 15 - Make the change; enjoy life; upgrade now to Parva++ (Ta-ra!)

It might not at first have been obvious, but I had fondly hoped that everyone eventually saw that this

extension is handled at the initial level by clever modifications to the AssignmentStatement production,

which has to be factorized in such a way as to avoid LL(1) conflicts. (alas, I was wrong again. Didn't we

discuss this very point in lectures and in prac 21?) The code below handles this task (including the tests

for compatibility and for the designation of variables rather than constants that several students omitted)

by assuming the existence of a few new machine opcodes, as suggested in the textbook.

Assignment (. int expType;
DesType des;

* boolean inc = true;
* int count = 0;
* int desCount = 1, expCount = 1;
* ArrayList<Integer> typeList = new ArrayList<Integer>(); .)

= Designator<out des> (. if (des.entry.kind != Kinds.Var)
SemError("invalid assignment");

* if (!des.canChange)
* SemError("may not alter this variable");
* typeList.add(des.type); .)

(
* { "," Designator<out des> (. if (des.entry.kind != Kinds.Var)
* SemError("invalid assignment");
* if (!des.canChange)
* SemError("may not alter this variable");
* typeList.add(des.type);
* desCount++; .)
* }

AssignOp
* Expression<out expType> (. if (count < typeList.size()
* && !assignable(typeList.get(count++), expType))
* SemError("incompatible types in assignment"); .)
* { "," Expression<out expType> (. if (count < typeList.size()
* && !assignable(typeList.get(count++), expType))
* SemError("incompatible types in assignment");
* expCount++; .)
* } (. if (expCount != desCount)
* SemError("left and right counts disagree");
* CodeGen.assignN(desCount); .)
* | ("++" | "-" (. inc = false; .)
*) (. if (!isArith(des.type))
* SemError("arithmetic type needed");
* CodeGen.incOrDec(inc, des.type); .) .

)
| ("++" | "--" (. inc = false; .)

) Designator<out des> (. if (des.entry.kind != Kinds.Var)
SemError("variable designator required");

if (!des.canChange)
SemError("may not alter this variable");

if (!isArith(des.type))
SemError("arithmetic type required");

if (des.isSimple)
CodeGen.loadAddress(des.entry);

CodeGen.incOrDec(inc, des.type); .)
WEAK ";" .

The extra code generation routine is straightforward, but note that we should cater for characters specially

Computer Science 301 - 2014 - Practical 7 solutions 14

public static void incOrDec(boolean inc, int type) {
// Generates code to increment the value found at the address currently
// stored at the top of the stack.
// If necessary, apply character range check

* if (type == Types.charType) emit(inc ? PVM.incc : PVM.decc);
* else emit(inc ? PVM.inc : PVM.dec);

}

As usual, the extra opcodes in the PVM make all this easy to achieve at run time. Some submissions might have

forgotten to include the check that the address was "in bounds". I suppose one could argue that if the source

program were correct, then the addresses could not go out of bounds, but if the interpreter were to be used in

conjunction with a rather less fussy assembler (as we had in earlier practicals) it would make sense to be cautious.

case PVM.inc: // int ++
adr = pop();
if (inBounds(adr)) mem[adr]++;
break;

case PVM.dec: // int --
adr = pop();
if (inBounds(adr)) mem[adr]--;
break;

case PVM.incc: // char ++
adr = pop();
if (inBounds(adr))
if (mem[adr] < maxChar) mem[adr]++;
else ps = badVal;

break;
case PVM.decc: // char --

adr = pop();
if (inBounds(adr))
if (mem[adr] > 0) mem[adr]--;
else ps = badVal;

break;

Task 14 - An Alternative for, for which I am grateful

Every year some students come up with alternatve solutions to my own which have distinct merit. So it was that

this year Trevor Chikambura and Courtney Pitcher tried to implement the for statement rather more directly in

terms of the suggested semantics:

Temp1 := Expression1 Temp1 := Expression1
Temp2 := Expression2 Temp2 := Expression2
IF Temp1 > Temp2 THEN GOTO EXIT IF Temp1 < Temp2 THEN GOTO EXIT
Control := Temp1; Control := Temp1;

BODY: Statement BODY: Statement
IF Control = Temp2 THEN GOTO EXIT IF Control = Temp2 THEN GOTO EXIT
Control := Control + 1 Control := Control - 1
GOTO BODY GOTO BODY

EXIT: EXIT:

Their solution was not quite complete, but here are their ideas cleaned up a little, and this will be added, with

acknowledgement, to the archive I have built up of happy times spent with CSC 301.

// Variation based on submission by Courtney Pitcher and Trevor Chikambura, 2014

FORStatement<StackFrame frame> (. int expType;
boolean savedCanChange;
Label loopStart = new Label(!known);
Label loopExit = new Label(!known);
Label loopContinue = new Label(!known);
String name; .)

= "FOR" Ident<out name> (. Entry var = Table.find(name);
if (!var.declared)
SemError("undeclared identifier");

if (var.kind != Kinds.Var)
SemError("illegal control variable");

if (!var.canChange)
SemError("may not alter this variable");

if (!IsArith(var.type))
SemError("control variable must be of arithmetic type");

Computer Science 301 - 2014 - Practical 7 solutions 15

savedCanChange = var.canChange;
var.canChange = false; .)

AssignOp Expression<out expType> (. if (!assignable(var.type, expType))
SemError("incompatible with control variable");

boolean up = true; .)
("to" | "downto" (. up = false; .)
) Expression<out expType> (. if (!assignable(var.type, expType))

SemError("incompatible with control variable");
CodeGen.checkAnyIterationsNeeded(up);
CodeGen.branchFalse(loopExit);
CodeGen.loadAddress(var);
CodeGen.assign2(var.type);
loopStart.here(); .)

Statement<frame, loopExit, loopContinue>
(. loopContinue.Here();

CodeGen.loadAddress(var);
CodeGen.dereference();
CodeGen.checkMoreIterations();
CodeGen.branchFalse(loopExit);
CodeGen.loadAddress(var);
CodeGen.incOrDec(up, var.type);
CodeGen.branch(loopStart);
loopExit.here();
var.canChange = savedCanChange;
CodeGen.pop(2); .) .

This solution relies on the presence of four new opcodes:

case PVM.sto2: // store sos on address found on top of stack (do not pop the value)
adr = Pop();
if (InBounds(adr)) mem[adr] = mem[cpu.sp + 1];
break;

case PVM.cfu: // check whether a "to" for loop will execute at least once
Push(mem[cpu.sp + 1] <= mem[cpu.sp] ? 1 : 0);
break;

case PVM.cfd: // check whether a "downto" for loop will execute at least once
Push(mem[cpu.sp + 1] >= mem[cpu.sp] ? 1 : 0);
break;

case PVM.ckfin: // check whther a for loop has completed all iterations
Push(Pop() != mem[cpu.sp] ? 1 : 0);
break;

and by now you should be able to predict the simple modifications needed to the code generator!

Computer Science 301 - 2014 - Practical 7 solutions 16

