Computer Science 3 - 2015
Programming Language Translation
Practical for Week 2, beginning 7 September 2015 - Solutions

There were some very good solutions submitted, and some energetic ones too - clearly a lot of students had put in
many hours developing their code. This is very encouraging, but there was also evidence of "sharing" out the
tasks, not really working together a proper group, and not developing an interpreter that was up to the later tasks.
And do learn to put your names into the introductory comments of programs that you write.

Full source for the solutions summarized here can be found in the ZIP file on the servers - PRAC2A . ZIP

Task 3 involved reading some Parva code for a simple algorithm and then adding suitable commentary. It is highly
recommended that you adopt the style shown below, where the higher level code acts as commentary, rather than

adopting a line by line explanation of each mnemonic/opcode.

; Read a zero-terminated list of numbers and write it backwards (say what it does)

; P.D. Terry, Rhodes University, 2015 (and who was responsible)
0 DSP 3 0 list, 11, 2n 42 LDA 1
2 LDA 0 44 LDA 1
4 LDC 10 const max = 10; 46 LDV
6 ANEW int[l list = 47 LDC 1
7 STO new int L[max]; 49 ADD
8 LDA 1 50 STO i=14+1;
10 LDC 0 51 LDA 2
12 STO i=0; 53 INPI read(n);
13 LDA 2 54 BRN 16 > [/ while
15 INPI read(n); 56 LDA 1
16 LDA 2 58 LDV
18 LDV 59 LDC 0
19 LDC 0 61 CGT while (i > 0) {
21 CNE while (n 1 0 62 BZE 84
22 LDA 1 64 LDA 1
24 LDV 66 LDA 1
25 LDC 10 // max 68 LDV
27 CLT 69 LDC 1
28 AND g&& i < max) { 71 SuB
29 BZE 56 72 STO i=1-1;
31 LDA 0 73 LDA 0
33 LDV 75 LDV
34 LDA 1 76 LDA 1
36 LDV 78 LDV
37 LDXA 79 LDXA
38 LDA 2 80 LDV
40 LDV 81 PRNI write(listL[il);
41 sTO list[il = n; 82 BRN 56 3 [/ while
84 HALT

It is easy to see that this does not use short circuit evaluation of Boolean expressions, as it uses AND, which is an
infix operator that requires its two operands both to have been evaluated and pushed onto the expression stack.
However, it is easy to eliminate the AND (and, in the code on the right, even a comparison)"

16 LDA 2 16 LDA 2 16 LDA 2

18 LDV 18 LDV 18 LDV

19 LDC 0 19 LDC 0 19 BZE 54

21 CNE while (n !=0 21 CNE while (n 1= 0 21 LDA 1 while (n !'=0
22 LDA 1 22 BZE 57 22 LDV

24 LDV 24 LDA 1 24 LDC 10 /] max

25 LDC 10 // max 26 LDV /] max 26 CLT && i < max)
27 CLT 27 LDC 10 27 BZE 54

28 AND && i < max) { 29 CLT && i < max) { 29 LDA 0

29 BZE 56 30 BZE 57

31 LDA 0 32 LDA 0

(Other examples of short circuit coding are to be found in the solution to this week's test.)

Task 4 - Execution overheads - part one

See discussion of Task 9 below.

Task § - Palindromic sequences

Task 5 was to hand-compile the numerical palindrome checking into PVM code. Most people got a long way

towards this.

Again, have a look at how I have commented this, using "high level" code, rather than detailed line by line
Many of the submissions had "commentary" that was, frankly,
almost useless. Try the following test for assembler code: Cover over the real code with a piece of paper and read
only the comments. Does what you read make sense on its own? I maintain that it should. The easiest way to do

commentary of the form "load address of X".

this is by using a high level algorithmic notation.

; Read a sequence of numbers and report 66
; whether they form a palindromic 67
; sequence (reads the same from either end) 68
; examples: 12 3 4321 1is palindromic 70
; 123 4 432 s non-palindromic 71
; P.D. Terry, Rhodes University, 2015 73
0 DSP 6 74
2 LDA 5 76
4 LDC 100 77
6 ANEW 78
7 STO int [1 list = new int [10]1; 80
8 LDA 0 82
10 LDC 0 83
12 STO n=20 85
13 LDA 3 86
15 INPI read(item) 87
16 LDA 3 88
18 LDV 90
19 LDC 0 91
21 CNE 93
22 BZE 49 while (item !=0) { 94
24 LDA 5 95
26 LDV 96
27 LDA 0 97
29 LDV 99
30 LDXA 101
31 LDA 3 103
33 LDV 104
34 STO listlnl = item; 106
35 LDA 0 108
37 LDA 0 109
39 LDV 111
40 LDC 1 112
42 ADD 113
43 STO n=n+1; 115
44 LDA 3 117
46 INPI read(item); 118
47 BRN 16 3} /] while 120
49 LDA 4 121
51 LDC 1 122
53 STO isPalindrome = true; 124
54 LDA 1 126
56 LDC 0 127
58 STO low = 0; 129
59 LDA 2 131
61 LDA 0 133
63 LDV 135
64 LDC 1

Task 6 - Trapping overflow and other pitfalls

Checking for overflow in multiplication and division was not always well done. You cannot multiply and then try
to check overflow (it is too late by then) - you have to detect it in a more subtle way. Here is one way of doing it
- note the check to prevent a division by zero. This does not use any precision greater than that of the simulated

SuB
STO
LDA
LDV
LDA
LDV
LDC
SuB
CLT
BZE
LDA
LDV
LDA
LDV
LDXA
LDV
LDA
LDV
LDA
LDV
LDXA
LDV
CNE
BZE
LDA
LDC
STO
LDA
LDA
LDV
LDC
ADD
STO
LDA
LDA
LDV
LDC
suB
STO
BRN
LDA
LDV
BZE
PRNS
BRN
PRNS
HALT

high = n - 1;
1 /] start while test

124 while (low < n - 1) {
5

1

// listLlowl

5
2

/] list[highC
104 if (listllowl
4
0

isPalindrome =

1
1
1

low = low + 1;
2
2
1

high = high - 1;
68 } // while
4
133 if (isPalindrome)

"Palindromic sequence"
135 else
"Non-palindromic sequence"

machine itself. Note that it is necessary to check for "division by zero" in the rem code as well!

ca

se PVM.mul:
tos = Pop();
sos = Pop();

if (tos != 0 & Math.Abs(sos) > maxInt / Math.Abs(tos)) ps =

else Push(sos * tos);
break;

// integer multiplication

Computer Science 301 - 2015 - Practical 2 solutions

badvVal;

!= LlistChighl)

false;

case PVM.div: /] integer division (quotient)
tos = Pop();
if (tos == 0) ps = divZero;
else Push(Pop() / tos);
break;
case PVM.rem: // integer division (remainder)
tos = Pop();
if (tos == 0) ps = divZero;
else Push(Pop() % tos);
break;

or for the "inline" assembler

case PVM.mul: /] integer multiplication
tos = memLcpu.spt++]l;
if (tos != 0 && Math.Abs(memLcpu.spl) > maxInt / Math.Abs(tos)) ps = badval;
else memLcpu.spl *= tos;
break;
case PVM.div: /] integer division (quotient)
tos = memLcpu.sp++];
if (tos != 0) memLcpu.spl /= tos;
else ps = divZero;
break;
case PVM.rem: /] integer division (remainder)
tos = memLcpu.sp++];
if (tos != 0) memlcpu.spl %= tos;
else ps = divZero;
break;

It is possible to use an intermediate 1ong variable (but don't forget the casting operations or the Abs function):

case PVM.mul: // integer multiplication
tos = Pop();
sos = Pop();
long temp = (long) sos * (long) tos;
if (Math.Abs(temp) > maxInt) ps = badval;
else Push(sos * tos);
break;

The palindrome checker program, when given too long a sequence of non-zero numbers for the array to handle,
terminated with an array bounds error corectly trapped by the Push/Pop assembler. The same error was not
trapped by the Inline system, which gaily allows the LDXA opcode to wander wheresoever it likes. To fix this

resuires the following changes to the PVM Inline interpreter. This strategy is discussed in the textbook!

case PVM.anew: // heap array allocation
int size = memlcpu.spl;
if (size <=0 || size + 1 > cpu.sp - cpu.hp - 2)
ps = badAll;
else {
memCcpu.hpl = size;
memLcpu.spl = cpu.hp;
cpu.hp += size + 1;
b
break;

case PVM. ldxa: // heap array indexing
int adr = mem[lcpu.sp++];
int heapPtr = memLcpu.spl;
if (heapPtr == 0) ps = nullRef;
else if (heapPtr < heapBase || heapPtr >= cpu.hp) ps = badMem;
else if (adr < 0 || adr >= memCheapPtrl) ps = badInd;
else memLcpu.spl = heapPtr + adr + 1;
break;

Task 6 - Your lecturer is quite a character

To be able to deal with input and output of character data we need to add two new opcodes, modelled on the INPI
and PRNI codes whose interpretation would be as below. All of the new opcodes require additions to the lists of
opcodes in the assembler and interpreter (be careful of two word opcodes that are mentioned in several places).

Computer Science 301 - 2015 - Practical 2 solutions 3

case PVM.inpc: // character input
adr = Pop();
if (InBounds(adr)) {
memLadr]l = data.ReadChar();
if (data.error()) ps = badData;
b
break;
case PVM.prnc: /] character output
if (tracing) results.write(padding);
results.Write((char) (Math.Abs(Pop()) % (maxChar + 1)), 1);
if (tracing) results.WriteLine();
break;

or for the "inline" assembler

case PVM.inpc: // character input
memCmemLcpu.sp++]] = data.ReadChar();
break;

case PVM.prnc: /] character output

if (tracing) results.Write(padding);

results.Write((char) (Math.Abs(mem[cpu.sp++1) % (maxChar + 1)), 1);
if (tracing) results.WriteLine();

break;

Note that the PRNC opcode outputs the character in a field width of 1, not O as most people tried. This has the
effect that we can output characters without intervening spaces. Note also the way in which the value is forced
"modulo 256" to become a valid ASCII value. 1 don't recall seeing anyone do this.

To build a really safe system there are further refinements we should make. It can be argued that we should not
try to store a value outside ot the range O .. 255 into a character variable. This suggests that we should have a
range of STO type instructions that check the value on the top of stack before assigning it. One of these - STOC
to act as a variation on STO - would be interpreted as follows; we would need others to handle STLC, STLC 0
and so on (these have not yet been implemented in the solution kit).

case PVM.stoc: /] character checked store
tos = Pop(); adr = Pop();
if (inBounds(adr))
if (tos >= 0 && tos <= maxChar) mem[adr]l = tos; else ps = badval;
break;

or for the "inline" assembler

case PVM.stoc: /] character checked store
tos = memLlcpu.sp++]; memLmemLcpu.sp++]] = tos;
break;

Introducing opcodes to convert to lower case and check for a letter is simply done by using the methods from the
C# Char wrapper class (notice the need for casting operations as well, to satisfy the C# compiler):

case PVM. low: /] tolLowercCase
Push(Char.ToLower({(char) Pop()));
break;

case PVM.islet: /] isLetter

tos = Pop();
Push(Char.IsLetter({(char) tos) ?2 1 : 0);
break;

or for the "inline" assembler

case PVM. low: /] tolLowercCase
memCcpu.spl = Char.ToLower((char) memLcpu.spl);
break;
case PVM.islet: /] isLetter
memLcpu.sp]l = Char.IsLetter((char) memLcpu.spl) ?2 1 : O;
break;

As an example of using the new input/output opcodes, here is the encryption program. Notice that we have had

to hard-code 46 as the integer equivalent of character '.", of course, and similarly hard-coded 97 as the integer
equivalent of 'a’".

Computer Science 301 - 2015 - Practical 2 solutions 4

; rot13 encryption of a text terminated with a period 25 LDC 97

; P.D. Terry, Rhodes University, 2015 27 SUB ;
0 DSP 1 ; chato 28 LDC 13 ;
2 LDA 0 ; repeat { 30 ADD ;
4 INPC ; read(ch); 31 LDC 26 ;
5 LDA 0o ; 33 REM ;
7 LDA 0 ; 34 ADD ;
9 LDV ; 35 STOC ; ch = 'a' + (ch-'a'+13) % 26;
10 LOW ; 36 LDA o ;
11 STOC ; ch = lowercase(ch); 38 LDV ;
12 LDA 0 ; 39 PRNC ; write(ch)
14 LDV ; 40 LDA 0 ;
15 ISLET ; 42 LDV ;
16 BZE 36 ; if (isletter(ch)) 43 LDC 46 ;
18 LDA 0 ; 45 CEQ ;
20 LDC 97 ; 46 BILE 2 ; Yuntil (ch == "'.');
22 LDA 0 ; 48 HALT ; System.Exit(0);

Task 8 - Improving the opcode set

This is straightforward, if a little tedious, and it is easy to leave some of the changes out and get a corrupted
solution. The PVMAsm class requires modification in the switch statement that recognizes two-word opcodes:

case PVM.brn: // all require numeric address field

case PVM. ldc:

case PVM.ldl: [/ ++++++tt++++++444 addition

case PVM.stl: [/ ++++++tt+++++++++ addition
codeLen = (codeLen + 1) % PVM.memSize;

if (ch == '"\n") // no field could be found
error("Missing address", codelLen);
else { // unpack it and store

PVM.mem[codelLen] = src.readInt();

if (src.error()) error("Bad address", codelLen);
b
break;

The PVM class requires several additions.
We must add to the switch statement in the trace and 1istCode methods (several submissions missed this):

static void trace(OutFile results, int pcNow) {
switch (cpu.ir) {

case PVM.ldl: [/ +++++++++++++++++ addition
case PVM.stl: [/ ++++++++++++HH+++ addition
X
results.writeLine();
>

and we must provide case arms for all the new opcodes. A selection of these follows; the rest can be seen in the
solution kit. Notice that for consistency all the "inBounds" checks should be performed on the new opcodes too
(several submissions missed this).

case PVM.ldc_O: // push constant 0
Push(0);
break;

case PVM.ldc 1: // push constant 1
Push(1);
break;

case PVM.lda 0: // push local address 0
adr = cpu.fp - 1;
if (inBounds(adr)) Push(adr);
break;

case PVM.lda_1: // push local address
adr = cpu.fp - 2;
if (inBounds(adr)) Push(adr);
break;

-

case PVM.ldl: // push Llocal value
adr = cpu.fp - 1 - next();
if (inBounds(adr)) Push(mem[adrl);
break;

Computer Science 301 - 2015 - Practical 2 solutions 5

case PVM.ldL_0: // push value of local variable 0
adr = cpu.fp - 1;
if (inBounds(adr)) Push(memLadrl);
break;

case PVM.ldL_1: // push value of local variable 1
adr = cpu.fp - 2;
if (inBounds(adr)) Push(memLadrl);
break;

case PVM.stl: /] store Llocal value
adr = cpu.fp - 1 - next();
if (inBounds(adr)) memLladrl = Pop();
break;
case PVM.stlc: /] character checked pop to local variable
tos = Pop(); adr = cpu.fp - 1 - Next();
if (InBounds(adr))
if (tos >= 0 && tos <= maxChar) mem[adrl] = tos;
else ps = badval;
break;
case PVM.stl_O: // pop to local variable 0
adr = cpu.fp - 1;
if (inBounds(adr)) memLadrl = Pop();
break;
case PVM.stl_1: // pop to local variable 1
adr = cpu.fp - 2;
if (inBounds(adr)) memLadrl = Pop();
break;

or for the "inline" assembler

case PVM.ldc_O: // push constant 0
memC--cpu.spl = 0;
break;

case PVM.ldc_1: // push constant 1
memC--cpu.spl = 1;
break;

case PVM.lda_0: // push local address 0
mem[--cpu.spl = cpu.fp - 1;
break;

case PVM.lda_1: // push local address 1
mem[--cpu.spl = cpu.fp - 2;
break;

case PVM.ldL: // push Llocal value
mem[--cpu.sp]l = memLcpu.fp - 1 - memLcpu.pc++1];
break;

case PVM.ldL_0: // push value of local variable 0
mem[--cpu.spl = memLcpu.fp - 11;
break;

case PVM.ldl_1: // push value of local variable 1
mem[--cpu.spl = memLcpu.fp - 21;
break;

case PVM.stl: /] store local value
memCcpu.fp - 1 - memCcpu.pc++1] = memLcpu.sp++]1;
break;

case PVM.stlc: /] store local value
memCcpu.fp - 1 - memLCcpu.pc++]] = memLcpu.sp++]1;
break;

case PVM.stl O: // pop to local variable 0
memCcpu.fp - 11 = memLlcpu.sp++];
break;

case PVM.stl_1: // pop to local variable 1
memCcpu.fp - 21 = memLcpu.sp++];
break;

We must add to the method that lists out the code (several submissions may have missed this). :

public static void LlistCode(String fileName, int codeLen) {

case PVM.brn:
case PVM. ldc:
case PVM.ldl: [/ +++++++++++++++++ addition
case PVM.stl: // +++++++++++++++++ addition
i= (i + 1) % memSize; codeFile.write(mem[il);
break;

Computer Science 301 - 2015 - Practical 2 solutions 6

The INC and DEC operations are best performed by introducing opcodes that assume that an address has been
planted on the top of stack for the variable (or array element) that needs to be incremented or decremented. This
may not have been apparent to everyone.

case PVM.inc: /] ++
adr = Pop();
if (inBounds(adr)) mem[adrl++;
break;

case PVM.dec: /] --
adr = Pop();
if (inBounds(adr)) mem[adrl--;
break;

or for the "inline" assembler

case PVM.inc: /] ++
memCmemCcpu.sp++11++;
break;

case PVM.dec: /] --
memCmemCcpu.sp++]11--;
break;

Finally we must add to the section that initializes the mnemonic lookup table:

public static void init() {

mnemonics[PVM. LdL] = "LDL"; /| +++++ttHeeet444+ additions
mnemonics[PVM.stl] = "STL";
mnemonics[PVM.lda_01 = "LDA_O0";

Here are the encoding program and the character palindrome programs recoded using these new opcodes.
The palindrome program has also been optimised so as to terminate the checking loop as quickly as possible:

; Read a sequence of characters terminated by a period and report whether
; they form a palindrome (one that reads the same from each end)

40 STL_1 low = 0;
; Examples: too hot to hoot. is palindromic 41 LDL_O
; 1234432, is non-palindromic 42 LDC_1
; P.D. Terry, Rhodes University, 2015 43 SUB
44 STL_2 high = n -1;
0 DSP 6 45 LDL 4
2 LDC 100 47 NEG
4 ANEW 48 BIZE 77 while (isPalindrome
5 STL 5 char [1 str = new char [100]; 50 LDL_1
7 LDC_O 51 LDL_2
8 STL O n=0; 52 CLT
9 LDA_3 53 BZE 77 && low < high) {
10 INPC read(ch) 55 LDL 5
11 LDL_3 57 LDL_1
12 LDC 46 58 LDXA
14 CNE 59 LDV /] strilowl
15 BZE 36 while (ch = ',") { 60 LDL 5
17 LDL_3 62 LDL_2
18 LDC 32 63 LDXA
20 CGT 64 LDV /] strihighl
21 BIZE 32 if (ch > "' ") { 65 CNE if (strClowl != strChighl)
23 LDL 5 66 BIZE 71
25 LDbL O 68 LDC_O isPalindrome = false;
26 LDXA 69 STL 4
27 LDL_3 71 LDA_1
28 LOW 72 INC low++;
29 STOC strCnl = Llower(ch); 73 LDA_2
30 LDA O 74 DEC high--;
31 INC n++; 75 BRN 45 ¥ // while
32 LDA_3 > 77 LDL 4
33 INPC read(ch); 79 BIZE 85 if (isPalindrome)
34 BRN 11 3 // while 81 PRNS "Palindromic string"
36 LDC_1 83 BRN 87 else
37 STL 4 isPalinDrome = true; 85 PRNS "Non-palindromic string"
39 LbC_O 87 HALT

The encoding program has been optimized in several respects - can you see them all?

Computer Science 301 - 2015 - Practical 2 solutions 7

; rot13 encryption of a text terminated with a period

; P.D. Terry, Rhodes University, 2015 17 SuB
0 DSP 1 ; chato 18 LDC 26
2 LDA_O ; repeat { 20 REM
3 INPC ; read(ch); 21 ADD
4 LDL_O 22 12C
5 LOW 23 STLC o ; ch = (char) ('a' + (ch-'a'+13) % 26);
6 STLC 0 ; ch = lowercase(ch); 25 LDL_O
8 LDL_O 26 PRNC H write(ch)
9 ISLET 27 LDL_O
10 BZE 25 ; if (isletter(ch)) 28 LDC 46
12 LDC 97 /] 'a 30 CEQ
14 LDL_O 31 BZE 2 ; Yuntil (ch == '.");
15 LDC 84 ; /] tat - 13 33 HALT ; System.Exit(0);

Task 9 - Execution overheads - part two

In the prac kit you were supplied with a second translation SIEVE2.PVM of a cut down version of the same
prime-counting program SIEVE.PAV as was used in Task 4, but this time using the extended opcode set
developed in the last task.

Running SIEVE1.PVM through both of the original and modified assemblers, and SIEVE2.PVM through both of
the modified assemblers gave the following timings for the same limit (4000) and number of iterations (100) on
my machines, one a laptop running Windows XP and one a desktop running Windows 7-32.

Desktop Machine (Win 7-32) Sievel.pvm Sieve2.pvm

ASM1 (Push/Pop - original) 0.73 -

ASM2 (Inline - original) 0.30 (0.41) -

ASM3 (Push/Pop - extended) 0.72 0.55

ASM4 (Inline - extended) 0.33 (0.45) 0.15 (0.27)
Laptop machine (XP-32) Sievel.pvm Sieve2.pvm

ASM1 (Push/Pop - original) 1.34 -

ASM2 (Inline - original) 0.51 (0.38) -

ASM3 (Push/Pop - extended) 1.16 0.86

ASM4 (Inline - extended) 0.51 (0.45) 0.26 (0.30)

The Desktop times were about 55-65% of those on the Laptop

The Inline times were between 38-45% of the Push/Pop system with the original limited opcode set.

The Inline times were between 27-30% of the Push/Pop system with the extended opcode set,

If one wishes to improve the performance of the interpreter further it might make sense to get some idea of which
opcodes are executed most often. Clearly this will depend on the application, and so a mix of applications might
need to be analysed. It is not difficult to add a profiling facility to the interpreter, and this has been done in yet

another interpreter that you can find in the solution kit. Running this on the Sieve files yielded some interesting
results. For a start, there were enormous numbers of steps executed - probably more than you might have thought.

Computer Science 301 - 2015 - Practical 2 solutions 8

550 primes 550 primes

original opcodes Extended opcode set
39 494 323 operations. 27 070 118 operations. (68%)
HALT 1 INC 799900
ANEW 1 LDC_2 200
BZE 2182801 LDC_1 454902
BRN 1727700 LDC_0O 1910701
CGT 982800 STL_3 1
CLE 1782901 STL_2 982800
AND 982800 STL_1 200
ADD 1782701 STL_O 1
PRNS 1 LDL_3 101
PRNI 1 LDL_2 3821200
LDXA 1727600 LDL_1 2582600
STO 3165703 LDL_O 1727600
LDV 9386302 LDA_3 100
LDA 10824405 LDA_1 799800
LDC 4948605 STL 55101
DSP 1 LDL 55001
HALT 1
ANEW 1
BZE 2182801
BRN 1727700
CGT 982800
CLE 1782901
AND 982800
ADD 982801
PRNS 1
PRNI 1
LDXA 1727600
STO 1327700
LDV 399900
LDC 1782902
DSP 1

Computer Science 301 - 2015 - Practical 2 solutions 9

