
Computer Science 3 - 2015

Programming Language Translation

Practical 7 - Week beginning 19 May 2015 - solutions

Sources of full solutions for these problems may be found on the course web page as the file PRAC7A.ZIP.

Task 2 - Use of the debugging and other pragmas

The extra pragmas needed in the refined Parva compiler are easily introduced. We need some static fields:

public static boolean
debug = false,

* optimize = false,
* listCode = false,
* warnings = true,
* shortCirc = true;

The definitions of the pragmas are done in terms of these:

PRAGMAS
DebugOn = "$D+" . (. debug = true; .)
DebugOff = "$D-" . (. debug = false; .)

* ShortOn = "$S+" . (. shortCirc = true; .)
* ShortOff = "$S-" . (. shortCirc = false; .)
* OptCodeOn = "$O+" . (. optimize = true; .)
* OptCodeOff = "$O-" . (. optimize = false; .)
* CodeOn = "$C+" . (. listCode = true; .)
* CodeOff = "$C-" . (. listCode = false; .)
* WarnOn = "$W+" . (. warnings = true; .)
* WarnOff = "$W-" . (. warnings = false; .)

It is convenient to be able to set the options with command-line parameters as well. This involves a

straightforward change to the Parva.frame file:

for (int i = 0; i < args.Length; i++) {
if (args[i].ToLower().Equals("-l")) mergeErrors = true;
else if (args[i].ToLower().Equals("-d")) Parser.debug = true;

* else if (args[i].ToLower().Equals("-w")) Parser.warnings = false;
* else if (args[i].ToLower().Equals("-c")) Parser.listCode = true;
* else if (args[i].ToLower().Equals("-o")) Parser.optimize = true;
* else if (args[i].ToLower().Equals("-s")) Parser.shortCirc = false;

else if (args[i].ToLower().Equals("-n")) execution = false;
else if (args[i].ToLower().Equals("-g")) immediate = true;
else inputName = args[i];

}
if (inputName == null) {
Console.WriteLine("No input file specified");
Console.WriteLine("Usage: Parva [-l] [-d] [-w] [-c] [-o] [-s] [-n] [-g] source.pav");
Console.WriteLine("-l directs source listing to listing.txt");
Console.WriteLine("-d turns on debug mode");

* Console.WriteLine("-w suppresses warnings");
* Console.WriteLine("-c lists object code (.cod file)");
* Console.WriteLine("-o optimised code");
* Console.WriteLine("-s suppresses short circuit evaluation");

Console.WriteLine("-n no execution after compilation");
Console.WriteLine("-g execute immediately after compilation (StdIn/StdOut)");
System.Environment.Exit(1);

}

Finally, the following change to the frame file gives the option of suppressing the generation of the .COD listing.

* if (Parser.listCode) PVM.ListCode(codeName, codeLength);

Task 3 - Things are not always what they seem

Issuing warnings for empty statements or empty blocks at first looks quite easy. At this stage we could try:

* Block<StackFrame frame>
= (. Table.openScope();

* bool empty = true; .)
* "{" { Statement<frame> (. empty = false; .)
* } (. if (empty && warnings) Warning("empty {} block");

WEAK "}" (. Table.closeScope(); .) .

Statement<StackFrame frame>
= SYNC (Block<frame>

| ConstDeclarations
| VarDeclarations<frame>
| CallOrAssignmentStatement
| IfStatement<frame>
| WhileStatement<frame>
| HaltStatement
| ReturnStatement
| ReadStatement
| WriteStatement

* | ";" (. if (warnings) Warning("empty statement"); .) .

Spotting an empty block or the empty statement in the form of a stray semicolon, is partly helpful. Detecting

blocks that really have no effect might be handled in several ways. One suggestion is to count the executable

statements in a Block. This would mean that the Statement parser had to be attributed so as to return this count,

and this has a knock-on effect in various other productions as well. Since we might have all sorts of nonsense like

{ { int k; } { { int j; } int i; ; ; { } {{}} } }

counting has to proceed carefully. Details are left as a further exercise! Once you have started seeing how stupid

some code can be, you can develop a flare for writing bad code suitable for testing compilers without asking your

friends in CSC 102 to do it for you!

Task 4 - You had better do this one or else....

The problem, firstly, asked for the addition of an else option to the IfStatement. Adding an else option to the

IfStatement efficiently is easy once you see the trick. Note the use of the "no else part" option associated with an

action, even in the absence of any terminals or non-terminals. This is a very useful technique to remember.

IfStatement<StackFrame frame> (. Label falseLabel = new Label(!known);
Label outLabel = new Label(!known); .)

= "if" "(" Condition ")" (. CodeGen.BranchFalse(falseLabel); .)
* Statement<frame>
* ("else" (. CodeGen.Branch(outLabel);
* falseLabel.Here(); .)
* Statement<frame> (. outLabel.Here(); .)
* | /* no else part */ (. falseLabel.Here(); .)
*) .

Many - perhaps most - people in attempting this problem come up with the following sort of thing instead. This

can generate BRN instructions where none are needed. Devoid of checking, just to save space:

IfStatement<StackFrame frame> (. Label falseLabel = new Label(!known);
Label outLabel = new Label(!known); .)

= "if" "(" Condition ")" (. CodeGen.BranchFalse(falseLabel); .)
Statement<frame> (. CodeGen.Branch(outLabel);

falseLabel.Here(); .)
["else" Statement<frame>] (. outLabel.Here(); .) .

Using this strategy, source code like

if (i == 12) k = 56;

would lead to object code like

12 LDA 0
14 LDV
15 LDC 12
17 CEQ
18 BZE 27
20 LDA 5
22 LDC 56
24 STO
25 BRN 27 // unnecessary
27

Handling the elsif clauses uses the same sort of idea. Note that. after defining falseLabel.Here(), the label

is "re-used" by assigning it another instance of an "unknown" label. If you don't do this you will get all sorts of

Computer Science 301 - 2015 - Practical 7 solutions 2

bad code or funny messages from the label handler!

IfStatement<StackFrame frame)
(. Label falseLabel = new Label(!known);

Label outLabel = new Label(!known); .)
= "if" "(" Condition ")" (. CodeGen.BranchFalse(falseLabel); .)

Statement<frame)
* { (. CodeGen.Branch(outLabel);
* falseLabel.Here();
* falseLabel = new Label(!known); .)
* "elsif" "(" Condition ")" (. CodeGen.BranchFalse(falseLabel); .)
* Statement<frame>
* }

("else" (. CodeGen.Branch(outLabel);
falseLabel.Here(); .)

Statement<frame
| /* no else part */ (. falseLabel.Here(); .)

) (. outLabel.Here(); .) .

Task 5 Something to do - while you wait for inspiration

This was discussed in class, and I am surprised that some people had trouble with it. We need a single label, and

a single conditional branch that goes to the start of the loop body. The only trick is that we don't have a "branch

on true" opcode - but all we have to do is to generate a "negate boolean" operation that will be applied to the

computed value of the Condition at run time before the conditional branch takes effect:

DoWhileStatement<StackFrame frame> (. Label loopStart = new Label(known); .)
= "do"

Statement<frame>
WEAK "while"
"(" Condition ")" WEAK ";" (. CodeGen.NegateBoolean();

CodeGen.BranchFalse(loopStart); .) .

Task 6 - Repeat discussions with your team mates until you all get the idea

This one is almost exactly the same, save that one has no need of the Boolean negation operation. They don't get

much easier than this.

RepeatStatement<StackFrame frame> (. Label loopStart = new Label(known); .)
= "repeat" {

Statement<frame>
}
WEAK "until"
"(" Condition ")" WEAK ";" (. CodeGen.BranchFalse(loopStart); .) .

Task 7 - This has gone on long enough - time for a break (and then continue)

Although I asked only for the break statement, we may as well illustrate the less common continue statement as

well, for those who like reading simple code in a compiler...

The syntax of the BreakStatement and ContinueStatement is, of course, trivial. The catch is that one has to allow

these statements only in the context of loops. Trying to find a context-free grammar with this restriction is not

worth the effort.

One approach that incorporates context-sensitive checking in conjunction with code generation, as hopefully you

know, is based on passing information as parameters between subparsers. The pieces of information we need to

pass here are Label objects. We change the parser for Statement and for Block as follows:

* Block<StackFrame frame, Label breakLabel, Label continueLabel>
= (. Table.openScope();

bool empty = true; .)
* "{" { Statement<frame, breakLabel, continueLabel>

(. empty = false; .)
} (. if (empty && warnings) Warning("empty {} block");

WEAK "}" (. Table.closeScope(); .) .

Computer Science 301 - 2015 - Practical 7 solutions 3

* Statement<StackFrame frame, Label breakLabel, Label continueLabel>
* = SYNC (Block<frame, breakLabel>

| ConstDeclarations
| VarDeclarations<frame>
| AssignmentOrCall

* | IfStatement<frame, breakLabel, continueLabel>
| WhileStatement<frame>
| DoWhileStatement<frame>
| RepeatStatement<frame>

* | BreakStatement<breakLabel>
* | ContinueStatement<continueLabel>

| HaltStatement
| ReturnStatement
| ReadStatement
| WriteStatement
| ";" (. if (warnings) Warning("empty statement"); .)

) .

The very first call to Statement passes null as the value for each of these labels:

Body<StackFrame frame>
= (. Label DSPLabel = new Label(known);

int sizeMark = frame.size;
CodeGen.OpenStackFrame(0); .)

"{" { Statement<frame, null, null> }
WEAK "}" (. CodeGen.FixDSP(DSPLabel.Address(), frame.size - sizeMark);

CodeGen.LeaveVoidFunction(); .) .

The parsers for the statements that are concerned with looping, breaking, and making decisions become

IfStatement<StackFrame frame, Label breakLabel, Label continueLabel>
(. Label falseLabel = new Label(!known);

Label outLabel = new Label(!known); .)
= "if" "(" Condition ")" (. CodeGen.BranchFalse(falseLabel); .)

* Statement<frame, breakLabel, continueLabel>
{ (. CodeGen.Branch(outLabel);

falseLabel.Here();
falseLabel = new Label(!known); .)

"elsif" "(" Condition ")" (. CodeGen.BranchFalse(falseLabel); .)
* Statement<frame, breakLabel, continueLabel>

}
("else" (. CodeGen.Branch(outLabel);

falseLabel.Here(); .)
* Statement<frame, breakLabel, continueLabel>

| /* no else part */ (. falseLabel.Here(); .)
) (. outLabel.Here(); .) .

WhileStatement<StackFrame frame> (. Label loopExit = new Label(!known);
* Label loopContinue = new Label(known); .)

= "while" "(" Condition ")" (. CodeGen.BranchFalse(loopExit); .)
* Statement<frame, loopExit, loopContinue>

(. CodeGen.Branch(loopContinue);
* loopExit.Here(); .) .

* DoWhileStatement<StackFrame frame> (. Label loopExit = new Label(!known);
* Label loopContinue = new Label(known);

Label loopStart = new Label(known); .)
= "do"

* Statement<frame, loopExit, loopContinue>
* WEAK "while" (. loopContinue.Here(); .)

"(" Condition ")" WEAK ";" (. CodeGen.NegateBoolean();
CodeGen.BranchFalse(loopStart);

* loopExit.Here(); .) .

* RepeatStatement<StackFrame frame> (. Label loopExit = new Label(!known);
* Label loopContinue = new Label(!known);

Label loopStart = new Label(known); .)
= "repeat" {

* Statement<frame, loopExit, loopContinue>
}

WEAK "until" (. loopContinue.Here(); .)
"(" Condition ")" WEAK ";" (. CodeGen.BranchFalse(loopStart);

* loopExit.Here(); .) .

Computer Science 301 - 2015 - Practical 7 solutions 4

BreakStatement<Label breakLabel>
* = "break" (. if (breakLabel == null)
* SemError("break is not allowed here");
* else CodeGen.Branch(breakLabel); .)

WEAK ";" .

ContinueStatement<Label continueLabel>
* = "continue" (. if (continueLabel == null)
* SemError("continue is not allowed here");
* else CodeGen.Branch(continueLabel); .)

WEAK ";" .

There is at least one other way of solving the problem, which involves using local variables in the parsing

methods to "stack" up the old labels, assigning new ones, and then restoring the old ones afterwards. But the

method just presented seems the neatest.

Task 8 - Your professor is quite a character

The major part of this extension is concerned with the changes needed to apply various constraints on operands of

the char type. Essentially, and annoyingly perhaps, in the C family of languages it is a sort of arithmetic type

when this is convenient (this is called "auto-promotion"). Explicitly, it ranks as an arithmetic type, in that

expressions of the form

character + character character != integer

character > character integer == character

character + integer integer + character

character > integer integer > character

are all allowable. This can be handled by modifying the helper methods in the parser as follows:

static bool IsArith(int type) {
* return type == Types.intType || type == Types.charType || type == Types.noType;

}

static bool Compatible(int typeOne, int typeTwo) {
* // Returns true if typeOne is compatible (and comparable for equality) with typeTwo

return typeOne == typeTwo
* || IsArith(typeOne) && IsArith(typeTwo)

|| typeOne == Types.noType || typeTwo == Types.noType
|| IsArray(typeOne) && typeTwo == Types.nullType
|| IsArray(typeTwo) && typeOne == Types.nullType;

}

The preceding discussion relates to expression compatibility. However, assignment compatibility is more

restrictive. Assignments of the form

integer = integer expression

integer = character expression

character = character expression

are allowed, but

character = integer expression

is not allowed. This may be checked with the aid of a further helper method, Assignable().

* static bool Assignable(int typeOne, int typeTwo) {
* // Returns true if a variable of typeOne may be assigned a value of typeTwo
* return typeOne == typeTwo
* || typeOne == Types.intType && typeTwo == Types.charType
* || typeOne == Types.noType || typeTwo == Types.noType
* || IsArray(typeOne) && typeTwo == Types.nullType;
* }

The Assignable() function call now takes the place of the Compatible() function call in several places in

Computer Science 301 - 2015 - Practical 7 solutions 5

OneVar and AssignmentStatement where, previously, calls to Compatible() appeared.

A casting mechanism is now needed to handle the situations where it is necessary explicitly to convert integer

values to characters, so that

(char) integer // returns character with internal value of integer

(int) character // returns integer with internal value for character

is allowed, and for completeness, so are the following redundant operations

(int) integer

(char) character

A great many submissions make the mistake of thinking that a cast can only appear in the context of a simple

assignment, that is, must be restricted to being found in statements like:

char ch;
int x, y, z;
ch = (char) SomeExpression
ch = (char) x + y + z; // understood wrongly to "mean"

// ch = (char) (x + y + z); // a character assignment

but that is not the case. Casting applies only to a component of an Expression, so that the above "means":

ch = ((char) x) + y + z; // an incorrect integer assignment again
// integer expressions are incompatible with
// character target designators

and as a further example, stressing the importance of thinking of casting as belonging within expressions, it is

quite legal to write

bool b = 'A' < (char) (x + (int) 'B') ;

Of course, the C family syntax is crazy (in spite of what some of my colleagues think). It would have been

infinitely better to have been allowed to use a notation like

bool b = 'A' > char(x + int('B'));

but they would not have been able to define that form easily (do you see why? It might be an exam question; you

never know my devious mind).

To get it right requires that casting be handled within the Primary production, which has to be factored to deal

with the potential LL(1) trap in distinguishing between components like "(" "int" ")", "(" "char" ")"

and "(" Expression ")":

Casting operations are accompanied by a type check (you cannot cast "anything", only arithmetic values) and a

type conversion (you fool the compiler into it is dealing with a different type for this component of an

expression). However, since the PVM sores both characters and integers as 32 bit values. the (har) cast should

generate code for checking that the run-time integer value to be "converted" lies within the range 0 .. 255 (the 8-

bit ASCII character set).

Primary<out int type> (. type = Types.noType;
int size;
DesType des;
ConstRec con; .)

= Designator<out des> (. type = des.type;
switch (des.entry.kind) {

case Kinds.Var:
CodeGen.Dereference();
break;

case Kinds.Con:
CodeGen.LoadConstant(des.entry.value);
break;

default:
SemError("wrong kind of identifier");
break;

} .)

Computer Science 301 - 2015 - Practical 7 solutions 6

| Constant<out con> (. type = con.type;
CodeGen.LoadConstant(con.value); .)

| "new" BasicType<out type> (. type++; .)
"[" Expression<out size> (. if (!IsArith(size))

SemError("array size must be integer");
CodeGen.Allocate(); .)

"]"

* | "("
* ("char" ")"
* Factor<out type> (. if (!IsArith(type))
* SemError("invalid cast");
* else type = Types.charType;
* CodeGen.CastToChar(); .)
* | "int" ")"
* Factor<out type> (. if (!IsArith(type))
* SemError("invalid cast");
* else type = Types.intType; .)
* | Expression<out type> ")"
*) .

Strictly speaking the above grammar departs slightly from the C family version, where the casting operator is

regarded as weaker than the parentheses around an Expression, but in practice it makes little difference.

Various of the other productions need modification. The presence of an arithmetic operator correctly placed

between character or integer operands must result in the sub-expression so formed being of integer type (and

never of character type). So, for example:

AddExp<out int type> (. int type2;
int op; .)

= MultExp<out type>
{ AddOp<out op>
MultExp<out type2> (. if (!isArith(type) || !isArith(type2)) {

SemError("arithmetic operands needed");
type = Types.noType;

}
* else type = Types.intType;

CodeGen.BinaryOp(op); .)
} .

Similarly a prefix + or - operator applied to either an integer or a character Factor creates a new factor of integer

type (see full solution for details).

The extra code generation method we need is as follows:

public static void CastToChar() {
// Generates code to check that TOS is within the range of the character type
Emit(PVM.i2c);

} // CodeGen.CastToChar

and within the switch statement of the Emulator method we need:

case PVM.i2c: // check (char) cast is in range
if (mem[cpu.sp] < 0 || mem[cpu.sp] > maxChar) ps = badVal;
break;

The interpreter has another opcode for checked storage of characters, but if the i2c opcodes are inserted correctly

it appears that we might never really need stoc. Think about this in a quiet moment.

case PVM.stoc: // character checked store
tos = Pop(); adr = Pop();
if (InBounds(adr))
if (tos >= 0 && tos <= maxChar) mem[adr] = tos;
else ps = badVal;

break;

Computer Science 301 - 2015 - Practical 7 solutions 7

Task 9 - Let's dive in where C programmers fear to go

The problem suggested that Parva might be extended to provide a relational operator for determining whether the

value of an expression matched one of a set of values in a list.

We add the in operator into the hierarchy at the same level as the other equality operators, although of course the

syntax is somewhat different:

EqlExp<out int type> (. int type2;
int op;
int count; .)

= RelExp<out type>
{ EqualOp<out op>

RelExp<out type2> (. if (!Compatible(type, type2))
SemError("incomparable operand types");

CodeGen.Comparison(op, type);
type = Types.boolType; .)

* | "in" ExpList<out count, type> (. CodeGen.Membership(count, type);
* type = Types.boolType; .)

} .

Parsing the ExpList must include the check that all the members of the list are of a type compatible with the value

of the Expression that is to be tested for membership. ExpList also returns the number of elements in the list, and

generates code to push each of the values of the expressions onto the stack.

* ExpList<out int count, int type> (. int type2;
* count = 1; .)
* = "("
* Expression<out type2> (. if (!Assignable(type, type2))
* SemError("incompatible types"); .)
* { "," Expression<out type2> (. if (!Assignable(type, type2))
* SemError("incompatible types");
* count++; .)
* }
* ")" .

Note that the compatibility tests are done after each Expression has been parsed, and not left until the end. A

special opcode is used to test for membership. Why do we need to insist on assignment compatibility? Code

generation is easy, noting that an ExpList with only one element can be handled by a test for equality, using the

existing opcode.

public static void Membership(int count, int type) {
// Generates code to check membership of a list of count expressions

if (count == 1) Comparison(CodeGen.ceq, type);
else {
Emit(PVM.memb); Emit(count);

}
} // CodeGen.Membership

If the ExpList has more than one member, interpretation requires that the value of each of the expressions is

popped off the stack and checked to see whether it matches the value being tested for membership. Finally, after

the last value is popped, a pseudo-Boolean value is left on top of the stack:

case PVM.memb: // membership test
bool isMember = false;
loop = Next(); // the number to test
int test = mem[cpu.sp + loop]; // the value being sought
for (int m = 0; m < loop; m++) if (Pop() == test) isMember = true;
mem[cpu.sp] = isMember ? 1 : 0;
break;

Task 10 - What are we doing this for?

As an alternative to the Pascal-style ForStatement, the problem suggested implementing one modelled on a syntax

suggested by Python:

ForStatement = "for" Ident "in" "(" Expression { "," Expression } ")" Statement .

This is fairly straightforward, as we already have the mechanisms for dealing with lists of expressions. We do,

Computer Science 301 - 2015 - Practical 7 solutions 8

however, need another pair of code generating routines and additional opcodes in the PVM:

* ForStatement<StackFrame frame> (. int expCount;
* Label loopExit = new Label(!known);
* Label loopContinue = new Label(!known);
* string name; .)
* = "for"
* Ident<out name> (. Entry var = Table.Find(name);
* if (!var.declared)
* SemError("undeclared identifier");
* if (var.kind != Kinds.Var)
* SemError("illegal control variable");
* CodeGen.LoadAddress(var); .)
* "in" ExpList<out expCount, var.type>
* (. CodeGen.LoadConstant(expCount);
* Label loopBody = new Label(known);
* CodeGen.NextControl(expCount); .)
* Statement<frame, loopExit, loopContinue>
* (. loopContinue.Here();
* CodeGen.TestFor(loopBody);
* loopExit.Here();
* CodeGen.ExitFor(expCount); .) .

At run time, just before the Statement is executed, the top elements on the stack are set up in a manner that is

exemplified by the statement

for i in (35, 64, -1, 235) write(i); // loop to be executed 4 times

ÄÄÄÄÄÄÂÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄ
... ³ 4 ³ 235 ³ -1 ³ 64 ³ 35 ³ adr i ³

ÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄ

The 4 on the top of the stack will be used as a counter and decremented on each pass of the loop. The values

below that will be assigned, one by one, to the designator whose address is lurking at the bottom of this segment.

The extra routines needed in the code generator are

public static void NextControl(int count) {
// Generates code to set the for loop control on each pass
Emit(PVM.sfl); Emit(count);

}

public static void TestFor(Label startLoop) {
// Generates code to decrement the count after each pass through loop
// and test to see whether another iteration is needed
Emit(PVM.tfl); Emit(startLoop.Address());

}

public static void ExitFor(int count) {
// Generates code to discard the expression list used in the for loop

Emit(PVM.efl); Emit(count);
}

The interpretation of the new opcodes is as follows:

case PVM.sfl: // set up the for loop control variable value
mem[mem[cpu.sp + Next() + 1]] = mem[cpu.sp + mem[cpu.sp]];
break;

case PVM.tfl: // test for loop continuation
target = Next();
mem[cpu.sp]--;
if (mem[cpu.sp] > 0) cpu.pc = target;
break;

case PVM.efl: // end for loop - clean up stack
cpu.sp += Next() + 2;
break;

The form of code generated by this system may be understood by reference to the following example

for i in (one, two, three) statement

which generates code

Computer Science 301 - 2015 - Practical 7 solutions 9

LDA i
one
two
three
LDC 3

L1 SFL 3
statement

L2 TFL L1
L3 EFL 3

And, of course, the solution just presented already takes into account break and continue handling!

Task 11 - Make the change; enjoy life; upgrade now to Parva++ (Ta-ra!)

It might not at first have been obvious, but I fondly hope that everyone will realize that this extension is handled

at the initial level by clever modifications to the AssignmentStatement production, which has to be factorized in

such a way as to avoid LL(1) conflicts. The code below handles this task (including the tests for assignment

compatibility and for the designation of variables rather than constants that several students omitted) by assuming

the existence of a few new machine opcodes, as suggested in the textbook.

AssignmentOrCall (. int expType;
DesType des;
bool inc = true; .)

= Designator<out des>
(
"(" (. if (des.entry.kind == Kinds.Fun

&& des.type == Types.voidType)
CodeGen.FrameHeader();

else SemError("invalid assignment or call"); .)
Arguments<des> (. if (des.entry.kind == Kinds.Fun)

CodeGen.Call(des.entry.entryPoint); .)
")"

| (. if (des.entry.kind != Kinds.Var)
SemError("cannot assign to "

+ Kinds.kindNames[des.entry.kind]); .)
(AssignOp

Expression<out expType> (. if (!Assignable(des.type, expType))
SemError("incompatible types in assignment");
CodeGen.Assign(des.type); .)

| ("++" | "--" (. inc = false; .)
) (. if (!IsArith(des.type))

SemError("arithmetic type needed");
CodeGen.IncOrDec(inc, des.type); .)

)
)

| ("++" | "--" (. inc = false; .)
) Designator<out des> (. if (des.entry.kind != Kinds.Var)

SemError("variable designator required");
if (!IsArith(des.type))
SemError("arithmetic type needed");

CodeGen.IncOrDec(inc, des.type); .)
) WEAK ";" .

The extra code generation routine is straightforward, but note that we should cater for characters specially

public static void IncOrDec(bool inc, int type) {
// Generates code to increment the value found at the address currently
// stored at the top of the stack.
// If necessary, apply character range check

* if (type == Types.charType) Emit(inc ? PVM.incc : PVM.decc);
* else Emit(inc ? PVM.inc : PVM.dec);

} // CodeGen.IncOrDec

As usual, the extra opcodes in the PVM make all this easy to achieve at run time. Some submissions might have

forgotten to include the check that the address was "in bounds". I suppose one could argue that if the source

program were correct, then the addresses could not go out of bounds, but if the interpreter were to be used in

conjunction with a rather less fussy assembler (as we had in earlier practicals) it would make sense to be cautious.

Computer Science 301 - 2015 - Practical 7 solutions 10

case PVM.inc: // integer ++
adr = Pop();
if (InBounds(adr)) mem[adr]++;
break;

case PVM.dec: // integer --
adr = Pop();
if (InBounds(adr)) mem[adr]--;
break;

case PVM.incc: // character ++ (checked)
adr = Pop();
if (InBounds(adr))
if (mem[adr] < maxChar) mem[adr]++;
else ps = badVal;

break;

case PVM.decc: // character -- (checked)
adr = Pop();
if (InBounds(adr))
if (mem[adr] > 0) mem[adr]--;
else ps = badVal;

break;

Task 12 - If you survive this I'll pass you a reference so that employers will know your value

This is remarkably easy to do. We need an extra field in the Entry class which will normally have the value of

false, but will be true for formal parameters designated with the ref keyword. This modified Entry class has

another field canChange whose purpose will be made clear later in the discussion of for loop threatening.

class Entry {
// All fields initialized, but are modified after construction (by semantic analyser)

public int kind = Kinds.Var;
public string name = "";
public int type = Types.noType;
public int value = 0; // constants
public int offset = 0; // variables
public bool declared = true; // true for all except sentinel entry
public Entry nextInScope = null; // link to next entry in current scope
public int nParams = 0; // functions

* public bool byRef = false; // true only for parameters passed by reference
public Label entryPoint = new Label(false);
public Entry firstParam = null;

* public bool canChange = true; // true except for extent of "for" controls
} // end Entry

The byRef field is set true within the OneParam production:

OneParam<out Entry param, Entry func>
= (. param = new Entry();

param.kind = Kinds.Var;
param.offset = CodeGen.headerSize + func.nParams;
func.nParams++; .)

* ["ref" (. param.byRef = true; .)]
Type<out param.type> (. if (param.type == Types.voidType)

SemError("parameters may not be of void type"); .)
Ident<out param.name> (. Table.Insert(param); .) .

Within the OneArg production a choice is made between pushing the address (of a reference argument) or the

value of an expression (for a value argument). Note the careful check that the correct passing mechanism is being

selected, as well as the assignment compatibility checks between formal and actual parameters. Finally, your

attention is drawn to the lookout for null entries in the parameter list.

OneArg<Entry fp> (. int argType;
DesType des; .)

= (Expression<out argType> (. if (fp != null) {
if (!Assignable(fp.type, argType))
SemError("argument type mismatch");

* if (fp.byRef)
* SemError("this argument must be passed by reference");

} .)

Computer Science 301 - 2015 - Practical 7 solutions 11

* "ref" Designator<out des> (. if (fp != null) {
if (!Assignable(fp.type, des.type))
SemError("argument type mismatch");

* if (!fp.byRef)
* SemError("this argument must be passed by value");

} .)
) .

If a variable has been passed "by reference" (that is, where the actual argument is its address rather than its value)

then when the Designator parser encounters the formal parameter within the function body, an extra dereference

opcodemust be generated to be able to follow the address found as the argument to find the address of the actual variable

being referenced:

Designator<out DesType des> (. string name;
int indexType; .)

= Ident<out name> (. Entry entry = Table.Find(name);
if (!entry.declared)
SemError("undeclared identifier");

des = new DesType(entry);
if (entry.kind == Kinds.Var)
CodeGen.LoadAddress(entry);

* if (entry.byRef)
* CodeGen.Dereference(); .)

["[" (. if (IsArray(des.type)) des.type--;
else SemError("unexpected subscript");
if (des.entry.kind != Kinds.Var)
SemError("unexpected subscript");

CodeGen.Dereference(); .)
Expression<out indexType> (. if (!IsArith(indexType))

SemError("invalid subscript type");
CodeGen.Index(); .)

"]"
] .

Task 13 - Time to resolve an awkward LL(1) conflict

Consider the productions which have been written

AssignmentOrCall = Designator ("(" Arguments ")" | AssignOp Expression) ";" .
Designator = identifier ["[" Expression "]"] .

That is too "loose". Syntactically this would accept something like function[6](a,b,c) as some sort of

function call. The compiler you were given handled this problem "semantically" (make sure you understand how

and why).

It would be syntactically far preferable to write productions like

AssignmentOrCall = (identifier "(" Arguments ")" | Designator AssignOp Expression) ";" .
Designator = identifier ["[" Expression "]"] .

but then we have an LL(1) conflict because both options ultimately start with an identifier.

Coco/R has a clever way of being able to use semantic information in so-called "resolvers". This is discussed in

the book, but not in much detail. Fortunately in simple cases it is quite easy to apply. Here is the basic idea:

Consider a conflict like

LL1Problem = One | Two .

where FIRST(One) and FIRST(Two) have a terminal in common. If we can find some semantic condition

ChooseOne (which yields true for the elements of FIRST(One), but false for the elements of FIRST(Two)), which

would break the deadlock in favour of One, we code this into Cocol as follows - notice the uppercase IF, a

Coco/R keyword you have not seen before.

LL1Problem = IF (ChooseOne) One | Two .

In this case we can easily find such a condition. Both alternatives in AssignmentOrCall start with an identifier.

Both identifiers should be in the symbol table; one should correspond to a function name, one to a variable name.

Computer Science 301 - 2015 - Practical 7 solutions 12

So here is how we resolve the issue

AssignmentOrCall (. int expType;
DesType des;
string name;
bool inc = true; .)

* = ((IF (IsCall(out des))
* Ident<out name>
* "(" (. CodeGen.FrameHeader(); .)
* Arguments<des> (. CodeGen.Call(des.entry.entryPoint); .)
* ")"
* | Designator<out des> (. if (des.entry.kind != Kinds.Var)
* SemError("cannot assign to "

+ Kinds.kindNames[des.entry.kind]);
if (!des.canChange)
SemError("may not alter this variable");

.)
(AssignOp

Expression<out expType> (. if (!Assignable(des.type, expType))
SemError("incompatible types in assignment");
CodeGen.Assign(des.type); .)

| ("++" | "--" (. inc = false; .)
) (. if (!IsArith(des.type))

SemError("arithmetic type needed");
CodeGen.IncOrDec(inc, des.type); .)

)
)

The semantic property we need in this case can be evaluated at compile-time as follows

static bool IsCall(out DesType des) {
Entry entry = Table.Find(la.val); // it must be an identifier to have got the parser this far
des = new DesType(entry);
return entry.kind == Kinds.Fun;

} // IsCall

Notice the search done on the "lookahead" token la.val, a little appreciated feature of Coco. Notice also that

as a side effect this method (which appears at the top of the ATG file along with other "helpers") returns the des

object corresponding to the function.

Kind of cute? The same trick could have been used had the Parva grammar allowed for value-returning functions

to form part of expressions, but that can wait for another year.

Task 14 (Bonus) - Do you ever feel threatened by change?

The problem asked whether one should be allowed to change the value of the control variable associated with a

ForStatement within the loop, as exemplified by

int i; // small primes
for i in (2, 3, 5, 7, 11, 13, 17, 19, 23) {
i = 124; // should this be allowed to mess up the program?
write(i, " is a small prime");

}
for i = 1 to 10 {
for i = 1 to 10 // nested loops are allowed, but surely not this one?

write(i);
writeLine();

}

Several languages forbid "threatening" a ForStatement control variable. In Parva it is quite easy to detect simple

cases of threatening - one simply marks the variable entry in the symbol table as unchangeable before the loop

body is compiled, and resets it afterwards (why do we need to save its value first?)

ForStatement<StackFrame frame> (. int expCount;
* bool canChange;

Label loopExit = new Label(!known);
Label loopContinue = new Label(!known);
string name; .)

= "for"
Ident<out name> (. Entry var = Table.Find(name);

if (!var.declared)
SemError("undeclared identifier");

Computer Science 301 - 2015 - Practical 7 solutions 13

if (var.kind != Kinds.Var)
SemError("illegal control variable");

* if (!var.canChange)
* SemError("may not alter this variable");

CodeGen.LoadAddress(var);
* canChange = var.canChange; // save
* var.canChange = false; .) // lock

"in"
ExpList<out expCount, var.type>

(. CodeGen.LoadConstant(expCount);
Label loopBody = new Label(known);
CodeGen.NextControl(expCount); .)

Statement<frame, loopExit, loopContinue>
* (. var.canChange = canChange; // restore

loopContinue.Here();
CodeGen.TestFor(loopBody);
loopExit.Here();
CodeGen.ExitFor(expCount); .) .

ReadStatements and AssignmentStatements can easily check the state of the entry, as exemplified by:

AssignmentOrCall (. int expType;
DesType des;
string name;
bool inc = true; .)

= ((IF (IsCall(out des))
Ident<out name>
"(" (. CodeGen.FrameHeader(); .)

Arguments<des> (. CodeGen.Call(des.entry.entryPoint); .)
")"

| Designator<out des> (. if (des.entry.kind != Kinds.Var)
SemError("cannot assign to "

+ Kinds.kindNames[des.entry.kind]);
* if (!des.canChange)
* SemError("may not alter this variable");

.)
(AssignOp

Expression<out expType> (. if (!Assignable(des.type, expType))
SemError("incompatible types in assignment");
CodeGen.Assign(des.type); .)

| ("++" | "--" (. inc = false; .)
) (. if (!IsArith(des.type))

SemError("arithmetic type needed");
CodeGen.IncOrDec(inc, des.type); .)

)
)

In general, the problem is far more complex. Languages that support multi-function programs present far more

opportunity for threatening control variables that might be passed as reference parameters, declared globally and

so on, all of which make "local" checking very difficult. As we have defined the Parva ForStatement the control

variable must be "simple" - you may have noticed that we have defined a loop by

ForStatement = "for" Ident "in" "(" Expression { "," Expression } ")" Statement .

rather than by

ForStatement = "for" Designator "in" "(" Expression { "," Expression } ")" Statement .

because protecting a simple variable like x is far easier than protecting a general variable like List[i + j].

Readers intrigued by all this might like to read up on the conditions imposed on ForStatements in Modula-2. But

for the moment it will suffice how to prevent a control variable from being passed by reference to a function that

might try to pull a dirty trick:

OneArg<Entry fp> (. int argType;
DesType des; .)

= (Expression<out argType> (. if (fp != null) {
if (!Assignable(fp.type, argType))
SemError("argument type mismatch");

if (fp.byRef)
SemError("this argument must be passed by reference");

} .)

Computer Science 301 - 2015 - Practical 7 solutions 14

| "ref" Designator<out des> (. if (fp != null) {
if (!Assignable(fp.type, arg.type))
SemError("argument type mismatch");

* if (!des.canChange)
* SemError("for loop control threatened");

if (!fp.byRef)
SemError("this argument must be passed by value");

} .)
) .

Unfortunately, in the C family of languages more or less anything goes!

Task 15 (Bonus) - Some staff will go to any length to process a list of marks completely

Since the heap allocator stores the length of an array on the heap below the space for the array itself, all we need

to do is dereference the address of the array (to find the address of its position on the heap), and then dereference

this address to find the length of the array.

We need to provide another option within Primary and indulge in the usual spate of semantic checking:

| "length" "(" Designator<out des> (. if (des.entry.kind != Kinds.Var)
SemError("variable expected");

if (!IsArray(des.type))
SemError("not an array");

CodeGen.Dereference();
CodeGen.Dereference();
type = Types.intType; .)

")"

This is a very simple addition. Will the students who claim that Pat Terry's Compiler Course is really difficult

please stop spreading such rumours?

Task 16 (Bonus) - What if you don't like short circuit evaluation of Boolean expressions?

As you are hopefully aware, most languages implement "short-circuit semantics" in generating code for the

evaluation of complex Boolean expressions. The exercise suggested that the user might be allowed to use a $S

pragma or -s command line parameter to choose between code generation using short-circuit semantics or code

generation using a Boolean operator approach (see the textbook, pages 22 and 365). All the opcodes you need are

already in the source kit.

This is easily implemented as follows, where we have shown how the feature might be controlled by a Boolean

flag set by the pragma. There is a similar change needed in OrExp, of course.

AndExp<out int type> (. int type2;
Label shortcircuit = new Label(!known); .)

= EqlExp<out type>
* { "&&" (. if (shortCirc)
* CodeGen.BooleanOp(shortcircuit, CodeGen.and); .)

EqlExp<out type2> (. if (!IsBool(type) || !IsBool(type2))
SemError("Boolean operands needed");

* if (!shortCirc) CodeGen.BinaryOp(CodeGen.and);
type = Types.boolType; .)

} (. shortcircuit.Here(); .) .

This is another very simple addition. I won't ask again after this, but will the students who claim that Pat Terry's

Compiler Course is too difficult please stop spreading such rumours?

Task 17 (Bonus) - Generating tighter PVM code

Way back in earlier exercises we added some specialized opcodes like LDC_1, LDA_2 and so on to the PVM.

The problem asked for these to be used, and for a $O pragma or -o command line option to be added to the

system so that these "optimized" opcodes would be used only on request (or not used on request - suit yourself).

Computer Science 301 - 2015 - Practical 7 solutions 15

The extensions to the grammar and frame files were illustrated earlier.

The code generator can respond to the pragma setting with various routines modified on the following lines (it

does not seem necessary to give them all in full at this point):

public static void LoadAddress(Entry var) {
// Generates code to push address of local variable with known offset onto evaluation stack

* if (Parser.optimize)
* switch (var.offset) {
* case 0: Emit(PVM.lda_0); break;
* case 1: Emit(PVM.lda_1); break;
* case 2: Emit(PVM.lda_2); break;
* case 3: Emit(PVM.lda_3); break;
* case 4: Emit(PVM.lda_4); break;
* case 5: Emit(PVM.lda_5); break;
* default: Emit(PVM.lda); Emit(var.offset); break;
* }
* else {
* Emit(PVM.lda); Emit(var.offset);

}
} // CodeGen.LoadAddress

No, I won't ask!

Computer Science 301 - 2015 - Practical 7 solutions 16

