
Computer Science 3 - 2016

Programming Language Translation

Practical 7: Week beginning 5 September 2016

This extended prac is designed to take you the best part of two weeks. Hand in your solutions before lunch time

on Wednesday 21 September, correctly packaged in a transparent folder with your cover sheet and individual

assessment sheets. Since the practical will have been done on a group basis, please hand in one copy of the cover

sheet for each member of the group. These will be returned to you in due course, signed by the marker. Please

make it clear whose folder you have used for the electronic submission, for example g14A1234. Please resist

the temptation to carve up the practical, with each group member only doing one or two tasks. The group

experience is best when you work on tasks together.

I shall try to get the marking done as soon as possible after 21 September, and may release solutions

before then.

Objectives:

In this practical you are to

• familiarize yourself with a compiler largely described in chapters 12 to 14 that translates Parva to PVM code.

• extend this compiler in numerous ways, some a little more demanding than others.

This prac sheet is at http://www.cs.ru.ac.za/courses/CSc301/Translators/trans.htm.

Outcomes:

When you have completed this practical you should understand

• several aspects of semantic constraint analysis in an incremental compiler

• code generation for a simple stack machine.

Hopefully after doing these exercises (and studying the attributed grammar and the various other support modules

carefully) you will find you have learned a lot more about compilers and programming languages than you ever

did before (and, I suspect, a lot more than undergraduates at any other university in this country). I also hope that

you will have begun to appreciate how useful it is to be able to base a really large and successful project on a clear

formalism - namely the use of attributed context-free grammars - and will have learned to appreciate the use of

sophisticated tools like Coco/R.

To hand in:

By the hand-in date you are required to hand in, besides the cover sheets (one per group member):

• Listings of your Parva.atg file and the source of any auxiliary classes that you develop. Please print these

by using the LPRINT utility, as the listings get wide. Please ensure that the lines do all "fit" (into less than

120 characters) - lay out your grammars neatly! It would also help if you could use a highlighter to show

where you have made changes, or else just edit out the changed sections and print those.

• Some examples of very short test programs and the corresponding PVM code as generated by your compiler.

• Electronic copies of your complete solutions.

I do NOT require listings of any C# code produced by Coco/R.

Keep the prac sheet and your solutions until the end of the semester. Check carefully that your mark has

been entered into the Departmental Records.

You are referred to the rules for practical submission which are clearly stated in our Departmental

Handbook. However, for this course pracs must be posted in the "hand-in" box outside the laboratory and

not given to demonstrators.

A rule not stated there, but which should be obvious, is that you are not allowed to hand in another group's or

student's work as your own. Attempts to do this will result in (at best) a mark of zero and (at worst) severe

disciplinary action and the loss of your DP. You are allowed - even encouraged - to work and study with other

students, but if you do this you are asked to acknowledge that you have done so. You are expected to be familiar

with the University Policy on Plagiarism, which you can consult on the university website.

Before you begin

The tasks are presented below in an order which, if followed, should make the practical an enjoyable and

enriching experience. Please do not try to leave everything to the last few hours, or you will come horribly short.

You must work consistently, and with a view to getting an overview of the entire project, as the various

components and tasks may interact in ways that will probably not at first be apparent. Please take the opportunity

of coming to consult with me at any stage if you are in doubt as how best to continue. By all means experiment in

other ways and with other extensions if you feel so inclined.

Please resist the temptation simply to copy code from model answers issued in previous years.

This version of Parva has been developed from the system described in Chapters 12 and 13, extended on the lines

suggested in Chapter 14.4, so as incorporate void functions with value parameters.

The operator precedences in Parva as supplied use a precedence structure based on that in C++. C# or Java, rather

than the "Pascal-like" ones in the book. Study these carefully and note how the compiler provides "short-circuit"

semantics correctly (see page 172) and deals with type compatibility issues (see section 12.6.8). The supplied

compiler also incorporates the char type.

You are advised that it is in your best interests to take this opportunity of really studying the code in the Parva

grammar and its support files, especially as they deal with operator precedence and the char type. The exercises

have been designed to try to force you to do that, but it is always tempting just to guess and to hack. With a

program of this size, hacking often leads to wasting more time than it saves. Finally, please remember the advice

given in an earlier lecture:

Keep it as simple as you can, but no simpler.

A note on test programs

Throughout this project you will need to ensure that the features you explore are correctly implemented. This

means that you will have to get a feel for understanding code sequences produced by the compiler. The best way

to do this is usually to write some very minimal programs, that do not necessarily do anything useful, but simply

have one, or maybe two or three statements, the object code for which is easily predicted and understood.

When the Parva compiler has finished compiling a program, say SILLY.PAV, you will find that it creates a file

SILLY.COD in which the stack machine assembler code appears. Studying this is often very enlightening.

Useful test programs are small ones like the following. There are some specimen test programs in the kit, but

these are deliberately incomplete, wrong in places, too large in some cases and so on. Get a feel for developing

some of your own.

$D+ // Turn on debugging mode
void Main (void) {
int i;
int[] List = new int[10];
while (true) { // infinite loop, can generate an index error

read(i);
List[i] = 100;

}
}

The debugging pragma

It is useful when writing a compiler to be able to produce debugging output - but sometimes this just clutters up a

production quality compiler. The PARVA.ATG grammar makes use of the PRAGMAS option of Coco/R (see text,

page 130) to allow pragmas like those shown to have the desired effect (see the sample program above).

Computer Science 301 - 2016 - Practical 7 2

$D+ /* Turn debugging mode on */

$D- /* Turn debugging mode off */

Task 1 - Create a working directory and unpack the prac kit

There are several files that you need, zipped up in the file PRAC7.ZIP.

• Immediately after logging on, get to the command line level as usual!

• Copy the prac kit into a newly created directory/folder in your file space

J:

md prac7

cd prac7

copy i:\csc301\trans\prac7.zip

unzip prac7.zip

This will create another directory "below" the prac7 directory:

J:\prac7

J:\prac7\Parva

containing the C# classes for the code generator, symbol table handler and the PVM.

You will also find the executable version of Coco/R and batch files for running it, frame files, and various

sample data, code and the Parva grammar, contained in files with extensions like

.ATG, Examples.PAV

• As usual, you can use the CMAKE command to rebuild the compiler, and a command like Parva EG.PAV to

run it.

You should attempt all of Tasks 2 through 11. Perfect answers to these would earn you a mark of 100% for

this prac. Bonus marks can be earned for attempting any or all of Tasks 12, 13 and 14. You are urged to

do these - more for the insight they will give you in preparing for the final examination than for the marks!

Task 2 - Use of the debugging and other pragmas

We have already commented on the $D+ pragma. How would you add to the system so that one would have to

use a similar pragma or command line option if one wanted to obtain the assembler code file - so that the ".COD"

file with the assembler code listing would only be produced if it were really needed?

Suggested pragmas would be (to be included in the source being compiled at a convenient point):

$C+ /* Request that the .COD file be produced */

$C- /* Request that the .COD file not be produced */

while the effect of $C+ might more usefully be achieved by using the compiler with a command like

Parva Myprog.pav -c (produce .COD file)

Parva Myprog.pav -c -l (produce .COD file and merge error messages)

Other useful debugging aids are provided by the $ST pragma, which will list out the current symbol table. Two

more are the $SD and $HD pragmas, which will generate debugging code that will display the state of the run-

time stack area and the runtime heap area at the point where they were encountered in the source code. Modify

the system so that these are also dependent on the state of the $D pragma. In other words, the stack dumping code

would only be generated when in debug mode - much of the time you are testing your compiler you will probably

be working in "debugging" mode, I expect.

Hint: These additions are almost trivially easy. You will also need to look at (and modify) the Parva.frame

Computer Science 301 - 2016 - Practical 7 3

file, which is used as the basis for constructing the compiler proper (see page 143).

Task 3 - Learning many languages is sometimes confusing

If, like me, you first learned programming in languages other than Java, you may persist in making silly mistakes

when writing Parva programs. For example, programmers familiar with Pascal and Modula-2 easily confuse the

roles played in C# by ==, != and = with the similar operators in Pascal denoted by =, <> and :=, and are prone

to introduce words like then into an IfStatements, giving rise to code like

if (a = b) then c := d;
if (x <> y) then p := q;

instead of

if (a == b) c = d;
if (x != y) p = q;

Can you think of (and implement) ways to handle these errors sympathetically - that is to say, to report them, but

then "recover" from them without further ado?

(Confusing = with == in Boolean expressions is also something that C, C++ and Java programmers can do. It is

particularly nasty in C/C++, where a perfectly legal statement like

if (a = b) x = y;

does not compare a and b, but assigns b to a and then assigns y to x if a is non-zero, as you probably know).

The remaining tasks all involve coming to terms with the code generation process.

Task 4 - Two of the three Rs - Reading and Writing

Extend the WriteStatement to allow a variation introduced by a new key word writeLine that automatically

appends a line feed to the output after the last WriteElement has been processed.

Extend the ReadStatement to allow a variation introduced by a new key word readLine that causes the rest of

the current data line to be discarded, so that the next ReadStatement will start reading from the next line of data.

Extend the HaltStatement to have an optional string parameter that will be output just before execution ceases (a

useful way of indicating how a program has ended prematurely).

Task 5 - Repeat discussions with your team mates until you all get the idea

As very easy exercise, add a Pascal-like Repeat loop to Parva, as exemplified by

repeat a = b; c = c + 10; until (c > 100);

If you feel so inclined, add a DoWhile loop as well, as exemplified by

do { a = b; c = c + 10; } while (c < 100);

There is no real reason why your compiler cannot allow both statement forms, of course.

Task 6 - It should only take a MIN or two to derive MAX benefit from these tasks

Earlier in the course we explored adding opcodes like MIN, MAX and SQR to the PVM. This week, modify

Parva and the PVM to allow for expressions in which might appear Min() and Max() functions, which can take

one or more arguments, for example

Write(Max(90), Min(3, 5, 2, 12), Max(min(2, 4), Min(21, 4)));

Computer Science 301 - 2016 - Practical 7 4

You should start by checking that you know what output might be expected from the execution of that statement!

When you have gone sqr-eyed from all that effort, you should find adding the Sqr() function to be a breeze.

Task 7 - You had better do this one or else....

Add the else option to the IfStatement. Oh, yes, it is trivial to add it to the grammar. But be careful. Some

IfStatements will have else parts, others may not, and the code generator has to be able to produce the correct

code for whatever form is actually to be compiled. The following silly examples are all valid.

if (a == 1) { c = d; }
if (a == 1) {}
if (a == 1) {} else {}
if (a == 1) ; else { b = 1; }

Implement this extension (make sure all the branches are correctly set up). By now you should know that the

obvious grammar will lead to LL(1) warnings, but that these should not matter.

Task 8 - This has gone on long enough - time for a break

The BreakStatement is syntactically simple, but takes a bit of thought. Give it some! Be careful - breaks can

currently only appear within loops, but there might be several break statements inside a single loop, and loops can

be nested inside one another.

Task 9 - Make the change - upgrade now to Parva++

At last! Let's really make Parva useful and turn it into Parva++ by adding the increment and decrement statement

forms (as variations on assignments, of course), exemplified by

int parva;
int [] list = new int[10];
char ch = 'A';
...
parva++;
--ch;
list[10]--;

Suggestions for doing this - specifically by introducing new operations into the PVM - are made in section 13.5.1

of the text, and the necessary opcodes are already waiting for you in the PVM. Be careful - only integer and

character variables (and array elements) can be handled in this way. Do not bother with trying to handle the ++

and -- operators within terms, factors, primaries and expressions.

Task 10 - The array is the object of the exercise

This one should be easy. Add a little function into your expression parsers to allow you to determine the length

of an array, which might be useful in writing code like

void DisplayList(int [] list) {
// Display all the values in list[0] .. list[length - 1]
int i = 0;
while (i < Length(list)) (
write(list[i]);
++i;

}
} // DisplayList

Hint: You may have forgotten (or have yet to discover) that the heap manager, when allocating space for an array,

also records the length of that array. As a further hint, you shouldn't need any new opcodes in the PVM.

Hopefully you will understand that the output from the following program would be as given in the comments

Computer Science 301 - 2016 - Practical 7 5

void main() {
// Some misconceptions about arrays
int[] array1, array2;
array1 = new int[45];
array2 = new int[45];
write(array1 == array2); // false, even though of the same length
array1[0] = 6;
array2 = array1;
array2[0] = 8;
write(array1 == array2, array1[0], array2[0]); // true 8 8 and not false 6 8

} // main

because the manipulations of array1 and array2 are dealing with references to the array objects and not to the

contents of the objects being referenced.

Very well. This would confuse beginners, and that Won't Do. Extend Parva so that the following variation on

the program would produce the output shown:

void main() {
// Some misconceptions about arrays
int[] array1, array2;
array1 = new int[45]; // all elenents originally zero
array2 = new int[45]; // all elenents originally zero
write(Equals(array1, array2)); // true
array1[0] = 6;
array2 = Copy(array1);
array2[0] = 8;
write(Equals(array1, array2), array1[0], array2[0]); // false 6 8

} // main

You might like to think whether "OOP-like" syntax more like array.Length, array1.Copy() and

array1.Equals(array2) would be preferable to the "function call" syntax suggested in the last examples,

and what the implications of this syntax might be. (There is no need to implement it this time, unless you really

want to do so.)

Task 11 - The final word in declarations

In Parva, the key word const is not used in the sense that it is used in C#, or in the sense that the word final is

used in Java, namely as a modifier in a variable declaration that indicates that when a variable is declared it can be

given a value which cannot be modified later. If you check the grammar for Parva you will come across the

productions

Statement = Block | ConstDeclarations | VarDeclarations | ...
ConstDeclarations = "const" OneConst { "," OneConst } ";" .
OneConst = identifier "=" Constant .
Constant = number | charLit | "true" | "false" | "null" .
VarDeclarations = Type OneVar { "," OneVar } ";" .
OneVar = identifier ["=" Expression] .

which will not handle variable declarations of a form some people might prefer, or a variation perhaps, like

final int max = 2;
int i = 5;
final int iPlusMax = i + max;
final int[] list = new int[iPlusMax];

Add this feature, while leaving the ConstDeclarations production alone.

Hint: This involves making small changes to the symbol table handler. Be careful, as there may be side effects of

making the "obvious" changes which you might not at first realize.

Task 12 - Beg, borrow and steal ideas from other languages

Suppose we extend Parva to adopt an idea used in Pascal, where a statement like

write(X : 5, X + A : 12, X - Y : 2 * N);

Computer Science 301 - 2016 - Practical 7 6

will write the values of X, X+A and X-Y in fields of widths 5, 12 and 2*N respectively.

Note that a statement like

write(3 + 4, A < B);

should produce numeric output for the first element, and Boolean output for the second one. But one like this

write(3 + 4 : A < B)

should not be allowed, because the (optional) formatting expression is meaningless unless it is numeric.

Hint: This is best handled by producing new opcodes based on the PRNI, PRNC and PRNB opcodes already in

the PVM, and these can make use of the formatted output routines which are in the library supplied with the

distribution kits. But leave the original opcodes in the system as well!

Task 13 - Let's untangle that heap of string

Things are getting more interesting by this stage, and more challenging.

By now you should be well aware that any strings encountered in a Parva program are stacked at the top end of

memory, whence they are extracted by the PRNS opcode in the PVM.

There is an alternative model, one that is used in a hardware implementation of the PVM developed by an

exceptional former student in this course, called the PAM (Parva Actual Machine). In this system the strings

are required to be stored above the program code - effectively in space that the PVM would otherwise have used

for the start of its heap. A very simple program like

void main () {
// A fatalistic approach to the oncoming examinations?
writeLine("Why");
writeLine("must I fail CS?");

}

might be stored in memory like this

ÚÄÄÄ¿
³ V

ÚÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄ�ÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÒÄÄÁÄÂÄÄÄÄÂÄÄÄÄÂÄÄÄÄ·
³fhdr ³call ³ 4 ³halt ³ dsp ³ 0 ³prns ³ 14 ³prnl ³prns ³ 18 ³prnl ³retv ³ NUL º W ³ h ³ y ³ 00 º
ÀÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÂÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÐÄÄÄÄÁÄÄÄÄÁÄÄÄÄÁÄÄÄÄ½

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ÚÄÄÙ
V

ÚÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÄÂÄÄÄÄÂÄÄÄÄÒÄÄÄÄÄÄ
³ m ³ u ³ s ³ t ³ ³ I ³ ³ f ³ a ³ i ³ l ³ ³ C ³ S ³ ? ³ 00 º . . .
ÀÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÄÁÄÄÄÄÁÄÄÄÄÐÄÄÄÄÄÄ

18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
�
³

cpu.hp

Modify the code generator and the PVM to use this model.

Hint: You might like to associate a label with each PRNS operation, since at the time you want to generate the

opcode you won't know exactly where the string will be stored. If you like developing tight code suited to a

small machine like the PAM, you might think of optimising the analysis and code generation so that if the same

string appears in the program in two or more places, only one copy is loaded in memory.

Task 14 - Switch to Parva - satisfaction guaranteed! (This week's Big Bonus if you get this far.)

The very useful SwitchStatement is found in various forms in various languages. One possibility for its long

overdue addition to Parva might be described by the productions:

Computer Science 301 - 2016 - Practical 7 7

SwitchStatement
= "switch" "(" Expression ")" "{"

{ CaseLabelList Statement { Statement } }
["default" ":" { Statement }]

"}" .

CaseLabelList
= CaseLabel { CaseLabel } .

CaseLabel
= "case" ["+" | "-"] Constant ":" .

Being a generous fellow, I have added these productions to the Parva.atg file already. So your Parva

compiler can already recognise a SwitchStatement, it just can't generate code to make it work. But I'll leave

it to you to handle the static semantic checking and the code generation.

A demonstration (if rather silly) example of a SwitchStatement is

switch (i + j) {
case 2 : if (i === j) break; write("i = " , i); read(i, j);
case 4 : write("four"); i = 12;
case 6 : write("six");
case -9 :
case 9 :
case -10 :
case 10 : write("plus or minus nine or ten"); i = 12;
default : write("not 2, 4, 6, 9 or 10");

}

The semantics here require that the Expression be evaluated once, and its value compared for membership of one

of the sets of CaseLabelLists, a match being followed by execution of the associated statement list. If no match is

found, the statement list associated with the optional default clause is executed (or, in the absence of the default

option, no action is taken at all). There are many variations on this theme, but for the one illlustrated here we

require that (a) there is an automagic BreakStatement introduced at the end of each statement list so that there is

no need to include an explicit BreakStatement in each statement list, although these may occur if needed (b) the

concept of "falling through" in the absence of an explicit BreakStatement thus does not apply (c) more than one

CaseLabel may be associated with a given statement list and (d) each CaseLabelList must be separated from the

next one by at least one statement in its statement list (even if this is an empty statement).

One way to implement this would be to generate code matching an equivalent set of IfStatements

if (i + j == 2) { if (i === j) goto out; write("i = " , i); read(i, j); goto out; }
elsif (i + j == 4) { write("four"); i = 12; goto out; }
elsif (i + j == 6) { write("six"); goto out; }
elsif (i + j in (-9, 9, -10, 10)) { write("plus or minus nine or ten"); i = 12; goto out; }
else write("not 2, 4, 6, 9 or 10");

out: ...

but it should not take much imagination to see that we might initially be at a loss for a way repeatedly to inject the

code for the selector Expression into the code generation process if we are restricted to use an incremental

compilation technique. One approach is to use the DUP opcode already implemented in your PVM, which will

duplicate the element on the top of stack. This is applied before each successive comparison or test for list

membership is effected, so as to make sure that the value of the expression is preserved, in readiness for the next

comparison.

Although this idea does not lead to a highly efficient implementation of the SwitchStatement, it is relatively easy

to implement - the complexity arising from the need, as usual, to impose semantic checks that all labels are

unique, that the type of the selector is compatible with the type of each label, and from a desire to keep the

number of branching operations as low as possible.

Have fun, and good luck.

Computer Science 301 - 2016 - Practical 7 8

