Computer Science 301 - 2017
Programming Language Translation
Practical 1, Week beginning 17 July 2017 - Solutions

The submissions received were very varied in quality. There was some innovative work handed in, but there was
evidence that people had missed several important points. You can find complete C# source versions of the
program solutions in the solution kit PRAC1A. ZIP on the server.

Some general comments:
(a) You should always put your names and a brief description of the program into your source code.

(b) Several submissions had almost no commentary at all, and this is just unacceptable. In particular, supply
commentary at the start of each method as to what it sets out to do, and on the significance of the
parameters/arguments.

(c) The pracs in this course are deliberately set to extend you, in the hope that you will learn a lot from each
one. Their completion requires that you apply yourself steadily throughout the week, and not just on
Thursday afternoon and the following Thursday morning!

(d) Some submissions were received that had not made proper use of the IO, InFile and OutFile classes
as you had been told to do. These library classes are designed to make text based I/O as simple as possible
without having to deal with buffered readers, scanners, exceptions, string tokenizers and all that stuff that
you were probably subjected to in CSC 102, but without realizing that the best thing to do with bizarre
code is to hide its details in a well-designed library. Have a look at the solutions below, where hopefully
you will see that the I/O aspects have been made very simple indeed.

(e) Please remember to use the LPRINT facility for producing source listings economically. In later practicals
the listings will get very wide, and they are hard to read if they wrap round.

Tasks 2 - The Sieve of Eratosthenes in Pascal

The Pascal compilers use 16-bit INTEGER arithmetic (values from -32768 .. 32767), although they allow very
large array sizes, as arrays can also be indexed in some compilers by so-called LONGINT (32 bit) variables. And,
in fact (probably comes as a surprise to you C-language types), Pascal also allows arrays to have negative indices,
so that one can declare, for example

VAR PopulationOfRome : ARRAY [-45 .. 3201 OF INTEGER; (* an array with 366 elements *);
BigArrayOfRealValues : ARRAY [0 .. 655341 OF REAL; (* an array with 65535 elements *)

However, an array indexed by an INTEGER variable cannot access an element whose subscript is greater than
32767, or outside the range specified in the declaration.

Although the Sieve size in the supplied code was apparently "large enough", the Sieve algorithm as supplied could
and did easily collapse when applied to a search for large primes, using variables of the standard INTEGER type.
Consider the code:

K := I (* now cross out multiples of I *);
REPEAT

Uncrossed[K] := FALSE; K := K + I
UNTIL (K > N);

When I becomes large enough, K+I will eventually become larger than 32767, but if the overflow is not trapped
it means that the sum appears to go negative (think back to your CSC 201 course). If you set N to be 20000 this
happens for the first time after detecting the prime number 16411, so that the maximum effective sieve algorithm
with the code above seems to be limited to primes from 2 to 16411. If you set N to be 32000 it happens for the
first time after detecting the prime number 863: in due course the multiple 38*863 is "crossed off" and K tries to
advance to 32794. On the next pass over the loop the now-negative K will not be valid as an array index.

We can extend the range of the algorithm by a trick which I did not really expect you to discover, but which is
worth pointing out. Simply replace the above code by something which at first looks ridiculous:

K := I (* now cross out multiples of I *);
REPEAT

Uncrossed[K] := FALSE; K := K + I
UNTIL ((K > N) OR (K < 0))

To get this to work you may have to set a compiler directive to switch range checking off (using a command line
parameter, or inserting a pragma/directive something like {$R-} at the start of the source code). Some students
might have got intrigued by all this and probed further (well done). If you try interesting things like "turn off the
range checks" on the program as originally supplied, the algorithms appear to allow you to generate higher prime
numbers. Trouble is, they might not do it properly, and you find that for some "bigger" values of Max you
actually seem to find fewer prime numbers generated.

Learning to program in "non-bondage" languages like C++ is like trying to learn to drive in a car without brakes -
very exciting, you go faster and faster, and then you die, sooner or later. Fortunately C# and Java are much
safer.

Come on - there must be a better way (there always is). How can the algorithm be changed so that range checks
can be left enabled and the system find large primes without bombing?

Task 3 - The Sieve in Parva

The corrected code is very simple. A few groups got it badly wrong, with braces in the wrong places. Note that
the body of a do-while loop has to be executed at least once, which means that the code should really have been
transformed to achieve this. However, even if this is not done it "works". Why?

/| sieve of Eratosthenes for finding primes 2 <= n <= Max (Parva version)
.D. Terry, odes University,
P.D. T Rhodes Uni ity, 2017

void Main() {
const Max = 32000;
bool[] uncrossed = new bool[Max1; /] the sieve
int i, n, k, it, iterations, primes = 0; // counters
read("How many iterations? ", iterations);
bool display = iterations == 1;
read("Supply largest number to be tested ", n);
if (n > Max) {
write("n too large, sorry");

return;
>
write("Prime numbers between 2 and " , n, "\n");
write(" \n");
it = 1;

while (it <= iterations) {
primes = 0;
i=2;
while (i <= n) { /] clear sieve
uncrossed[il = true;
i=1+1;

X
i=2;
while (i <= n) ¢ /] the passes over the sieve

if (uncrossedlil) {
if (display && (primes - (primes/8)*8 == 0))
write("\n"); // ensure Lline not too long
primes = primes + 1;
if (display) write(i, "\t");

k = i; // now cross out multiples of i
uncrossed[k] = false;
K=k +i;

while (k <= n) {
uncrossedlk]l = false;

k =k + i;
b
b
i=1+1;
b
it =it + 1;
if (display) write("\n");
>
write(primes, " primes");
¥ // Main

The C, C++, C# and Parva compilers use 32 bit integers, and thus don't seem to have overflow problems (or at

Computer Science 301 - 2017 - Practical 1 2

least, they are much harder to reproduce), but, of course, the amount of real memory available to them may be
limited. And how many people noted that the C and C++ source code had declared the size of the array
incorrectly? The Watcom version of the incorrect program crashed out, although the Borland compiled version
struggled through.

Task 5 - How much code do various compilers generate?

Empty Sieve NPrimes |Fibonacci Queens1 Queens?2 Queens3

FPC Pascal EXE 27716 31300 breaks 30276 31300 31300 29252

Windows 7-32

FPC Pascal EXE 57334 62797 breaks 61487 63572 63560 60292

Windows 10-64

FPO Pascal EXE 57334 62157 breaks 61359 62932 62920 59652

Optimised

FPS Pascal EXE 36352 39936 breaks 39424 40448 40448 37888

Stripped

Turbo Pascal 6 EXE 1472 3248 breaks 2640 3808 3632 3472
(VDosPlus/DosBox) TPé

Turbo Pascal 6 EXE 1472 3136 2199 x 2640 3472 3328 3184
(VDosP lus/DosBox) TP6&0

Turbo Pascal 3 COM 11386 11971 2199 x 11601 12285 12154 12134

(VDosP lus/DosBox)

Parva PVM 1 280 2262 110 502 469 479

Parva -0 optimize PVM 11 231 2262 96 403 381 387

c# EXE 35328 35840 2262 35328 36352 36352 35840

Parva2toC# EXE 35328 35840 2262 35328 36352 36352 35840

Borland C EXE 52224 66560 2262 66048

Borland C++ EXE 47104 149504 148480

Watcom C EXE 21504 34816 34816

Watcom C++ EXE 21504 50688 50176

Note that the source programs in each case are pretty well equivalent - fairly close manual translations of one
another.

The "executables" produced from the C# compiler are not true executables in the same sense as those produced by
the C, C++ and Pascal compilers, as the code in them still has to be "jitted" into its final form.

There were several specious reasons thought up to explain why the executables were of such differing sizes. It is
not true that this is a function of the sieve size to any marked degree, as the code and data areas are handled
separately. The real reasons are that the efficiency of code generation differs markedly from one compiler to
another, and that some implementations build in a great deal more extraneous code than others - you can see this
in the smaller executable when some compilers are run in "optimizing" mode. The C and C++ executables differ
enormously in size - no doubt due to the vast amounts of code needed to support the iostream library - and the
Turbo Pascal 6.0 compiler produces amazingly tight code, although this runs slowly when the checks are present.

The Borland 5.5 and WatCom C/C++ compilers are designed for 32 bit integers and 32-bit operating systems,
rather than 16-bit ones. But even allowing for this, they suffer from bizarre code bloat for small applications.
There are command line parameters and options that one can set to try to produce tighter code, if one bothers to
experiment further. Some (most) of the overheads may relate to the fact that they have to produce "Windows"
compatible programs. Compilers like this are clearly designed with an "everyone has 8GB of memory and 3TB of
disk space, and if they don't they should go and buy more" philosophy.

Computer Science 301 - 2017 - Practical 1 3

Task 6 - High level translators

Some of what might be perceived as "unreadability" presumably relates to the fact that Parva2ToCSharp is
obliged to translate the read and write multiple parameter functions into a collection of equivalent IO operations
from the supporting library.

It is easy to trip up the process. Consider the silly program and its apparently correct translation:

using Library;

class Wrong {

void Main () { static public void Main(string[]l args) {
int b; int b;
bool a = b > 4; bool a = b > 4;
¥ // Main ¥ // main
¥ // wrong

The C# compiler will detect that the assignment statement is meaningless, as b has not been initialized, but a
Parva compiler and the Parva2ToCSharp converter are not as sophisticated.

You may not have seen the point that using a tool like this would allow you to develop and maintain your
programs in Parva and then simply convert them to C# when you want to get them compiled on some other
system (perhaps so that they can run quickly). So normally a user of Parva2ToCSharp would not read or edit
the C# code at all. Because of this it is not necessary for the converted code to incorporate the original comments.

If you had played with the Voter . pav examples properly you should have found that if all the ages supplied are
below 18 there is an attempted division by zero reported. If the program is translated into C#, the same data will
generate a corresponding exception. If one were using Parva2ToCSharp as a way of speeding up execution
one would perhaps be confused by an error message that did not relate back to the original source. And the C#
compiler will warn if a variable is declared but never used, which the Parva one cannot.

Task 7 and 8 - How efficient is the code generated by various language implementations?

Some times (seconds) taken to execute the various programs are shown below, as measured on a lab computer. I
also have one that runs Win7-32 (and so could get proper timings for the 16 bit systems as well).

We may note several points of interest:

(a) The Parva interpreted system is about two orders of magnitude slower than the native-code systems. Even
here we can see the benefits of using an optimizing system, simple though this is (later we shall discuss this
in more detail).

(b) In deriving these figures some experimentation was first needed so as to find parameters that would yield
times sufficiently long to make comparisons meaningful. Some of the times were obtained by simple use
of a stopwatch, and of course there is always an element of reaction time in such measurements which we
should minimize. The script timer.bat in the kit which some people tried using overcomes these
problems for the EXE programs running under Windows, but it won't work under DosBox or VDosPlus.

(d) There are clearly some anomalies here. There is something very odd about programs compiled with range
checks using Turbo Pascal 6.0, and I have no idea what it can be. However, the general effects are
apparent - modern compilers make better use of the large opcode sets on modern processors and produce
faster programs suited to the operating systems on those machines. The experiments with the Queens
programs showed that the solution with global variables isslightly faster than the one with parameters.

(e) The times taken by the 16-bit systems running under the DOS emulators showed quite clearly the adverse

effects of emulation. There must be better ways of running old number-crunchers on the latest operating
systems, and tools like VM-Ware will be investigated further in the future if I get the chance.

Computer Science 301 - 2017 - Practical 1 4

Iterations Sieve Queens Queens?2 Queens3

& Limit
Iterations 10000 WIN 1000 DOS

1000 PAV 1000 PAV

Limit 8 13
FPC Pascal EXE 4000
Windows 10-64 15000 0.77 1.46 1.42 0.33
FPO Pascal EXE 4000
Windows 10-64 15000 0.64 1.33 1.20 0.33
Turbo Pascal 6 EXE 4000
Windows 7-32 TP6 15000 10.9 20.28 16.96 7.33
Turbo Pascal 6 EXE 4000
Windows 7-32 TP60 15000 0.72 3.89 1.97 7.33
Turbo Pascal 3 COM 4000
Windows 7-32 15000 1.59 6.90 2.82 3.18
Turbo Pascal 6 EXE 400
VDosP lus TP6 15000 6.06 10.35 8.89 36.48
Turbo Pascal 6 EXE 400
VDosP Lus TP60 15000 2.24 [AYAA 3.04 15.0
Turbo Pascal 3 CcoM 400
VDosP Lus 15000 2.67 8.19 4.69 32.48
Turbo Pascal 6 EXE 400
DosBox TP6 15000 7.5 12.5 11.22 45.0
Turbo Pascal 6 EXE 400
DosBox TP60 15000 2.22 (A 3.2 15.4
Turbo Pascal 3 COM 400
DosBox 15000 2.75 9.23 5.3 39.0
Parva PVM 400

15000 12.56 15.12 14.94 10.2 check
Parva -0 optimize PVM 400

15000 9.91 11.85 11.17 7.84 check
c# EXE 4000
Windows 10-64 15000 0.33 0.99 1.1 0.42
Borland C EXE 4000
Windows 10-64 15000 0.25
Borland C++ EXE 4000
Windows 10-64 15000 0.27
Watcom C EXE 4000
Windows 10-64 15000 0.27
Watcom C++ EXE 4000
Windows 10-64 15000 0.23

Of course, it is fairly dangerous to draw conclusive results from such a crude set of tests and limited samples, but
the main effects show up very clearly.

Task 10 One way of speeding up tedious recursion

A number of people missed the point badly. Their solutions simply became equivalent to a "fast iterative"
method, which worked simply because the while 1oop on the main routine worked upwards!

The sort of solution I was looking for is as follows:

// Print a table of Fibonacci numbers using (fast) recursive definition
// and memoisation
// P.D. Terry, Rhodes University, 2017

Computer Science 301 - 2017 - Practical 1 5

int[l fibmem = new intL[40001;

int fib(int m) {
// Compute m-th term in Fibonacci series 0,1,1,2 ...
if (m == 0) return 0;
if (m == 1) return 1;
if (fibmem[ml == 0)
fibmemIml = fib(m-1) + fib(m-2); /] store the recursion value
return fibmem[m];
¥ /] fib

void main() {
int Limit;
read("Supply upper Llimit ", Llimit);
int i = 0;
while (i <= Limit) {
fibmem[il = O;
i=1d+1;
b
i=0;
while (i <= Limit) {
write(i, "\t", fib¢i), "\n");
i=1+1;
¥ /] while
¥ // main

Even if the function were to be called for the first time with a large value of the arguments, as in this variation

i= limit;

while (i >= 0) {
write(i, "\t", fib(i), "\n");
i=1d-1;

¥ // while

it would force a recursive chain that would rapidly fill the entire array (puzzle this one out if it is not obvious) and
further calls for smaller arguments could then pick the values stored in the array.

The technique is called "memoization". I was pleased to see that some students had come across this rather
strange name.

Task 11 - Creative programming - Goldbach's conjecture

Where they had bothered to try this one, several groups had grasped the concept of setting up a set to contain the
prime numbers. Many had not realised that one could use a set in place of the boolean array in order to apply the
Sieve algorithm in the first place, so have a look at the code below and see how easy this is to do, and how the the
sieve is constructed from a simple adaptation of the code given to you earlier. There is, of course, no need for the
primes method to do any output, or even to count how many prime numbers are added to the set. The IntSet
class, like the List class in C# is "elastic", expanding automagically when necessary, unlike a simple array as
used in the original code.

There was some very tortuous and confused code submitted thereafter for the very simple task of trying to find
whether an even number could be expressed as the sum of two of those primes. You only need one loop for each
attempt - if N is to be expressed as the sum of two numbers A and B, then there is no need to try out all possible
combinations of A and B (since B must = N - A). Additionally, we need only test values for A from 2 to at most
N/2 (think about it!). And we can make the system even more efficient if we use while loops rather than fixed
for loops, and stop the loops early when it is clear that there is no need to continue.

So one way of programming this exercise would be as below.

/] sieve of Eratosthenes (in a set) for testing Goldbach's conjecture
/ P.D. Terry, Rhodes University, 2017

import Llibrary.*;
class Goldbach {

public static void main(String L[] args) {
int Llimit = I0.readInt("Supply largest number to be tested ");
IntSet primeSet = primes(limit);
boolean conjecture = true; // optimistic
int test = 4;
while (conjecture && test <= Llimit) {
boolean found = false; try to find the pair

Computer Science 301 - 2017 - Practical 1 6

int i = 2;
while (i <= test / 2 && !found) {

if (primeSet.contains(i) && primeSet.contains(test - i)) { // short-circuit helps too!

found = true;
I0.writeLine(" " + test + "\t" + i + "\t" + (test - i));

else i++;
X
if (Ifound) {

I0.writeLine("conjecture fails for ", test);
conjecture = false;

by
test = test + 2; // move on to next even number
>
;7.writeLine("Conjecture seems to be " + conjecture); // final result of test
b main

static IntSet primes(int max) <{
Returns the set of prime numbers smaller than max
IntSet primeSet = new IntSet(); // the prime numbers
IntSet crossed = new IntSet(); /] the sieve
for (int i = 2; i <= max; i++) { [/ the passes over the sieve
if (lcrossed.contains(i)) {
primeSet.incl(i);

int k = i; /] now cross out multiples of i
do {
crossed.incl(k);
k += 1i;
} while (k <= max && k > 0);
>
b
return primeSet;
¥ // primes

} // Goldbach

Terry Theorem 1: You can improve on almost any program if you think about it. The code above still does
about twice as much work as it needs to do. Why - and how could you improve it by a very simple modification?

Task 12 - Something more creative - "Pig Latin" in C#

A naive solution for this can be effected quite easily. The code below does this for data read word by word -
rather than line by line - from a data file specified as a program "arg" and storing the result in another text files
specified by another "arg". There was no need to tokenize, simply to use the ReadWord method in my library).

I do not recall many submissions that used the file opening methods correctly, unfortunately

// Convert an English text to "Pig Latin"
Words may only contain letters
// P.D. Terry, Rhodes University, 2017

using Library;
using System;
using System.Text;

class ToLatin1 {

static string Convert(string s) {

// Convert s to Pig Latin - move first letter to end and then append "ay"
For example, "program" is returned as "rogrampay"

// Wwords may only contain letters
if (s.Length > 0) s = s.Substring(1) + s[0] + "ay";
return s;

¥ /] convert

public static void Main(string[]l args) {

// first check that command Lline arguments have been supplied

// attempt to open data file using file names from "args" +++++++++++ttttttttttttttt
/ attempt to open results file and check that the files open correctly +++++++++++++++
// all this as in samplel0.cs - see full solution for details

// read and process data file
while (true) {
string word = data.ReadWord();
if (data.NoMoreData()) break;
results.Write(Convert(word));
if (data.EOL()) results.WriteLine(); else results.Write(' ');
>

/] close results file safely
results.Close();
¥ // Main

} // ToLatin1

Computer Science 301 - 2017 - Practical 1 7

The corresponding program for decoding is essentially the same, with the Convert method replaced by a
Deconvert method:

static string Deconvert(string s) {
/ Convert a Pig Latin word to English - check for the "ay" at the end
// In this version the word proper is assumed to contain only Lletters
int ay = s.LastIndexOf("ay");
if (ay >= 1) s = sLay-11 + s.Substring(0, ay - 1);
return s;
} // peconvert

While several people submitted solutions on these lines, few thought to check that the conversion or deconversion
would actually be possible. Students, of course, are idealists and fondly believe that data will always be perfect
and that nothing can ever go wrong - but it most certainly can, and by this stage of your careers you should be
thinking all the time of how to write really reliable code.

A few submissions, I was pleased to say, had realized that "words" might not always be composed only of letters,
but might be numbers, or be preceded or followed by punctuation marks:

She said: "I have found 100 mistakes in your wonderful textbook".

Situations like this are a bit harder to handle. Here are some possibilities that make use of the StringBuilder
class, which you should learn about, as it is very useful for manipulating strings dynamically. I have deliberately
left this code badly commented, just to drive home the point that reading someone else's uncommented code often
takes considerable effort.

static string Convert(string s) {
// Convert s to Pig Latin - move first letter to end and then append "ay"
/ For example, "program" is returned as "rogrampay"
// Words may start and end with non-letters which remain there
/ For example "1234" is returned as 1234; "Hello!!" as "elloHay!!"
StringBuilder sb = new StringBuilder();
int i = 0, sl = s.Length;
while (i < sl && !Char.IsLetter(s[il)) {
sb.Append(s[il); i++;
>

if (i <sl) {
char first = s[il;
it+;
while (i < sl && Char.IsLetter(s[il)) {
sb.Append(sL[il); i++;

sb.Append(first);

sb.Append("ay");

while (i <sl) €
sb.Append(s[il); i++;

>
return sb.ToString();
¥ // convert

static string Deconvert(string s) {
// Convert a Pig Latin word to English - check for the "ay" at the end
In this version non-letters can precede and follow the word proper
int ay = s.LastIndex0f("ay");
if (ay < 1) return s;
StringBuilder sb = new StringBuilder();
int i = 0;
while (i < ay - 1 & !Char.IsLetter(s[il)) {
sb.Append(s[il); i++;
>

sb.Append(slay-11);
sb.Append(s.Substring(i, ay - i - 1));
int L = s.Length;
if (L - ay - 2 > 0) sb.Append(s.Substring(ay + 2, L - ay - 2));
return sb.ToString();
} // Deconvert

Of course the situation is really even more complicated - there might be words with interior punctuation:
He replied, sadly, "That's very clever of you to find so many, my dear Gambol Hedge-Bette".

but the refinements needed to handle this are left as an exercise.

Computer Science 301 - 2017 - Practical 1 8

