
Computer Science 3 - 2017

Programming Language Translation

Practical 2, Week beginning 24 July 2017

Hand in this prac sheet before lunch time on your next practical day, correctly packaged in a transparent folder

with your solutions and the "cover sheet". Unpackaged and late submissions will not be accepted - you have

been warned. Please do NOT come to a practical and spend the first hour printing or completing solutions from

the previous week's exercises. Since the practical will have been done on a group basis, please hand in one copy

of the cover sheet for each member of the group. These will be returned to you in due course, signed by the

marker.

Objectives:

In this practical you are to

• become familiar you with the workings of two simple machine emulators for the PVM pseudo-machine that we

shall use frequently in the course.

• gain some experience with the machines, writing machine code for them, comparing them and extending them.

You will need this prac sheet and your text book. Copies of the prac sheet and of the Parva report are also

available at http://www.cs.ru.ac.za/courses/CSc301/Translators/trans.htm.

Outcomes:

When you have completed this practical you should understand

• the opcode set for the Parva Virtual Machine (PVM);

• how to write and debug machine level code for the PVM;

• how to extend the PVM to incorporate new opcodes;

• why, and by how much, interpretive systems can vary in execution overhead.

To hand in:

This week you are required to hand in, besides the cover sheet:

• Listings of the final version of the assembler/emulator system you produce or (preferably) extracts showing

only the extensions clearly (to save paper!) , and your solutions to the programming exercises below. (Use

LPRINT, please.) One listing/group please.

• Additionally, electronic copies of source code for those exercises, using the electronic submission system.

• Discussion of the experiments in Tasks 4 and 10.

Keep the prac sheet and your solutions until the end of the semester. Check carefully that your mark has

been entered into the Departmental Records.

You are referred to the rules for practical submission which are clearly stated in our Departmental

Handbook. However, for this course pracs must be posted in the "hand-in" box outside the laboratory and

not given to demonstrators.

A rule not stated there, but which should be obvious, is that you are not allowed to hand in another group's or

student's work as your own. Attempts to do this will result in (at best) a mark of zero and (at worst) severe

disciplinary action and the loss of your DP. You are allowed - even encouraged - to work and study with other

students, but if you do this you are asked to acknowledge that you have done so. You are expected to be familiar

with the University Policy on Plagiarism, which you can consult on the university web site:

Task 1 - Creating a working directory and unpacking the prac kit

There are several files that you need, zipped up this week in the file PRAC2.ZIP.

• Immediately after logging on, get to the DOS command line level and log onto your file space.

• Check that you can see the I: drive. If not, ask a demonstrator for help.

• Copy the prac kit into a new directory/folder in this file space, from I: or the web page.

md prac2

cd prac2

copy i:\csc301\trans\prac2.zip

unzip prac2.zip

Task 2 - Build the assemblers

In the working directory you will find C# files that give you two minimal assemblers and emulators for the PVM

stack machine (described in Chapter 4.7). These files have the names

PVMAsm.cs a simple assembler

PVMPushPop.cs an interpreter/emulator, making use of auxiliary Push and Pop methods

PVMInLine.cs an interpreter/emulator, with the pushing and popping "inlined"

Assem.cs a driver program

PVMPushPop incorporates rather more constraint checking than is found in PVMLine, and also has an option for

doing a line-by-line trace of the code it is interpreting.

You compile and make two nominally equivalent assembler/interpreter systems by issuing the batch commands

MAKEASM1 make up a system ASM1.EXE using PVMPushPop as the PVM

MAKEASM2 make up a system ASM2.EXE using PVMInLine as the PVM

These take as input a "code file" in the format shown in the examples in section 4.5 and in the prac kit. Make up

the minimal assembler/interpreters and, as a start, run these using a supplied small program:

ASM1 lsmall.pvm this will prompt you for input and output files and for tracing options

ASM2 lsmall.pvm

ASM2 lsmall.pvm immediate this will enter the emulator immediately after compiling

Wow! Isn't Science wonderful? Try the interpretation with and without the trace option, and familiarize yourself

with the trace output and how it helps you understand the action of the virtual machine (ASM1 only).

Task 3 - A look at PVM code

Start off by considering the following gem of a Parva program which produces a truth table that illustrates de

Morgan's famous laws.

void main () {
/* Demonstrate de Morgan's Laws

P.D. Terry, Rhodes University, 2017 */

bool X, Y;

write(" X Y (X.Y)' X'+Y' (X+Y)' X'.Y'\n\n");
X = false;
repeat
Y = false;
repeat
write(X, Y, !(X && Y), !X || !Y, !(X || Y), !X && !Y, "\n");
Y = ! Y;

until (!Y); // again
X = ! X;

until (!X); // again
} // main

You can compile this (PARVA DEMORGAN.PAV) at your leisure to make quite sure that it works.

Computer Science 301 - 2017 - Practical 2 2

The Parva compiler supplied to you this week is not the same as last week - it only allows a single Main()

function, but it includes "else" and the modulo "%" operator, supports a "repeat" ... "until" statement, and allows

increment and decrement statements like i++ and array[j]-- (not within expressions, however).

In the prac kit you will also find a translation of this program into PVM code (DEMORGAN.PVM). Study this code and

complete the following tasks:

; try adding high level comments 44 LDA 1
; and for a start include your names 46 LDV

0 DSP 2 47 OR
2 PRNS " X Y (X.Y)\' X\'+Y\' (X+Y)\' X\'.Y\'\n\n" 48 NOT
4 LDA 0 49 PRNB
6 LDC 0 50 LDA 0
8 STO 52 LDV
9 LDA 1 53 NOT

11 LDC 0 54 LDA 1
13 STO 56 LDV
14 LDA 0 57 NOT
16 LDV 58 AND
17 PRNB 59 PRNB
18 LDA 1 60 PRNS "\n"
20 LDV 62 LDA 1
21 PRNB 64 LDA 1
22 LDA 0 66 LDV
24 LDV 67 NOT
25 LDA 1 68 STO
27 LDV 69 LDA 1
28 AND 71 LDV
29 NOT 72 NOT
30 PRNB 73 BZE 14
31 LDA 0 75 LDA 0
33 LDV 77 LDA 0
34 NOT 79 LDV
35 LDA 1 80 NOT
37 LDV 81 STO
38 NOT 82 LDA 0
39 OR 84 LDV
40 PRNB 85 NOT
41 LDA 0 86 BZE 9
43 LDV 88 HALT

(a) How can you tell that the translation has not used short-circuit Boolean operations?

(b) Add commentary to the code that "matches" the Parva code fairly closely. Have a look at the

LSMALL.PVM code example in the prac kit to see a "preferred" style of commentary, where the high level

code appears as commentary on the low level code.

(c) What would you need to change if you wanted to make use of short-circuit Boolean operations to evaluate

the first two of the four Boolean expression in the write list? (You should test your ideas with the first of

the two assemblers, ASM1).

(d) Suppose you wanted to produce the truth table to display 0 and 1 in place of false and true. What (simple)

change will allow you to do this?

---- The (modified and commented) DEMORGAN.PVM file must be submitted by the end of the afternoon.

Task 4 - Execution overheads - part one

In the prac kit you will find a translation SIEVE1.PVM of a cut down version of a prime-counting program

SIEVE.PAV based on last week's exercises (the source code is also there, but is not printed here to save paper).

Run SIEVE1.PVM through both versions of the assemblers and obtain timings for a suitable upper limit (say

4000) and number of iterations (say 100) for the combinations:

Hint: The lab computers are very fast. You may have to alter those suggestions quite a bit to produce measurably

distinct timings. Do this simply by changing the appropriate constants in the PVM file before you assemble it

Comment on the results. Are they what you expect? If not, why not?

Computer Science 301 - 2017 - Practical 2 3

Task 5 - Coding the hard way

Time to do some creative work at last. Task 5 is to produce an equivalent program to the Parva one below

(FACT.PAV), but written directly in the PVM stack-machine language (FACT.PVM). In other words, "hand

compile" the Parva algorithm directly into the PVM machine language. You may find this a bit of a challenge,

but it really is not too hard, just a little tedious, perhaps.

void main () {
// Print a table of factorial numbers 1! ... 20!
// Your names here!
const limit = 20;
int n = 1;
while (n <= limit) {
int f = 1;
int i = n;
while (i > 0) {
f = f * i;
i = i - 1;

}
write(n, "! = ", f, "\n");
n = n + 1;

}
} // main

Health warning: if you get the logic of your program badly wrong, it may load happily, but then go beserk when

you try to interpret it. You may discover that the interpreter is not so "user friendly" as all the encouraging

remarks in the book might have led you to believe interpreters all to be. Later we might improve it quite a bit.

(Of course, if your machine-code programs are correct you won't need to do so. As has often been said: "Any

fool can write a translator for source programs that are 100% correct".)

The most tedious part of coding directly in PVM code is computing the destination addresses of the various

branch instructions.

Hint: As a side effect of assembly, the ASM system writes a new file with a .COD extension showing what has

been assembled and where in memory it has been stored. Study of a .COD listing will often give you a good idea

of what the targets of branch instructions should be.

---- The (suitably commented) FACT.PVM file must be submitted for assessment.

Task 6 - Trapping overflow and other pitfalls

Several of the remaining tasks in this prac require you to examine the machine emulator to learn how it really

works, and to extend it to improve some opcodes and to add others.

In the prac kit you will discover two programs deliberately designed to cause chaos. DIVZERO.PVM bravely

tries to divide by zero, and MULTBIG.PVM embarks on a continued multiplication that soon goes out of range.

Try assembling and interpreting them with both systems to watch disaster happen.

Now we can surely do better than that! Modify the interpreters (PVMPushPop.cs and PVMInLine.cs) so

that they will anticipate division by zero or multiplicative overflow, and change the program status accordingly,

so that users will be told the errors of their ways and not left wondering what has happened.

You will have to be subtle about this - you have to detect that overflow is going to occur before things "go

wrong", and you must be able to detect it for negative as well as positive overflow conditions.

Hint: After you edit any of the source code for the assemblers you will have to issue the MAKEASMx commands to

recompile them, of course. It's easy to forget to do this and then wonder why nothing seems to have changed.

Task 7 - Arrays

Start off by considering a further splendid exposition of the Parva programmer's art (STUDENTS.PAV)

Computer Science 301 - 2017 - Practical 2 4

void main () {
// Track students as they clock in and out of a practical
// P.D. Terry, Rhodes University, 2017

const StudentsInClass = 100;
bool[] atWork = new bool[StudentsInClass];
int student = 0;
while (student < StudentsInClass) {
atWork[student] = false;
student = student + 1;

}
repeat {
read("Student? (> 0 clocks in, < 0 clocks out, >= 100 terminates) ", student);
if ((student > 0) && (student < StudentsInClass)) atWork[student] = true;
if (student < 0)
if (!atWork[-student]) write(student, " has not yet clocked in!\n");
else atWork[-student] = false;

} until (student >= StudentsInClass);
write("The following students have still not clocked out\n");
student = 0;
while (student < StudentsInClass) {
if (atWork[student]) write(student);
student = student + 1;

}
} // main

You can compile this (PARVA STUDENTS.PAV) at your leisure to make quite sure that it works.

Next, decide why it is a rather bad program. If you can't see why, try running it - and see if you

can break it. By "break" I mean "can you run it with some sort of data that allows it to work, and then run it with

some data that produces meaningless results or even makes bomb out completely?" Go on to improve it - but

keep the improvement quite simple and don't get carried away - remember my friend Dr Einstein's sage advice.

When you have done that, hand translate the improved STUDENTS.PAV ito PVM code (STUDENTS.PVM).

---- The (improved) STUDENTS.PAV and the (suitably commented) STUDENTS.PVM files must be

submitted for assessment.

Task 8 - Your lecturer is quite a character

If the PVM and Parva could only handle characters as well as integers and Booleans, we could write a program

like the exciting one below that reads a string of characters terminated with a period (full stop) and then writes it

all in upper case SDRAWKCAB. (SENTENCE.PAV).

void main() {
// Read a piece of text terminated with a period and write it backwards in UPPER CASE.
// P.D. Terry, Rhodes University, 2017
const
limit = 256; // demonstration upper limit on sentence length

char[]
sentence = new char[limit]; // the number of times each appears

int leng = 0; // read all characters
repeat
read(sentence[leng]); leng++;

until (sentence[leng - 1] == '.'); // terminate input with a full stop
while (leng > 0) { // write characters in reverse order
leng--;
write(upper(sentence[leng]));

}
} // main

Not a problem for the PVM and assembler system. All we need to do is add appropriate opcodes to our virtual

machine - for example, INPC for reading a character and PRNC for writing a character - to open up exciting

possibilities.

This program also assumes the existence of a method for converting characters to uppercase which is easily added

to the machine by introducing a special opcode. It also uses the infamous ++ and -- operators, which can be

handled by special opcodes that take less space (and should take less time to execute) than the tedious sequences

needed for code corresponding directly to code like n = n + 1. Extend the machine and the assembler still

further with opcodes CAP, INC and DEC

Computer Science 301 - 2017 - Practical 2 5

Hint: Adding "instructions" to the pseudo-machine is easy enough, but you must be careful to make sure you

modify all the parts of the system that need to be modified. Before you begin, study the code in the definition of

the stack machine carefully to see where and how the opcodes are defined, how they are mapped to the

mnemonics, and in which switch/case statements they are used.

Hint: Note that the assemblers have already been primed with the mappings from these mnemonics to integers,

but, once again, you must be careful to make sure you modify all the parts of the system that need extending - you

will have to add quite a bit to various switch statements to complete the tasks. Do this for both versions of the

PVM.

Hint: Be careful. Think ahead! Don't limit your INC and DEC opcodes to cases where they can handle

statements like X++; only. In some programs - even in this one - you might want to have statements like

List[N+6]++;.

Task 9 - Improving the opcode set still further

Section 4.9 of the text discusses the improvements that can be made to the system by adding new single-word

opcodes like LDC_0 and LDA_0 in place of double-word opcodes for frequently encountered operations like

LDC 0 and LDA 0, and for using load and store opcodes like LDL N and STL N (and, equivalently,

opcodes like LDL_0 and STL_0 for frequently encountered special cases).

Enhance your PVM by incorporating the following opcodes:

LDL N STL N

LDA_0 LDA_1 LDA_2 LDA_3

LDL_0 LDL_1 LDL_2 LDL_3

STL_0 STL_1 STL_2 STL_3

LDC_M1 LDC_0 LDC_1 LDC_2 LDC_3

Hint: Several of the above are very similar to one another, but, once again, you must be careful to make sure you

modify all the parts of the system that need to be modified.

Try out your system by developing "improved" versions of STUDENTS.PVM and SENTENCE.PVM, say

STUDENTS1.PVM and SENTENCE1.PVM, that uses these new opcodes.

It would help if you simply printed only those parts of the interpreters that you have modified - large

portions of the original will not need to change at all. Be careful to include the sections that deal with the

run-time error trapping, however.

Task 10 - Execution overheads - part two

You might think it is pretty obvious that using as many STL and LDL opcodes as possible should make your

programs smaller, faster, better. Experiment to see whether this is true and, if so, how big this effect is.

In the prac kit you will find further translations SIEVE2.PVM and SIEVE3.PVM of the same prime-counting

program SIEVE.PAV as was used in Task 4, but this time using the extended opcode set developed in the last

task in various ways.

Run SIEVE2.PVM and SIEVE3.PVM through both versions of your modified assemblers and obtain timings for

the same limit (say 4000) and number of iterations (say 100) as in Task 4.

Hint: You may have to alter those suggestions quite a bit to produce measurably distinct timings.

Comment on the results. Are they what you expect? If not, can you suggest why not?

Hopefully by now you will have found that interpreters are quite easy to develop, but this prac should show you

that they are not necessarily very "efficient". What changes could one make to improve the efficiency of the

interpreter for the PVM still further? (If you are very keen you might try out some of your ideas, but I suppose

that is wishful thinking. Sigh ...)

Think carefully about all this. Have fun, and good luck.

Computer Science 301 - 2017 - Practical 2 6

