Computer Science 3 - 2017
Programming Language Translation
Practical for Week 2, beginning 24 July 2017 - Solutions

There were some very good solutions submitted, and some energetic ones too - clearly a lot of students had put in
many hours developing their code. This is very encouraging, but there was also evidence of "sharing" out the
tasks, not really working together a proper group, and not developing an interpreter that was up to the later tasks.
And do learn to put your names into the introductory comments of programs that you write.

Full source for the solutions summarized here can be found in the ZIP file on the servers - PRAC2A . ZIP

Task 3 involved reading some Parva code for a simple algorithm and then adding suitable commentary. It is
highly recommended that you adopt the style shown below, where the higher level code acts as commentary,

rather than adopting a line by line explanation of each mnemonic/opcode.

; Demonstrate de Morgan's Laws
; P.D. Terry, Rhodes University, 2017

0 DSP 2 ; bool x is v0, y is v1

2 PRNS " X Y GOV XV o\t x\ v\ \n\ne

4 LDA 0 ; 47 OR ;

6 LDC 0 ; 48 NOT ;

8 STO ; x = false; 49 PRNI ; write(!(x || ¥));
9 LDA 1 ; repeat 50 LDA 0 ;

11 LDC ; 52 LDV ;

13 STO H y = false; 53 NOT ;

14 LDA 0 H repeat 54 LDA 1 ;

16 LDV ; 56 LDV ;

17 PRNI H write(x); 57 NOT ;

18 LDA 1 ; 58 AND ;

20 LDV ; 59 PRNI ; write(Ix && ly);
21 PRNI ; write(y); 60 PRNS "\n" ; writeLine();
22 LDA 0 ; 62 LDA 1 ;

24 LDV ; 64 LDA 1 ;

25 LDA 1 ; 66 LDV ;

27 LDV ; 67 NOT ;

28 AND H 68 STO ; y = ly;

29 NOT ; 69 LDA 1 ;

30 PRNI ; write(!(x && y)); 71 LDV ;

31 LDA 0 ; 72 NOT ;

33 LDV H 73 BZE 14 ; until (ly);
34 NOT ; 75 LDA 0 ;

35 LDA 1 ; 77 LDA 0 ;

37 LDV ; 79 LDV ;

38 NOT ; 80 NOT ;

39 OR ; 81 STO ; x = Ix;

40 PRNI ; writeC(Ix || ty); 82 LDA 0 ;

41 LDA 0 ; 84 LDV ;

43 LDV ; 85 NOT ;

44 LDA 1 ; 86 BZE 9 ;ountil (Ix);

46 LDV H 88 HALT ; System.Exit();

It is easy to see that this does not use short circuit evaluation of Boolean expressions, as it uses AND and OR,
which are infix operators that requires their two operands both to have been evaluated and pushed onto the
expression stack. However, it is easy to eliminate the AND and OR by introducing "jumping code" as it is
sometimes called. We rely on the idea that for short-circuit semantics to hold we can write the following logical
identities:

X AND y = if x theny else false
X ORy = if x then true else y

If we apply them to an analysis of various Boolean expressions in the algorithm we could also use

Ix AND !y = if Ix then ly else false
Ix OR 'y = if Ix then true else ly

Admittedly this has quite a lot more code than the binary operator code in the original. However, short-circuited
Boolean evaluation is so much better that it is worth developing special opcodes to achieve it, as we shall see later
in the course.

; Demonstrate de Morgan's Laws

; P.D. Terry, Rhodes University, 2017
; using short-circuit semantics
’

0 DSP 2 ; bool x is v0, y is v1

2 PRNS " X Y OGOV XV e\ x\ Ly \n\nt

4 LDA 0 ;

6 LDC 0 ; 58 BRN 63 ;

8 STO ; x = false; 60 LDA 1 ;

9 LDA 1 ; repeat 62 LDV H

11 LDC ; 63 NOT ;

13 STO ; y = false; 64 PRNI ; write(!(x || ¥));
14 LDA 0 ; repeat 65 LDA 0 H

16 LDV ; 67 LDV ;

17 PRNI ; write(x); 68 BZE 74 ;

18 LDA 1 ; 70 LDC 0 ;

20 LDV ; 72 BRN 78 ;

21 PRNI ; write(y); 74 LDA 1 ;

22 LDA 0 ; 76 LDV ;

24 LDV ; 77 NOT ;

25 BZE 32 ; 78 PRNI H write(!x && ly);
27 LDA 1 ; 79 PRNS "\n" ; writeLine();
29 LDV ; 81 LDA 1 ;
30 BRN 34 ; 83 LDA 1 ;
32 LDC 0 ; 85 LDV ;
34 NOT ; 86 NOT ;
35 PRNI ; write(!(x && y)); 87 STO ; y = ly;
36 LDA 0 ; 88 LDA 1 ;
38 LDV ; 90 LDV ;
39 NOT ; 91 NOT ;

40 BZE 46 ; 92 BZE 14 ; until (ly);
43 LDC 1 ; 94 LDA 0 ;

44 BRN 50 ; 96 LDA 0 ;

46 LDA 1 ; 98 LDV ;

48 LDV ; 99 NOT ;

49 NOT ; 100 STO H x = Ix;

50 PRNI ; write(Ix || ty); 101 LDA 0 ;

51 LDA 0 ; 103 LDV ;

53 LDV ; 104 NOT ;

54 BZE 60 ; 105 BZE 9 ;ountil (Ix);

56 LDC 1 ; 107 HALT ; System.Exit();

It might be possible to manipulate these logical expressions to make for an even shorter solution, and you might
like to puzzle out how this can be done. See also the discussion on the course web site.

Task 4 - Execution overheads - part one
See discussion of Task 10 below.

Task 5 - Coding the hard way

Task 5 was to hand-compile the Factorial program into PVM code. Most people got a long way towards this.
Once again, look at how I have commented this, using "high level" code.

0 DSP 3 ; nis v0, f is v1, i is v2 42 MUL

2 LDA 0 43 STO

4 LDC 1 44 LDA 2 ; f=9Ff%*1i;
6 STO ;n=1; 46 LDA 2

7 LDA 0 48 LDV

9 LDV 49 LDC 1

10 LDC 20 ; // max = 20, constant 51 SUB

12 CLE ; while (n <= max) { 52 STO ; i=1i-1;
13 BZE 78 53 BRN 26 ; b

15 LDA 1 55 LDA 0

17 LDC 1 57 LDV

19 STO ; f =1; 58 PRNI ; write(n);

20 LDA 2 59 PRNS "= write("! =");
22 LDA 0 61 LDA 1

24 LDV 63 LDV

25 STO ; i=n; 64 PRNI ; write(f);

26 LDA 2 65 PRNS "\n" ; write("\n") (or use PRNL)
28 LDV 67 LDA 0

29 LDC 0 69 LDA 0
31 CGT ; while (i > 0) { 71 LDV
32 BZE 55 72 LDC 1
34 LDA 1 74 ADD
36 LDA 1 75 STO 5 n=n+1;
38 LDV 76 BRN 7 i
39 LDA 2 78 HALT

41 LDV

Computer Science 301 - 2017 - Practical 2 solutions 2

Note that max is a constant, not a variable. There is no need to assign it a variable location and store 20 into this
- simply build the value of 20 into the instructions that need to use it. And why on earth redraft the whole
algorithm into one that uses a do-while loop (or a repeat-until loop) in place of the suggested while loop?

Task 6 - Trapping overflow and other pitfalls

Checking for overflow in multiplication and division was not always well done. You cannot safely multiply and
then try to check overflow (it is too late by then) - you have to detect it in a more subtle way. Here is one way of
doing it - note the check to prevent a division by zero when handling multiplication. This does not use any
precision greater than that of the simulated machine itself. I don't think many spotted that the PVM. rem opcode
also involved division, and some people who thought of using a multiplication overflow check on these lines
forgot that numbers to be multiplied can be negative.

An alternative, slightlier risky method is shown as a comment - risky because, if the emulator were written in a
system that itself trapped multiplicative overflow, it would all blow up anyway.

case PVM.mul: // integer multiplication
tos = Pop();
sos = Pop();
if (tos != 0 && Math.Abs(sos) > maxInt / Math.Abs(tos)) ps = badval;
/] riskier
/] if (tos != 0 & tos * sos / tos != sos) ps = badval;
else Push(sos * tos);
break;
case PVM.div: // integer division (quotient)
tos = Pop(Q);
if (tos == 0) ps = divZero;
else Push(Pop() / tos);
break;
case PVM.rem: /] integer division (remainder)
tos = Pop();
if (tos == 0) ps = divZero;
else Push(Pop() % tos);
break;

or for the "inline" assembler
case PVM.mul: // integer multiplication

tos = memLlcpu.sp++];
if (tos != 0 && Math.Abs(memLcpu.spl) > maxInt / Math.Abs(tos)) ps = badval;

/] riskier
// if (tos != 0 && tos * memLcpu.spl / tos != memLcpu.spl) ps = badval;
else memLcpu.spl *= tos;
break;
case PVM.div: /] integer division (quotient)

tos = memLlcpu.sp++];
if (tos != 0) memLcpu.spl /= tos;
else ps = divZero;
break;
case PVM.rem: // integer division (remainder)
tos = memLcpu.sp++];
if (tos != 0) memLlcpu.spl %= tos;
else ps = divZero;
break;

It is possible to use an intermediate 1ong variable (but don't forget the casting operations or the Abs function):

case PVM.mul: // integer multiplication
tos = Pop();
sos = Pop();

long temp = (long) sos * (long) tos;

if (Math.Abs(temp) > maxInt) ps = badVal;
else Push(sos * tos);

break;

If given too large an index for an array to handle, a PVM program will terminate with an array bounds error as
correctly trapped by the Push/Pop assembler. The same error would not be trapped by the Inline system, which
merrily allows the LDXA opcode to wander wheresoever it likes. To fix this requires the following changes to the
PVMilnline interpreter. This strategy is discussed in the textbook.

case PVM.anew: // heap array allocation
int size = memlcpu.spl;
if (size <= 0 || size + 1 > cpu.sp - cpu.hp - 2)

Computer Science 301 - 2017 - Practical 2 solutions 3

ps = badAll;

else {
memLcpu.hpl = size;
memLcpu.spl = cpu.hp;
cpu.hp += size + 1;

b

break;

case PVM. ldxa: // heap array indexing
int adr = memLcpu.sp++];
int heapPtr = memLcpu.spl;
if (heapPtr == 0) ps = nullRef;
else if (heapPtr < heapBase || heapPtr >= cpu.hp) ps = badMem;
else if (adr < O || adr >= mem[heapPtrl) ps = badInd;
else memLcpu.spl = heapPtr + adr + 1;
break;

Task 7 - Arrays

The code as supplied for tracking students' attendance at a practical suffered from various defects - a "student
number" of zero is useless, even though it would be accepted quite happily, a student is able to clock in more than
once, the constant StudentsInClass has a misleading value, and if a large negative number is supplied the
program crashes. A few simple changes will fix some or all of these. I was happy to accept just one or two of
these changes, but here is a rather radical rewrite that embraces them all, and uses the value O to terminate the
program, just so that you can have a look at how this would have been translated. (STUDENTS1 . PAV):

void main () {

// Track students as they clock in and out of a practical - improved version
/ P.D. Terry, Rhodes University, 2017

// Improved version

const StudentsInClass = 100;
bool[] atWork = new bool[StudentsInClass + 11;

int student = 1; // students are numbered 1 .. 100

while (student <= StudentsInClass) {
atWork[student]l = false; // nobody is at the practical to start with
student = student + 1;

>

read("Student? (> 0 clocks in, < 0 clocks out, O terminates) ", student);
while (student != 0) {
bool clockinglIn = true; // distinguish "in" and "out" easily
if (student < 0) {
clockingIn = false;
student = -student; // fix the number
b
if (student > StudentsInClass)
write("Invalid student number\n");
else if (clockingln)
if (atWork[studentl) write(student, " has already clocked in!\n");
else atWork[studentl = true;
else
if (latWork[studentl) write(student, " has not yet clocked 1n!\n");
else atWork[studentl = false;
read("Student? (> 0 clocks in, < 0 clocks out, O terminates) ", student);
3 // while

write("The following students have still not clocked out\n");
student = 1;
while (student <= StudentsInClass) {
if (atWork[studentl) write(student);
student = student + 1;
¥ // while

¥ // main

A translation into PVM code is a little tedious, and it is easy to leave some of the code out and get a corrupted
solution:

Computer Science 301 - 2017 - Practical 2 solutions 4

Track students as they clock in and out pf a practical

; P.D. Terry, Rhodes University, 2017
; bool[l atwork is vO0, int student is v1

0 DSP 3 ; 106 LDXA ;

2 LDA ; 107 LDV ;

4 LDC 100 ; 108 BZE 118 ; if (atWork[studentl)

6 LDC 1 ; 110 LDA 1 ;

8 ADD ; 112 LDV ; write (student)

9 ANEW ; 113 PRNI ;

10 STO ; bool[] atWork = new bool[...] 114 PRNS " has already clocked in!\n"

11 LDA 1 ; 116 BRN 128 ;

13 LDC 1 ; 118 LDA 0 ; else

15 STO ; int student = 1; 120 LDV ;

16 LDA 1 ; 121 LDA 1 ;

18 LDV ; 123 LDV ;

19 LDC 100 ; 124 LDXA ;

21 CLE ; 125 LDC 1 ;

22 BZE 45 ; while (student <= 100) { 127 STO ; atWork[student]l = true;
24 LDA 0 ; 128 BRN 159 ;

26 LDV ; 130 LDA 0 ; else

27 LDA 1 ; 132 LDV ;

29 LDV ; 133 LDA 1 ;

30 LDXA ; 135 LDV ;

31 LDC 0 ; 136 LDXA ;

33 STO ; atWork[Student]l = false; 137 LDV ;

34 LDA 1 ; 138 NOT ;

36 LDA 1 ; 139 BZE 149 ; if (latWork[studentl
38 LDV ; 141 LDA 1 ;

39 LDC 1 ; 143 LDV ; write(student)

41 ADD ; student = student + 1; 144 PRNI ;

42 STO ; 145 PRNS " has not yet clocked in!\n"

43 BRN 16 ;) 147 BRN 159 ;

45 PRNS "Student? (> 0 clocks in, <0 ... 149 LDA 0 ;

47 LDA 1 ; 151 LDV ; else

49 INPI ; read(student); 152 LDA 1 ;

50 LDA 1 ; 154 LDV ;

52 LDV ; 155 LDXA ;

53 LDC 0 ; 156 LDC 0 ;

55 CNE ; 158 STO ; atWork[student]l = falsel;
56 BZE 166 ; while (student != 0) { 159 PRNS "Student? (> 0 clocks in, < 0 ..
58 LDA 2 ; 161 LDA 1 ;

60 LDC 1 ; 163 INPI ; read(student)

62 STO ; bool clockingIn = true; 164 BRN 50 ; } // while (student != 0)
63 LDA 1 ; 166 PRNS "The following students have still not ...
65 LDV ; 168 LDA 1 ;

66 LDC 0 ; 170 LDC 1 ;

68 CLT ; 172 STO ; student = 1;

69 BZE 83 ; if (student < 0) { 173 LDA 1 ;

71 LDA 2 ; 175 LDV ;

73 LDC 0 ; 176 LDC 100 ;

75 STO ; clockingIn = false; 178 CLE ;

76 LDA 1 ; 179 BZE 206 ; while (student <= 100
78 LDA 1 ; 181 LDA 0 ;

80 LDV ; 183 LDV ;

81 NEG ; 184 LDA 1 ;

82 STO ; student = - student 186 LDV ;

83 LDA 1 . 187 LDXA ;

85 LDV ; 188 LDV ;

86 LDC 100 ; 189 BZE 195 ; if (atWork[studentl)
88 CGT ; 191 LDA 1 ;

89 BZE 95 ; if (student > StudentsInClass) 193 LDV ;

91 PRNS "Invalid student number" 194 PRNI ; write(student);

93 BRN 159 ; 195 LDA 1 ;

95 LDA 2 ; 197 LDA 1 ;

97 LDV ; 199 LDV ;

98 BZE 130 ; else if (clockingIn) 200 LDC 1 ;
100 LDA 0 ; 202 ADD ;
102 LDV ; 203 STO ; student = student + 1;
103 LDA 1 ; 204 BRN 173 ; > [/ while (student <= 100
105 LDV ; 206 HALT ; System.Exit()

Task 8 - Your lecturer is quite a character
To be able to deal with input and output of character data we need to add two new opcodes, modelled on the INPI
and PRNI codes whose interpretation would be as below. All of the new opcodes require additions to the lists of

opcodes in the assembler and interpreter (be careful of two-word opcodes; they crop up in several places).

Note that the output of numbers was arranged to have a leading space; this is not as pretty when youseeit app

Computer Science 301 - 2017 - Practical 2 solutions 5

lied to characters,is it- whichis why the call to results.write uses a second argument of 1,
not O (this argument could have been omitted). Note the use of the modulo arithmetic to make quite sure that only
sensible ASCII characters will be printed:

case PVM.inpc: /] character input
adr = Pop();
if (InBounds(adr)) {
memLadr]l = data.ReadChar();
if (data.error()) ps = badData;
b
break;
case PVM.prnc: /] character output
if (tracing) results.write(padding);
results.Write((char) (Math.Abs(Pop()) % (maxChar + 1)), 1);
if (tracing) results.WriteLine();
break;

or for the "inline" assembler

case PVM.inpc: /] character input
memCmemLcpu.sp++]] = data.ReadChar();
break;

case PVM.prnc: /] character output

if (tracing) results.Write(padding);

results.Write((char) (Math.Abs(memLcpu.sp++1) % (maxChar + 1)), 1);
if (tracing) results.WriteLine();

break;

To build a really safe system there are further refinements we could make. It can be argued that we should not try
to store a value outside of the range 0 .. 255 into a character variable. This suggests that we should have a range
of STO type instructions that check the value on the top of stack before assigning it. One of these - STOC to act
as a variation on STO - would be interpreted as follows; we would need another to handle STLC and so on (these
have not yet been implemented in the solution kit).

case PVM.stoc: /]| character checked store
tos = Pop(); adr = Pop();
if (inBounds(adr))
if (tos >= 0 && tos <= maxChar) mem[adr] = tos; else ps = badval;
break;

or for the "inline" assembler, omitting the checking

case PVM.stoc: /]| character (unchecked) store
tos = memLcpu.sp++]; memLmemLcpu.sp++]1]1 = tos;
break;

Introducing opcodes to convert to lower or upper case is simply done by using the methods from the C# Char
wrapper class (notice the need for casting operations as well, to satisfy the C# compiler):

case PVM. lou: /] toLowercase
Push(Char.ToLower({char) Pop()));
break;

case PVM.cap: /] toUppercase
Push{(Char.ToUpper({char) Pop()));
break;

or for the "inline" assembler - note that cpu. . sp is left unaltered.

case PVM. low: /] tolLowercase
memLcpu.spl = Char.ToLower((char) memLlcpu.spl);
break;

case PVM.cap: // toUppercase
memCcpu.spl = Char.ToUpper((char) memLcpu.spl);
break;

The INC and DEC operations are best performed by introducing opcodes that assume that an address has been
planted on the top of stack for the variable (or array element) that needs to be incremented or decremented. This
may not have been apparent to everyone, but consider (as hinted in the prac sheet) a statement like a [1+3] ++;

case PVM.inc: /] ++
adr = Pop();
if (inBounds(adr)) memLladrl++;
break;

case PVM.dec: /] --

Computer Science 301 - 2017 - Practical 2 solutions 6

adr = Pop();
if (inBounds(adr)) memLladrl--;
break;

or for the "inline" assembler

case PVM.inc: /] ++
memCmemLcpu.sp++11++;
break;

case PVM.dec: /] -
memCmemCcpu.sp++11--;
break;

With all these in place the string reversal algorithm can be programmed as follows:

Read a sentence and reverse in UPPER CASE 30 LDC 1

; P.D. Terry, Rhodes University, 2017 32 SUB ;

; char[] sentence is v0; leng is v1 33 LDXA ;

; original opcode set 34 LDV ;

35 LDC 46 ; /] '.' is 46 in ASCII table

0 DSP 2 37 CEQ ;
2 LDA 0 ; 38 BZE 13 ; until (sentencelleng-11 = '.');
4 LDC 256 ; 40 LDA 1 3
6 ANEW ; 42 LDV ;
7 STO ; sentence = new char[2561; 43 LDC 0 ;
8 LDA 1 ; 45 CGT ; while (leng > 0) {
10 Lbc O ; 46 BIZIE 63 ;
12 STO ; leng = 0; 48 LDA 1 3
13 LDA 0 ; repeat { 50 DEC ; leng--;
15 LDV ; 51 LDA 0o ;
16 LDA 1 ; 53 LDV ;
18 LDV ; 54 LDA 1
19 LDXA ; 56 LDV ;
20 INPC ; read(sentencellengl); 57 LDXA ;
21 LDA 1 58 LDV ;
23 INC ; leng++; 59 CAP ;
24 LDA 0 ;X 60 PRNC ; write(upper(sentencellengl);
26 LDV ; 61 BRN 40 ; 2
27 LDA 1 ; 63 HALT ; System.Exit()
29 LDV ;

Task 9 - Improving the opcode set still further

Once again, adding the LDL N and STL N opcodes is very easy. Unfortunately, it is easy to leave some of the
changes out and get a corrupted solution. The PVMAsm class requires modification in the switch statement that
recognizes two-word opcodes:

case PVYM.brn: // all require numeric address field

case PVM. ldc:

case PVM.ldl: [/ +++++++++t+t+4+44+ addition

case PVM.stl: [/ ++++++++t++++++++ addition
codeLen = (codelLen + 1) % PVM.memSize;

if (ch == '\n") /] no field could be found
error("Missing address", codeLen);
else | // unpack it and store

PVM.memLcodeLen]l = src.ReadInt();

if (src.Error()) error("Bad address", codelLen);
b
break;

The PVM class requires several additions. We must add to the switch statement in the Trace and ListCode
methods (several submissions missed this):

static void Trace(OutFile results, int pcNow, bool traceStack, bool traceHeap) {
switch (cpu.ir) {

case PVM.ldl: [/ +++++++++++t+++++ addition
case PVM.stl: [/ +++++++++++++++++ addition
b
results.WriteLine();
X

and we must provide case arms for all the new opcodes. A selection of these follows; the rest can be seen in the
solution kit. Notice that for consistency all the "inBounds" checks should really be performed on the new

Computer Science 301 - 2017 - Practical 2 solutions 7

opcodes too (several submissions missed this, and they have been left out here too so that you can add them
yourselves). Firstly the basic two-word ones:

case PVM.Lldl: // push Llocal value
Push(mem[cpu.fp - 1 - Next()1);
break;

case PVM.stl: /] store local value
memCcpu.fp - 1 - Next()] = Pop();
break;

or for the "inline" assembler where we can code it all into one statement:

case PVM.ldl: // push Llocal value
mem[--cpu.spl = memLcpu.fp - 1 - memLcpu.pc++1];
break;

case PVM.stl: /]| store local value
memCcpu.fp —= 1 - memLcpu.pc++]] = memLlcpu.sp++];
break;

A great many submissions made a rather bizarre error. Part of the original kit read as follows - where the action
for all the "missing" opcodes was to trap an error if they were encountered (by accident?)

case PVM.lda_2: // push local address 2

case PVM.lda_3: // push local address 3

case PVM.ldl: // push local value

case PVM.ldl_0: // push value of local variable 0
case PVM.ldL_1: // push value of local variable 1
case PVM.ldL 2: // push value of local variable 2
case PVM.ldl_3: // push value of local variable 3
case PVM.stl: /] store local value

Incompletely modifying the code on the lines shown below would have had the effect of adding PVM. 1lda_2,
PVM.1lda_3 as "extra" labels to the PVM. 1d1 clause (and similarly for other cases)!

case PVM.lda_2: // push local address 2

case PVM.lda_3: // push local address 3

case PVM.Lldl: // push Llocal value
mem[--cpu.spl = memLcpu.fp - 1 - memLlcpu.pc++1];
break;

case PVM.ldl_O: // push value of local variable
case PVM.ldL_1: // push value of local variable
case PVM.ldl_2: // push value of local variable

/Il

/1

pu.

WM -0

case PVM.ldL_3: push value of local variable
case PVM.stl: store local value
memCcpu.fp - 1 - memlc pct++1]l = memLlcpu.sp++];
break;

In improving the string reversal program, some people forgot to introduce the LDL and STL wherever they
could, did not incorporate CAP and INC/DEC and ran the last loop the wrong way! If one codes carefully,
this program reduces to the code shown below:

; Read a sentence and reverse in UPPER CASE 17 SUB

; P.D. Terry, Rhodes University, 2017 18 LDXA ;
; char[] sentence is v0; leng is v1 19 LDV ;
; extended opcode set 20 LbC 46 ; [/ '.' is 46 in ASCII table
22 CEQ ;
0 DSP 2 ; 23 BZE 8 ; until (sentencelleng-11 = '.');
2 LDC 256 ; 25 LDL_1 ;
4 ANEW ; sentence = new char[2561; 26 LDC_O ;
5 STL_O ; 27 CGT ; while (leng > 0) {
6 LDC_O ; 28 BIZE 40
7 STL_1 ; leng = 0; 30 LDA_1 ;
8 LDL O ; repeat { 31 DEC ; leng--;
9 LpL1 ; 32 LbLO ;
10 LDXA ; 33 LDL_1 ;
1 INPC ; read(sentencellengl); 34 LDXA ;
12 LDA_1 ; 35 LDV ;
13 INC ; leng++; 36 CAP ;
14 LDL_O ;) 37 PRNC ; write(upper(sentencellengl);
15 LDL_1 ; 383 BRN 25 ;
16 LDC_1 ; 40 HALT ; System.Exit();

Computer Science 301 - 2017 - Practical 2 solutions 8

Task 10 - Execution overheads - part two

In the prac kit you were supplied with a second translation SIEVE2.PVM of a cut down version of the same
prime-counting program SIEVE.PAV as was used in Task 4, but this time using the extended opcode set
developed in the last task. The kit also included the code that could be executed if the PVM were extended still
further on the lines of the suggestions on page 44 of the textbook.

Running SIEVE1.PVM through both of the original and modified assemblers, and SIEVE2.PVM and
SIEVE3.PVM through both of the modified assemblers gave the following timings for the same limit (4000) and
number of iterations (100) on my machines, one a laptop running Windows XP and one a desktop running
Windows 7-32.

Desktop Machine (Win 7-32) Sievel.pvm (1.00) Sieve2.pvm (0.78) Sieve3.pvm (0.75)
ASM1 (Push/Pop) 0.73 0.57 0.55
ASM2 (Inline) 0.30 (0.41) 0.20 (0.36) 0.13 (0.24)
Laptop machine (XP-32) Sievel.pvm (1.00) Sieve2.pvm (0.75) Sieve3.pvm (0.67)
ASM1 (Push/Pop) 1.14 0.85 0.76
ASM2 (Inline) 0.52 (0.46) 0.30 (0.35) 0.27 (0.35)

The Desktop times were about 65% of those on the slower Laptop. The Inline times were about 40% of the
Push/Pop system with the original limited opcode set. The Inline times were about 30% of the Push/Pop system
with the extended opcode set,

The reasons are not hard to find. The InLine emulator makes very few function calls within the fetch-execute
cycle, whereas the Push/Pop one makes a very large number, each carrying an extra overhead. Similarly, the
introduction of the LDL and STL codes allowed for fewer opcodes to be interpreted to achieve the desired result.

If one wishes to improve the performance of the interpreter further it might make sense to get some idea of which
opcodes are executed most often. Clearly this will depend on the application, and so a mix of applications might
need to be analysed. It is not difficult to add a profiling facility to the interpreter, and this has been done in yet
another interpreter that you can find in the solution kit. Running this on the Sieve files yielded some interesting
results. For a start, there were enormous numbers of steps executed - probably more than you might think.

Original opcodes Extended opcode set Extended opcode set

LDL and STL used LDL, STL, LDL_x STL_x
39 494 323 operations. 27 070 118 operations. (68%) (same op count)
LDA 10824405 LDL 8186502 LDL_2 3821200
LDV 9386302 LDC 4148705 LDL_1 2582600
LDC 4948605 BZE 2182801 BZE 2182801
STO 3165703 CLE 1782901 LDC_O 1910701
BZE 2182801 BRN 1727700 LDC 1782902
CLE 1782901 LDXA 1727600 CLE 1782901
ADD 1782701 STO 1327700 BRN 1727700
BRN 1727700 STL 1038103 LDL_O 1727600
LDXA 1727600 ADD 982801 LDXA 1727600
CGT 982800 AND 982800 STO 1327700
AND 982800 CGT 982800 ADD 982801
HALT 1 LDA 799900 STL_2 982800
ANEW 1 INC 799900 CGT 982800
PRNS 1 LDV 399900 AND 982800
PRNI 1 DSP 1 INC 799900
DSP 1 PRNI 1 LDA_1 799800
PRNS 1 LDC_1 454902
ANEW 1 LDV 399900
HALT 1 STL 55101
LDL 55001
LbC_2 200
STL_1 200
LDL_3 101
LDA_3 100
STL_3 1
STL O 1
HALT 1
ANEW 1
PRNS 1
PRNI 1
DSP 1

Computer Science 301 - 2017 - Practical 2 solutions 9

