Computer Science 3 - 2017
Programming Language Translation
Practical 5 for week beginning 14 August 2017 - Solutions

This practical was done fairly well by all but a few groups, These parsers and scanners are not hard to write -but,
alas, they are also easy to get wrong (putting GetSym () calls in the wrong places!). One point that I noticed
was that some people were driving their parsers from the back, so to speak. Given a construction like

A = { "start" Something } "follow"
it is far better to produce a parser routine like

while (sym.kind == startSym) { GetSym(); Something(); } Accept (followSym) ;
than one like

while (sym.kind != followSym) { GetSym(); Something(); } Accept (followSym) ;
for the simple reason that there might be something wrong with Something.
Complete source code for solutions to the prac is available on the WWW pages in the file PRACSA . ZIP.

The scanner was not well done by some people. I have commented in great detail on how the extensions for Task
4 could have been done. A Fortran comment is, effectively, comprised of an EOL followed immediately by a C
and then by printable characters up to but not including the next EOL. This gives a simple way of recognizing
them, but, as most discovered, one has to do something special to handle the very real possibility that the very
first real character in the source file is a C (which is, of course, not preceded by anything, let alone an EOL). But
that is easy to fix (there is always a neat simple solution to a Pat Terry problem). The scanner assumes that a
character has already been read before Get Sym () is called for the first time. Rather than use GetChar () to do
that, as in the skeleton kit, just assign EOL to ch and fool the system that way. It won't cause any problem if
there is no introductory comment either, when you think about it. So think about it.

There were some very tortuous ways of recognising a string literal with embedded double quotes. Once again, try
to keep it as simple as you can. But no simpler! As with the .XXX. tokens, there is a finite chance that a user
will not terminate a string before reaching an EOL (or before an EOF in freak cases). So the code has to be
prepared to deal with that as well.

Incidentally, I think most text editors probably add an LF or a CRLF at the end of the last line of text -meaning
that one should always be able to detect the last end of line before detecting the pseudo EOF. But not all do,
hence the need to check both.

Comments are simple conceptually, but awkward to define and even to ignore in practice, especially if you can
nest them, which some languages allow you to do (a very useful feature, but a dangerous one).

const int
noSym
numSym
identSym
equalSym
assignSym ,
// see full solution

’

’

s

s

nmn n nn
W NN - O

static int LiteralKind(StringBuilder Llex) {
string str = lex.ToString().ToUpper();
switch (str) {

case "CONTINUE" : return continueSym;

case "DO" : return doSym;

case "ELSE" : return elseSym;

default : if (str.Length > 6) return noSym;

else return identSym;
b
¥ // LiteralKind

static int OperatorKind(StringBuilder Llex) {

switch (lex.ToString().ToUpper()) {

case ".EQ." : return eqSym;
case ".NE." : return neSym;
default : return noSym;

X
} // operatorKind

static bool IsStringChar(char ch) {
return ch >= ' ' && ch I= '\'';
} // 1sStringChar

static void GetSym() {
// scans for next sym from input

/] To deal with comments we arrange that before this is called for the very first time

// ch is initialised to EOL.

The if the first Lline is a comment it is picked up easily

// This is a trick that suits Fortran - one might not normally do it

while (ch > EOF && ch <=
StringBuilder symLex =
int symKind = noSym;
if (Char.IsLetter(ch)) {
do {
symLex.Append(ch); GetChar();
} while (Char.IsLetterorDdigit(ch));
symKind = LiteralKind(symLex);
b
else if (Char.IsDigit(ch)) {
do {
symLex.Append(ch); GetChar();
} while (Char.IsDigit(ch));
symKind = numSym;
b
else {

symLex.Append(ch);
switch (ch) {
case EOL =
symLex = new StringBuilder("EOL");

symKind = EOLSym; GetChar();
if (Char.ToUpper{(ch) == 'C') {
do {

symLex.Append{(ch); GetChar();
Y while (ch != EOL && ch != EOF);
>
break;
case EOF:
symLex = new StringBuilder("EOF");
symKind = EOFSym;
break;
case '.' :
GetChar();
while (Char.IsLetter(ch)) {
symLex.Append{(ch); GetChar();

b

if (ch == '.") {
symLex.Append{(ch); GetChar();

b

symKind = OperatorKind(symLex);

break;

case '\'' :

while (true) {

GetChar();

while (IsStringChar(ch)) {
symLex.Append{(ch); GetChar();

>
if (ch I= '\'') break;
symLex.Append{(ch); GetChar();
if (ch 1= '\"") (
symKind = stringSym;
break;
>
symLex.Append{(ch);
>
break;
case '(!'
symKind = LlparenSym; GetChar();
break;
case ')!
symKind = rparenSym; GetChar();
break;

Computer Science 301 - 2017 - Practical 5 solutions

/1

/1

11
/1

~—
S~

/1

/1

' & & ch != EOL) GetChar();
new StringBuilder();

identifier or key word

integer number

single character tokens , or ones that start
with distinctive single characters

special representation for EOL for debugging
EOL + C signifies a comment

retain the text of the comment for
but treat it as an EOLsym which is
and beware of a rogue EOF

test purposes
significant

special representation for EOF for debugging

No need to GetChar here, of course

.op. operators and logical constants

if it isn't, - XXX must be returned as a noSym

check for a valid « XXXXX « token

start of string literal detected

a rare case where while (true) gives a neat way

will stop at next ' or EOL or EOF

abort if it runs off end of line or file prematurely
look at character after the '
not a quote means we have reached the end of string

no, we found a double quote - keep going round Lloop

the rest are easy, but note the GetChar() calls

case '+' :
symKind = addSym; GetChar();
break;

case '
symKind = subSym; GetChar();
break;

case '*' :
symKind = mulSym; GetChar();
break;

case '/' :
symKind = divSym; GetChar();
break;

case '=' :
symKind = assignSym; GetChar();
break;

case ',' :
symKind = commaSym; GetChar();

break;
default :
symKind = noSym; GetChar();
break;
b
b
sym = new Token(symKind, symLex.ToString());
} // Getsym

Below is most of a simple "sudden death" parser, devoid of error recovery. I have commented all the Accept ()
and GetSym () calls to indicate why each is used in preference to the other one.

Note the default clauses in the switch statements.

static IntSet
Firstvars = new IntSet(logicalSym, integerSym),
RelopSyms = new IntSet(LltSym, leSym, gtSym, geSym, eqSym, neSym),
AddopSyms = new IntSet(addSym, subSym),
MulopSyms = new IntSet(mulSym, divSym),
ConstSyms = new IntSet(trueSym, falseSym, numSym),
FirstPrn = new IntSet(printSym, printOSym),
FirstLim = new IntSet(identSym, goSym, goToSym, readSym, printSym, printOSym, stopSym, continueSym),
FirstGen = new IntSet(ifSym, doSym).Union(FirstLim);
// 1t may be safer just to enumerate them all - the Library is a bit dodgy on sets 2017/08/26

// One of the reasons for using Accept methods is that it gives a uniform way of reporting on errors
// If you want to change that way, there is the one common place to do it, not a whole lot of
/] changes needed all over the code.

Note that I have used an unguarded "GetSym" when it is obviously quite safe to do so (because the
// test for an acceptable token has already been done).

static void Accept(int wantedSym, string errorMessage) {

/] Gets the next token if the current token matches wantedSym
if (sym.kind == wantedSym) GetSym(); else Abort(errorMessage);

} /] Accept

static void Accept(IntSet allowedSet, string errorMessage) {

/| Gets the next token if the current token matches an element of allowedSet
if (allowedSet.Contains(sym.kind)) GetSym(); else Abort(errorMessage);

} /] Accept

static void Program() { // correction to grammar as originally

// supplied

// Program = { eol } "PROGRAM" Ident EOLS

{ VarDeclarations }

{ GeneralStatement

"END" WEAK eol { eol } EOF .

SN~
N

// can have eols, comments after END

// but no labels. Best to check for EOF
1l

/1

while (sym.kind == EOLSym) GetSym();

Accept(programSym, " Program expected");

Ident();

EOLS();

while (FirstVars.Contains(sym.kind)) VarDeclarations();

while (FirstGen.Contains(sym.kind)) GeneralStatement();

Accept(endSym, " END expected"); // GetSym alone would be dangerous

if (sym.kind == EOLSym) { // be generous - the EOL is a WEAK token
GetSym(); while (sym.kind == EOLSym) GetSym(); // No need for Accept

No need for Accept
GetSym alone would be dangerous

X
Accept(EOFSym, " EOF expected");
¥ // Program

Computer Science 301 - 2017 - Practical 5 solutions 3

static void EOLS() {
// EOLS = SYNC eol { eol } [Label 1

Accept(EOLSym, " end of Lline expected"); // GetSym alone would be dangerous
while (sym.kind == EOLSym) GetSym(); // No need for Accept
if (sym.kind == numSym) Label();

¥ // EoLs

static void VarDeclarations() {

/| varDeclarations = ("INTEGER" | "LOGICAL") Onevar { WEAK "," OneVar } EOLS
Accept(Firstvars, "invalid start to varDeclarations"); // GetSym alone would be dangerous
OneVar();
while (sym.kind == commaSym) {

GetSym(); OneVar(); // No need for Accept
b
EOLS();

} // varbeclarations

static void OnevVar() {
// oOnevar = Ident ["(" IntConst ")" 1 .

Accept(identSym, " identifier expected"); // GetSym alone would be dangerous
if (sym.kind == LlparenSym) {
GetSym(); IntConst(); /] No need for Accept
Accept(rparenSym, ") expected"); // GetSym alone would be dangerous
>
} /] onevar

static void GeneralStatement() {
// some statements (IF, DO) are not permitted within a logical IF statement */
/| Generalstatement = LimitedStatement | IfStatement | DoStatement .
switch (sym.kind) {
case ifSym :
IfStatement(); break;
case doSym :
DoStatement(); break;
default:
LimitedStatement(); break; /] catch bad statements later
>
} // Generalstatement

static void LimitedStatement() {

// Only a few statements are permitted as the subsidiary within a logical IF statement
// Limitedstatement

/] = SYNC (Assignment

// GoToStatement
// ReadStatement
// PrintStatement
// "STOP™

// "CONTINUE"

//) EOLS .

switch(sym.kind) {
case identSym :
Assignment(); break;
case goSym : /] two forms of this statement
case goToSym :
GoToStatement(); break;
case readSym :
ReadStatement(); break;
case printSym : /| two forms of this statement
case printOSym:
PrintStatement(); break;
case stopSym :
case continueSym :

GetSym(); break; // No need for Accept
default :
Abort(" unrecognised statement"); break; // Any bad statement will be caught here
b
EOLS();

} // LimitedStatement

static void Assignment() {

// Assignment = Designator "=" Expression .
Designator();
Accept(assignSym, " = expected"); // GetSym alone would be dangerous

Expression();
¥ // Assignment

Computer Science 301 - 2017 - Practical 5 solutions 4

static void Designator() {
/| Designator = Ident ["(" Expression ")" 1
Ident();
if (sym.kind == lparenSym) {
GetSym(); Expression();
Accept(rparenSym, ") expected");

b
} // Designator
static void IfStatement() {

// 1fstatement = "IF" "(" Expression ")"
(Label "," Label "," Label EOLS

~
~

// | "THEN" EOLS { GeneralStatement ¥
// ["ELSE" EOLS { GeneralStatement
// "ENDIF" EOLS

// | LimitedStatement

/!)

Accept(ifSym, " IF expected");
Accept(lparenSym, " (expected");
Expression();
Accept(rparenSym, ") expected");
switch (sym.kind) {
case numSym :
Label(); Accept(commaSym, " , expected");
Label(); Accept(commaSym, " , expected");
Label(); EOLSQ);
break;
case thensym :
GetSym();
EOLS();
while (FirstGen.Contains(sym.kind)) GeneralStatement()
if (sym.kind == elseSym) {
GetSym();
EOLS();
while (FirstGen.Contains(sym.kind)) GeneralStatement
X
Accept(endifSym, " ENDIF expected");
EOLS();
break;
default :
LimitedStatement();
break;
¥ /] switch
} /] Ifstatement

static void DoStatement() {
// Dostatement = "DO" Label ["," 1

Ident "=" Expression "," Expression [","
Accept(doSym, " DO expected");
Label();
if (sym.kind == commaSym) GetSym();
Ident();
Accept(assignSym, " = expected");

Expression();
Accept(commaSym, " , expected");
Expression();
if (sym.kind == commaSym) {
GetSym(); Expression();
X
EOLS();
} /] postatement

static void GoToStatement() {
// GoToStatement = ("GOTO" | "GO" "TO")
(Label
// | "¢* Label € WEAK "," Label > ")" [
11) .
if (sym.kind == goSym) {
GetSym(); Accept(toSym, " TO expected");
b
else Accept(goToSym, " GOTO expected");
if (sym.kind == numSym) Label();
else {
Accept(lparenSym, " (expected");
Label();
while (sym.kind == commaSym) {
GetSym(); Label();
>
Accept(rparenSym, ") expected");
if (sym.kind == commaSym) GetSym();
Expression();

Computer Science 301 - 2017 - Practical 5 solutions 5

No need for Accept
GetSym alone would be dangerous

~~
~

/]| slight rearrangement of production
Y1

/| GetSym alone might be dangerous
// GetSym alone would be dangerous

// GetSym alone would be dangerous
It is an Arithmetic IfStatement

1l
/]| GetSym alone would be dangerous
// GetSym alone would be dangerous

// 1t is a Block IfStatement
// No need for Accept

// No need for Accept

O);

/] GetSym alone would be dangerous

// 1t should be a Logical IfStatement, but

// this will catch any bad if statements

Expression 1 EOLS .
/| Getsym alone might be dangerous

/] No need for Accept
/| Getsym alone would be dangerous

// GetSym alone would be dangerous

// No need for Accept

"," 1 Expression

/| GetSym alone would be dangerous

// Getsym alone would be dangerous

/]| simple GoTo statement

// This form gives a switch statement
/] GetSym alone would be dangerous

/] No need for Accept

/]| GetSym alone would be dangerous
// No need for Accept

X
} // GoTostatement

static void ReadStatement() {
// Readstatement = "READ" "*" { WEAK "," ReadElement } .

Accept(readSym, " READ expected"); // GetSym alone would be dangerous
Accept(mulSym, " * expected"); // GetSym alone would be dangerous
while (sym.kind == commaSym) {

GetSym(); ReadElement(); // No need for Accept
b

} // ReadStatement

static void ReadElement() {

/| ReadElement = Designator .
Designator();

} // ReadElement

static void PrintStatement() {

// PrintStatement = ¢ "PRINTO" | "PRINT") "*" { WEAK "," PrintElement } .
Accept(FirstPrn, " PRINT or PRINTO expected"); // GetSym alone would be dangerous
Accept(mulSym, " * expected"); // GetSym alone would be dangerous
while (sym.kind == commaSym) {
GetSym(); PrintElement(); /] No need for Accept
>

} // Printstatement

static void PrintElement() {

// PrintElement = stringLit | Expression .
if (sym.kind == stringSym) GetSym();
else Expression();

} // PrintElement

/ No need for Accept
/ Expression will catch any bad PrintElement

~

static void Expression() {
// Expression = AndExp { ".OR." AndExp } .

AndExp();
while (sym.kind == orSym) {

GetSym(); AndExp(); // No need for Accept
X

} // Expression

static void AndExp() {
AndExp = NotExp .AND." NotExp .
d _c n n }

NotExp();
while (sym.kind == andSym) {
GetSym(); NotExp(); // No need for Accept
b
} // AndExp

static void NotExp() {

// NotExp = [".NOT." 1 RelExp .
if (sym.kind == notSym) GetSym(); /] No need for Accept
RelExp();

¥ // NotExp

static void RelExp() {
// RelExp = AddExp [RelOp AddExp 1
AddExp();
if (RelopSyms.Contains(sym.kind)) {
GetSym(); AddExp(); /] No need for Accept

X
} // RelExp

static void AddExp() {
// AddExp = [AddOop 1 MultExp { AddOp MultExp } .

if (AddopSyms.Contains(sym.kind)) GetSym(); // No need for Accept
MultExp();
while (AddopSyms.Contains(sym.kind)) {

GetSym(); MultExp(); // No need for Accept

X
¥ // AddExp

static void MultExp() {
// MultExp = Factor { MulOp Factor } .
Factor();
while (MulopSyms.Contains(sym.kind)) {
GetSym(); Factor(); // No need for Accept

X
¥ // MultExp

Computer Science 301 - 2017 - Practical 5 solutions 6

static void Factor() {
// Factor = Designator | Constant | "(" Expression ")" .
if (sym.kind == identSym) Designator();
else if (ConstSyms.Contains(sym.kind)) Constant();
else if (sym.kind == LlparenSym) {
GetSym(); Expression();
Accept(rparenSym, ") expected");
>
else Abort(" invalid start to expression");

No need for Accept
GetSym alone would be dangerous

any problems with expressions will
eventually be caught here

S~
S~ Y

} // Factor

static void Constant() {
// constant = IntConst | ".TRUE." | ".FALSE."

Accept(ConstSyms, " constant expected"); // GetSym alone would not work
} // constant

static void Addop() {
// Addop = "+" oo

Accept(AddopSyms, " + or - expected"); // GetSym alone would not work
} // Addop

static void MulOop() {

// Mulop = " | u/u .
Accept(MulopSyms, " * or [expected"); /]| GetSym alone would not work
¥ // Mulop

static void Relop() {
// Relop = ".LT." | ".LE." | ".6T." | ".6E." | ".EQ." | ".NE."

Accept(RelopSyms, " relational operator expected"); // GetSym alone would be dangerous
¥ /] Relop

static void Ident() {
// 1dent = identifier .

Accept(identSym, " valid identifier expected"); // GetSym alone would be dangerous
} // 1dent

static void IntConst() {
// IntConst = number .

Accept(numSym, " number expected"); // GetSym alone would be dangerous
¥ // IntConst

static void Label() {
// Label = number .

Accept(numSym, " invalid label"); // GetSym alone would be dangerous
¥ // Label

One of the class made a good suggestion about using a command line parameter to steer the program between
doing a scanner-only checker and a complete parser. I'll remember that for future years if I teach the course
again, but here is the sort of thing that one might do:

/] +ttttttttttttttttebes Main driver function ++tttttttttttttttbbbbbb bbbt

public static void Main(string[]l args) {
// Open input and output files from command Lline arguments
if (args.Length == 0) {
Console.WriteLine("Usage: ToyFortran FileName [-testScannerl ");
System.Environment.Exit(1);

X
input = new InFile(args[0]1); // should really test for presence of file!
output = new OutFile(NewFileName(args[O0l, ".out"));
bool testScanner = args.Length > 1; // Suggestion from student - well done!
ch = "\n'; /] EOL for the lookahead character - see notes above.
if (testScanner) // Useful to be able to do only this, even
// when working on the full parser
do {
Getsym(); /]| Lookahead token
OutFile.Stdout.Write(sym.kind, 3);
OutFile.Stdout.WriteLine(" " + sym.val); /| see what we got

} while (sym.kind != EOFSym);

Computer Science 301 - 2017 - Practical 5 solutions 7

else {
GetSym(); /] Lookahead symbol
Program(); // Start to parse from the goal symbol
// if we get back here everything must have been satisfactory
Console.WriteLine("Parsed correctly");
} // testing full parser

output.Close();
¥ // main

A point to make is that, for safety, a parsing method should not assume that it will always be called if its
"precondition” is met. That should be the case, but remember that anyone can write a compiler if the user will
never make mistakes - but users invariably do make mistakes. So if you have a production like

Something = "one" SomethingElse .
code the parsing method as

void Something()
accept(oneSym, "one expected");
SomethingElse();

} // something

and not as

void Something() {
GetSym();
SomethingElse();
} // something

Of course, in this example, many of the methods would only have been called if the token had satisfied the
precondition, as some sort of test would have been made in the caller. These points are marked "dangerous" in
the solution above.

Another point that is easily missed can be illustrated by the production

Something = "one" FollowOne | "two" FollowTwo
If you code the parsing method as

void Something() {
if (sym.kind == oneSym) {
GetSym(); FollowOne();
b
else {
GetSym(); FollowTwo();
b
} // something

you run the risk of not detecting the error if Something () is called with sym corresponding to something other
than "one" or "two". The code would be much better as

void Something() {
if (sym.kind == oneSym) {
GetSym(); FollowOne();
b
else if (sym.kind == twoSym) {
GetSym(); FollowTwo();
b
else abort("invalid start to Something");
> // something

or as

Computer Science 301 - 2017 - Practical 5 solutions 8

void Something() {
switch(sym.kind)
case oneSym :
GetSym(); FollowOne(); break;
case twoSym) :
GetSym(); FollowTwo(); break;
default :
abort("invalid start to Something"); break;
b
} // something

although you could almost "get away" with

void Something() {
if (sym.kind == oneSym) {
GetSym(); FollowOne();
b
else {
accept(twoSym, "invalid start to Something"); FollowTwo();
b
} // something

because an error message will be generated if the token is not one of "one" or "two".

If in doubt, use the Accept () method rather than a simple GetSym () - and make sure that all your switch
statements always have a default clause (here or in other code you write).

However, this is an opportune time to comment further on pragmatic error detection. There is a fine balance
between putting in too many checks and not enough checks. Consider the Expression parser as an example. It
would be possible (and maybe thought a good idea) to check at the start of the Expression production that sym is
in the appropriate FIRST set, and to do the same as the start of the production for AndExp, the production for
NotExp, and so on all the way to the production for Factor. But all these first sets are much the same. So not
doing any checking until one starts on the options for Factor works quite well enough - any Expression eventually
sees a Factor being parsed. The same goes for statements - if one uses LimitedStatement as the "default" in the
switch within GeneralStatement one can delay the checking that each and every statement starts correctly until the
point is reached where LimitedStatement is called.

Computer Science 301 - 2017 - Practical 5 solutions 9

