Computer Science 3 - 2017
Programming Language Translation
Practical 7 - Week beginning 4 September 2017 - solutions
Sources of full solutions for these problems may be found on the course web page as the file PRAC7A.ZIP.
Task 2 - Use of the debugging and other pragmas
The extra pragmas needed in the refined Parva compiler are easily introduced. We need some static fields:

public static boolean
debug = false,

* optimize = false,
* listCode = false,
* warnings = true,

The definitions of the pragmas are done in terms of these:

PRAGMAS
* CodeOn = "$C+" . (. listCode = true; .)
* CodeOff = "gc-" . (. LlistCode = false; .)
DebugOn = "$D+" . (. debug = true; .)
DebugOoff = "gp-" . (. debug = false; .)
* OptimizeOn = "$0+" . (. optimize = true; .)
* Optimizeoff = "$0-" . (. optimize = false; .)
* WarningsOn = "$W+" . (. warnings = true; .)
* WarningsOff = "$W-" . (. warnings = false; .)
Stackbump = "$sp" . (. CodeGen.Stack(); .)
HeapDump = "$HD" . (. CodeGen.Heap(); .)
TableDump = "$ST" . (. Table.PrintTable(OutFile.Stdout); .)

It is convenient to be able to set the options with command-line parameters as well. This involves straightforward
changes to the Parva . frame file:

if

else
else
else
else

ToLower ().
ToLower ().
ToLower ().
ToLower ().
ToLower ().
ToLower ().
ToLower ().
argslil;

Equals("-1"))
Equals("-c"))
Equals("-d"))
Equals("-g"))
Equals("-n"))
Equals("-0"))
Equals("-w"))

(args[il.
(args[il.
(args[il.
(argsLil.
(args[il.
else if (argsLlil.
else if (argslil.
else inputName

mergeErrors = true;
Parser.listCode = true;
Parser.debug true;
immediate true;
execution false;
Parser.optimize = true;
Parser.warnings false;

if
if
if
if

>
if (inputName == null) {

Console.WriteLine("No input file specified");
* Console.WriteLine("Usage: Parva [-c] [-d]l [-gl [-l]1 [-n] [-ol [-wl source.pav");
* Console.WriteLine("-c produce .COD file");

Console.
Console.
Console.
Console.
Console.
Console.

WriteLine("-d
WriteLine("-g
WriteLine("-1L
WriteLine("-n
WriteLine("-o
WriteLine("-w

turns on debug mode");

execute immediately after compilation (StdIn/StdOut)");
directs source listing to listing.txt");

no execution after compilation");

optimize LDA LDG LDC");

turn off warning messages");

System.Environment.Exit(1);
b

Finally, the following change to the frame file gives the ability to suppress the generation of the . COD listing.

* if (Parser.listCode) PVM.ListCode(codeName, codelLength);

Task 3 - Sometimes it makes sense, as you start, to be told how you will stop

Extending HaltStatement to have an optional parameter that can issue a report before execution ceases (a useful
way of indicating how a program has ended prematurely) is almost trivially easy. It is useful to incorporate a full
WriteList for maximum usability, rather than just a fixed string.

HaltStatement
= "halt"
* L "(" [WriteList 1 ")" (. CodeGen.WriteLine(); .)
* 1 (. CodeGen.LeaveProgram{(); .)

WEAK ";" .

Task 4 - Things are not always what they seem
Simply issuing warnings for empty statements or empty blocks is quite easy. As a start we could try:

* Block<StackFrame frame>
= (. Table.openScope();

* bool empty = true; .)

* "{" { Statement<frame, funcType> (. empty = false; .)

* X (. if (empty && warnings) Warning("empty {} block");
WEAK "}" (. Table.closeScope(); .) .

Statement<StackFrame frame, int funcType>

= SYNC (Block<frame, funcType>
ConstDeclarations

VarDec larations<frame>
CallOrAssignmentStatement
IfStatement<frame, funcType>
WhileStatement<frame, funcType>
HaltStatement
ReturnStatement<funcType>
ReadStatement

WriteStatement

* no (. if (warnings) Warning("empty statement"); .) .

Note that the Boolean variable empty is declared locally. Some students declared it globally (as a static variable
in the atg file), but static variables are a bit tricky in heavily recursive systems like this. They are acceptable for
the flags set/unset/used by the pragma system, however - passing all those as parameters between every
production would be extremely tedious.

Spotting an empty block, or the empty statement in the form of a stray semicolon, is partly helpful. Detecting
blocks that really have no effect might be handled in several ways. One suggestion would be to count the
executable statements in a Block. This would mean that the Statement parser would have to be attributed so as to
return this count, and this would have a knock-on effect in various other productions as well. Since we might
have all sorts of nonsense like

{ Cint k; > { € int j; X int i; ; ; Y (x> > {72

counting would have to proceed carefully. Details are left as a further exercise - but it is probably not worth
doing. Stray semicolons and totally empty blocks are simple and their detection could well be helpful. Once you
have started seeing how stupid some code can be, you can develop a flare for writing bad code suitable for testing
compilers without asking your friends in CSC 102 or even CSC 301 to do it for you!

Task 5 - How long is a piece of string?

The prac sheet asked why languages generally impose a restriction that a literal string must be contained on a
single line of code. The reason is quite simple - it becomes difficult for a human to see or track the control
characters and spaces that would otherwise be buried in the string. It is easier and safer for language designers to
use the escape sequence idea if they need to cater for non-graphic characters in strings and character literals.

In C++, two or more literal strings that appear in source with nothing but white space between them are
automatically concatenated into a single string. Such concatenation is simple. The place to do it is in the
String Const production which calls on a OneString parser to obtain the substrings (which have had their leading
quotes and internal escape characters processed by the time the concatenation takes place):

StringConst<out String str> (. string str2; .)

= OneString<out str>
{ ["+" 1 OneString<out str2> (. str = str + str2; .)
> .

OneString<out string str>
= stringlLit (. str
str

token.val;
Unescape(str.Substring(1, str.Length - 2)); .) .

This feature is not needed in languages like C# and Java, which have proper strings, as the concatenation can be
done with a + operator. Just for fun, the code above allows this concatenation operator as an option between
string literals that are to be concatenated.

Computer Science 301 - 2017 - Practical 7 solutions 2

Task 6 - You had better do this one or else....

We can begin by looking at the addition of an else option to the IfStatement. Doing this efficiently is easy once
you see the trick of associating an empty alternative - as in (something |) with an action - rather than
using the meta brackets [something]. This is a very useful technique to remember.

IfStatement<StackFrame frame, int funcType>

(.

= "jf" "(" Condition

* empty else part *
| / /
) .

Many - perhaps most - people in attempting this problem come up with the following sort of code instead.

uyn C.

* Statement<frame, funcType>

* ("else" (.
*

* Statement<frame, funcType> (.
*

*

Label falseLabel = new Label(!known);
Label outLabel = new Label(!known); .)
CodeGen.BranchFalse(falseLabel); .)

CodeGen.Branch(outLabel);
falseLabel.Here(); .)
outLabel.Here(); .)

(. falseLabel.Here(); .)

This

can generate BRN instructions where none are needed. Devoid of checking, just to save space:

IfStatement<StackFrame frame, int funcType>

(.

= "if" "(" Condition

["else" Statement<frame, funcType>

(.

Using this strategy, source code like
if (i ==12) k = 56;

would lead to object code like

12 LDA O

14 LDV

15 LbC 12

17 CEQ

18 BZE 27

20 LDA 5

22 LDC 56

24 STO

25 BRN 27 // unnecessary
27 R

wyn .
Statement<frame, functype> (.

Label falseLabel = new Label(!known);
Label outLabel = new Label(!known); .)
CodeGen.BranchFalse(falseLabel); .)
CodeGen.Branch(outLabel);
falseLabel.Here(); .)

]

outLabel.Here(); .) .

Handling the elsif clauses uses the same sort of idea. Note that. after defining falseLabel .Here (), the label
is "re-used" by assigning it another instance of an "unknown" label. If you don't do this you will get all sorts of

bad code or funny messages from the label handler!

IfStatement<StackFrame frame, int funcType)

(.

= "if" "(" Condition
Statement<frame, int funcType)

* { (.
*
*
* "elsif" "(" Condition ")" (.
* Statement<frame, funcType>
* b

("else" (.

Statement<frame, funcType>

| /* no else part */ C.
(. outLabel.Here(); .) .

)

nyn C.

Label falseLabel = new Label(!known);
Label outLabel = new Label(!known); .)
CodeGen.BranchFalse(falseLabel); .)

CodeGen.Branch(outLabel);
falseLabel.Here();

falseLabel = new Label(!known); .)
CodeGen.BranchFalse(falselLabel); .)

CodeGen.Branch(outLabel);
falselLabel.Here(); .)

falseLabel.Here(); .)

Task 7 Something to do - while you wait for inspiration

I think this was discussed in class, and I am surprised that some people had trouble with it. We need a single
label, and a single conditional branch that goes to the start of the loop body. The only trick is that we don't have

Computer Science 301 - 2017 - Practical 7 solutions

a "branch on true" opcode - but all we have to do is to generate a "negate boolean" operation that will be applied
to the computed value of the Condition at run time before the conditional branch takes effect:

DoWhileStatement<StackFrame frame, int funcType>
(. Label LloopStart = new Label(known); .)

= ndo"
Statement<frame, funcType>
WEAK "while"
"(" Condition ")" WEAK ";" (. CodeGen.NegateBoolean();

CodeGen.BranchFalse(loopStart); .) .

Task 8 - This has gone on long enough - time for a break (and then continue)

The syntax of the BreakStatement and ContinueStatement is, of course, trivial. The catch is that one has to allow
these statements only in the context of loops. Trying to find a context-free grammar with this restriction is not
worth the effort.

One approach that incorporates context-sensitive checking in conjunction with code generation, as hopefully you
know, is based on passing information as parameters between subparsers. The pieces of information we need to
pass here are Label objects. We change the parser for Statement and for Block as follows:

* Block<StackFrame frame, int funcType, Label breakLabel, Label continueLabel>
= (. Table.openScope();
bool empty = true; .)

* "{" { Statement<frame, funcType, breakLabel, continueLabel>
(. empty = false; .)
X (. if (empty && warnings) Warning("empty {} block");
WEAK "2}" (. Table.closeScope(); .) .

*

Statement<StackFrame frame, int funcType, Label breakLabel, Label continueLabel>
* = SYNC (Block<frame, breakLabel, continueLabel>

ConstDeclarations

VarDeclarations<frame>

AssignmentOrcCall

* IfStatement<frame, funcType, breakLabel, continuelLabel>
WhileStatement<frame, funcType>

DoWhileStatement<frame, funcType>

LoopStatement<frame, funcType>

BreakStatement<breakLabe >

* ContinueStatement<continuelLabel>

HaltStatement

ReturnStatement<funcType>

ReadStatement

WriteStatement

" (. if (warnings) Warning("empty statement"); .)

The very first call to Statement from within the Body of a function passes null as the value for each of these
labels:

Body<StackFrame frame, int funcType>

= (. Label DSPLabel = new Label(known);
int sizeMark = frame.size;
CodeGen.OpenStackFrame(0); .)

* "{" { Statement<frame, funcType, null, null> }
WEAK "2}" (. CodeGen.FixDSP(DSPLabel.Address(), frame.size - sizeMark);
if (funcType == Types.voidType)
CodeGen.LeaveVoidFunction();

else CodeGen.FunctionTrap(); .) .

and the labels can be inherited by the parsers for Block and IfStatement and passed through these to the parsers for
BreakStatement and ContinueStatement that will generate the branch opcodes themselves.

The productions that are concerned with breaking and continuing are simple. The tests for null labels serve to

catch the context-sensitive requirement that these statements have meaning only when one is executing the body of
a loop.

Computer Science 301 - 2017 - Practical 7 solutions 4

BreakStatement<Label breakLabel>

* = 'preak" (. if (breakLabel == null)

* SemError("break is not allowed here");

* else CodeGen.Branch(breakLabel); .)
WEAK ";" .

ContinueStatement<Label continueLabel>

* = '"continue" (. if (continueLabel == null)
* SemError("continue is not allowed here");
* else CodeGen.Branch(continueLabel); .)

WEAK ";" .

Each looping construct must define a point to which a break would transfer control and a point to which a
continue would transfer control. These are conveniently handled through the use of Label objects, which must be
declared locally to each production and then passed to the Statement that defines the body of the loop. Few
students seemed to be aware of exactly where the continue point would be. A "continue" shortcircuits the rest of
the loop body, but in the case of the DoWhile or Repeat loop transfers control to the Condition evaluation, which
is not at the "start" of the loop. This may be made clearer by considering the following diagrams

wWhile Lloop DoWhile Lloop Infinite Lloop
start > Condition start —> // start body start —> // start body
branch false —>— { L G
// start body “break ————>—] break ————>—1
T break > <—— cont1nue ——<— continue \Y
}—<—— cont1nue v break —>— break —>—
T break ——>— <— continue \Y ——<— continue \%
<— continue v ¥ // end body } // end body
Ve continue —> Condition
L— 3 // end body L—— branch true L——— branch
exit E— exit exit —
v v v

The attributed productions follow. Note carefully how the labels are declared, passed as parameters, and where
the Here () calls are made to fix labels that have been "used" before they were "known". DoWhileStatement
requires three of these Label objects.

WhileStatement<StackFrame frame, int funcType>
(. Label LloopExit = new Label(!lknown);

* Label LloopStart = new Label(known); .)
= "while" "(" Condition ")" (. CodeGen.BranchFalse(loopExit); .)
* Statement<frame, funcType, loopExit, loopStart>
(. CodeGen.Branch(loopStart);
* loopExit.Here(); .) .

* DoWhileStatement<StackFrame frame, int funcType>
(. Label LloopExit = new Label(!lknown);
* Label loopContinue = new Label(!known);
Label LloopStart = new Label(known); .)

= ndo"
* Statement<frame, funcType, loopExit, loopContinue>
* WEAK "while" (. loopContinue.Here(); .)
"(" Condition ")" WEAK ";" (. CodeGen.NegateBoolean();
CodeGen.BranchFalse(loopStart);
* loopExit.Here(); .) .

Finally, the labels may have to be inherited and then retransmitted through intervening IfStatement productions
(without modification in this case):

IfStatement<StackFrame frame, int funcType, Label breakLabel, Label continueLabel>
(. Label falseLabel = new Label(!known);
Label outLabel = new Label(!known); .)

= "if" "(" Condition ")" (. CodeGen.BranchFalse(falseLabel); .)
* Statement<frame, funcType, breakLabel, continueLabel>
{ (. CodeGen.Branch(outLabel);

falselLabel.Here();
falseLabel = new Label(!known); .)
"elsif" "(" Condition ")" (. CodeGen.BranchFalse(falseLabel); .)
* Statement<frame, funcType, breakLabel, continueLabel>

Computer Science 301 - 2017 - Practical 7 solutions 5

("else" (. CodeGen.Branch(outLabel);
falseLabel.Here(); .)

* Statement<frame, funcType, breakLabel, continueLabel>
| /* no else part */ (. falseLabel.Here(); .)
) (. outLabel.Here(); .) .

There are other ways of solving the problem. One involves using local variables in the parsing methods to
"stack" up old global labels, assigning new ones to these globals, and then restoring the old globals from the local
copies afterwards. Another way involves setting up global List structures and operating on these as stacks. But
the method suggested here seems the neatest. All three of these are essentially "stack" based. By now I hope you
know that function calls stack up "stack frames", and one may as well use that automatic stack/unstack mechanism
rather than recreate it in dangerous global structures. Avoid the temptation of global structures in highly
recursive systems!

Task 9 - Here we go loop - de - loop (You may be too young to remember that song?)
As an alternative way of writing loops, and a very easy one, add an indefinite loop to Parva, as exemplified by

Loop
writeLine("Keep it as simple as you can, but no simpler");

This is trivial - almost an insult to your intelligence! Here the "continue" branches straight back to the "start".

LoopStatement<StackFrame frame, int funcType>
(. Label loopExit = new Label(!known);
Label LloopStart = new Label(known); .)
= n Loop"
Statement<frame, funcType, loopExit, loopStart>
(. CodeGen.Branch(loopStart);
LoopExit.Here(); .) .

Task 10 - Your professor is quite a character

Obvious simple extensions are needed to introduce a charType and the keyword char into the grammar and
support modules. These are not given in full here in a document that is already too long.

The major part of this extension is concerned with the changes needed to apply various constraints on operands of
the char type. Essentially, and annoyingly perhaps, in the C family of languages it is a sort of arithmetic type
when this is convenient (this is called "auto-promotion"). Explicitly, it ranks as an arithmetic type, in that
expressions of the form

character + character (int) character ! = integer (bool)
character > character (bool) integer == character (bool)
character + integer (int) integer + character (int)

character > integer (bool) integer > character (bool)

are all allowable. This can be handled by modifying the helper methods in the parser as follows:

static bool IsArith(int type) {
* return type == Types.intType || type == Types.charType || type == Types.noType;
¥ // 1sArith

static bool Compatible(int typeOne, int typeTwo) {
* // Returns true if typeOne is compatible (and comparable for equality) with typeTwo

return typeOne == typeTwo /] obvious
* || IsArith(typeone) && IsArith(typeTwo) /]| concession char/int
| typeOne == Types.noType // concession for bad type
| typeTwo == Types.noType // concession for bad type
|

IsArray(typeOne) && typeTwo == Types.nullType // array pointers
IsArray(typeTwo) && typeOne == Types.nullType; // array pointers
} // compatible

Even stricter is the idea of being comparable for "ordering", for which both operands must be of an arithmetic

Computer Science 301 - 2017 - Practical 7 solutions 6

type, ruling out pointer and Boolean operands.

The preceding discussion relates to expression compatibility. However, assignment compatibility is more
restrictive. Assignments of the form

integer = integer expression
integer = character expression
character = character expression

are allowed, but

character = integer expression

is not allowed. This may be checked with the aid of a further helper method, Assignable ().

* static bool Assignable(int typeOne, int typeTwo) {

* // Returns true if a variable of typeOne may be assigned a value of typeTwo

* return typeOne == typeTwo /] obvious

* || typeOne == Types.intType && typeTwo == Types.charType // one way - can assign char to int
* || typeOne == Types.noType // concession for bad type

* || typeTwo == Types.noType // concession for bad type

* | IsArray(typeOne) && typeTwo == Types.nullType; // array pointers

*

} // Assignable

The Assignable () function call now takes the place of the Compatible () function call in several places in
OneVar and AssignmentStatement where, previously, calls to Compatible () might have sufficed.

A casting mechanism is now needed to handle the situations where it is necessary explicitly to convert integer
values to characters, so that

(char) integer // returns the character with internal value of integer
(int) character // returns an integer with internal value for character

is allowed, and for completeness, so are the following redundant operations

(int) integer
(char) character

The cast operator can only be applied to arithmetic values, and casting may be seen as an operation whereby the
type of an operand is "changed" for the purposes of semantic analysis of expressions, without seemingly needing
code to change its value (but read on).

Some students may make the mistake of thinking that a cast can only appear in the context of a simple assignment,
that is, must be restricted to being found in statements like:

char ch;
int x, y, z;
ch = (char) SomeExpression
ch = (char) x +y + z; // understood wrongly to "mean"
/] ch = (char) (x +y + z); [/ a character assignment

but that is not the case. Casting applies only to a component of an Expression, so that the above "means":

ch = ({(char) x) +y + z; // an incorrect integer assignment again
// integer expressions are incompatible with
// character target designators

and as a further example, stressing the importance of thinking of casting as belonging within expressions, it is
quite legal to write

bool b = 'A' < (char) (x + (int) 'B') ;

Of course, the syntax in the C family is crazy (in spite of what some of my colleagues think). It would have been
infinitely better to have been allowed to use a notation like

Computer Science 301 - 2017 - Practical 7 solutions 7

bool b = 'A' > char(x + int('B'));

but it would not have been possible to define that form easily (do you see why? It might be an exam question;
you never know my devious mind).

To get it right requires that casting be handled within the Primary production, which has to be factored to deal
with the potential LL(1) trap in distinguishing between components like " (" "int" ") ", " (" "char" ")"
and " (" Expression ")":

Casting operations are accompanied by a type check (you cannot cast "anything", only arithmetic values) and a
type conversion (you fool the compiler into it is dealing with a different type for this component of an
expression). However, since the PVM stores both characters and integers as 32 bit values, for safety, the
(char) cast should generate code for checking that the run-time integer value to be "converted" lies within the
range 0 .. 255 (the 8-bit ASCII character set). And let's not forget to introduce the functions for cap (ch) ,
low(ch) and isLet (ch).

Factor<out int type> (. type = Types.noType;
int size;
DesType des;
ConstRec con;
bool upper = true; .)
= (IF (IsCall(out des)) /] |* use resolver to handle LL(1) conflict */
identifier (. if (des.type == Types.voidType)
SemError("void function call not allowed here");
CodeGen.FrameHeader(); .)
"(" Arguments<des> ")" (. CodeGen.Call(des.entry.entryPoint); .)
| Designator<out des> (. switch (des.entry.kind) {
case Kinds.Var:
CodeGen.Dereference();
break;
case Kinds.Con:
CodeGen.LoadConstant(des.entry.value);

break;
default:
SemError("wrong kind of identifier");
break;
YD
) (. type = des.type; .)
| Constant<out con> (. type = con.type;
CodeGen.LoadConstant(con.value); .)
| "new" BasicType<out type> (. typet++; .)
"[" Expression<out size> (. if (lIsArith(size))

SemError("array size must be integer");
CodeGen.Allocate(); .)
II]II
| uen
(Ilcharll II)II
Factor<out type> (. if (1IsArith(type))
SemError("invalid cast");
else type = Types.charType;
CodeGen.CastToChar(); .)
| Hiptn mym
Factor<out type> (. if (lIsArith(type))
SemError("invalid cast");
else type = Types.intType; .)
| Expression<out type> ")"
)
| (¢ "cap" | " Low" (. upper = false; .))
"(" Expression<out type> (. if (type != Types.charType)
SemError("character argument needed");
type = Types.charType;
CodeGen.ChangeCase(upper); .)
wyn
| "isLet"
"(" Expression<out type> (. if (type != Types.charType)
SemError("character argument needed");
type = Types.charType;
CodeGen.IsLetter(); .)

LN I I B I I I B

uyn

Strictly speaking the above grammar departs slightly from the C family version, where the casting operator is
regarded as weaker than the parentheses around an Expression, but in practice it makes little difference.

Various of the other productions need modification. The presence of an arithmetic operator correctly placed

Computer Science 301 - 2017 - Practical 7 solutions 8

between character or integer operands must result in the sub-expression so formed being of integer type (and
never of character type). So, for example:

AddExp<out int type> (. int type2;
int op; .)
= MultExp<out type>
{ Addop<out op>
MultExp<out type2> (. if (lisArith(type) || lisArith(type2)) <
SemError("arithmetic operands needed");
type = Types.noType;
b
* else type = Types.intType;
CodeGen.BinaryOp(op); .)

Similarly a prefix + or - operator applied to either an integer or a character creates a new value, but always
deemed to be of integer type (so -'a' yields the integer -96).

The extra code generation method we need is as follows:

public static void CastToChar() {

// Generates code to check that TOS is within the range of the character type
Emit(PVM.i2¢c);

} // CodeGen.CastToChar

and within the switch statement of the Emulator method we need:

case PVM.i2c: /] check (char) cast is in range
if (memLCcpu.spl < O || memCcpu.spl > maxChar) ps = badval;
break;

The interpreter has another opcode for checked storage of characters, but if the i2¢ opcodes are inserted correctly
it appears that we might never really need stoc. Think about this in a quiet moment.

case PVM.stoc: /]| character checked store
tos = Pop(); adr = Pop();
if (InBounds(adr))
if (tos >= 0 && tos <= maxChar) mem[adrl = tos;
else ps = badval;
break;

Task 11 - Make the change; enjoy life; upgrade now to Parva++ (Ta-ra!)

It might not at first have been obvious, but I fondly hoped that everyone would realize that this extension is
handled at the initial level by clever modifications to the AssignmentOrCall production, which has to be factorized
in such a way as to avoid LL(1) conflicts. The code below handles this task (including the tests for assignment
compatibility and for the the operators to be applicable only to arithmetic variables rather than constants or
pointer variables, tests that several students omitted). It generates the few new machine opcodes introduced in
Practical 2. There was some awful confusion in some submissions which attempted, incorrectly, to tack the ++ or
-- operator in front and/or behind a designator in the Designator production. Where did that idea come from?

AssignmentOrCall (. int expType;
DesType des;
bool inc = true; .)
= ((IF (IsCall{out des)) /] |* use resolver to handle LL(1) conflict */
identifier (. if (des.type != Types.voidType)
SemError("non-void function call not allowed here");
CodeGen.FrameHeader(); .)
"(" Arguments<des> ")" (. CodeGen.Call(des.entry.entryPoint); .)
Designator<out des> (. if (des.entry.kind != Kinds.Var)
SemError("cannot assign to " + Kinds.kindNames[des.entry.kindl);

SemError("arithmetic type needed");
CodeGen.IncOrDec(inc, des.type); .)

* (AssignOp

* Expression<out expType> (. if (lAssignable(des.type, expType))

* SemError("incompatible types in assignment");
* CodeGen.Assign(des.type); .)

* | ¢ maan "-=n (. inc = false; .)

*) (. if (!IsArith(des.type))

*

*

*

*

Computer Science 301 - 2017 - Practical 7 solutions 9

)

[€ v | v (. inc = false; .)
) Designator<out des> (. if (des.entry.kind != Kinds.Var)
SemError("variable designator required");
if (!IsArith(des.type))
SemError("arithmetic type needed");
CodeGen.IncOrDec(inc, des.type); .)

* Ok F ¥ ¥ ¥

) WEAK ";"

The extra code generation routine is straightforward, but note that the operators are different for integers and for
characters (for which range checks should be incorporated at run time).

public static void IncOrDec(bool inc, int type) {
/| Generates code to increment the value found at the address currently
/] stored at the top of the stack.
// If necessary, apply character range check
* if (type == Types.charType) Emit(inc ? PVM.incc : PVM.decc);
* else Emit(inc ? PVM.inc : PVM.dec);
} // codeGen.IncOrDec

As usual, the extra opcodes in the PVM make all this easy to achieve at run time. Some submissions might have
forgotten to include the check that the address was "in bounds". I suppose one could argue that if the source
program were correct, then the addresses could not go out of bounds, but if the interpreter were to be used in
conjunction with a rather less fussy assembler (as we had in earlier practicals) it would make sense to be cautious.

case PVM.inc: /] integer ++
adr = Pop();
if (InBounds(adr)) memLadrl++;
break;

case PVM.dec: /] integer --

adr = Pop();
if (InBounds(adr)) memLladrl--;
break;

case PVM.incc: /] character ++ (checked)
adr = Pop();
if (InBounds(adr))
if (mem[adrl < maxChar) mem[adrl++;
else ps = badVal;
break;

case PVM.decc: // character -- (checked)
adr = Pop();
if (InBounds(adr))
if (memCadrl > 0) mem[adrl--;
else ps = badval;
break;

Task 12 - Let's operate like C#

Parva is looking closer to C/C++/C# with each successive long hour spent in the Hamilton Labs. Seems a pity not
to get even closer. The operator precedences in Parva as supplied resemble those in Pascal and Modula, where
only four basic levels are supported. Task 12 required you to modify Parva so that it would use a precedence
structure based on that in C++, C# or Java, for which a suggested set of (unattributed) productions was supplied.

In general this was not well done, and I received several badly hacked and incomplete solutions suggesting that
their authors had given up on what was a straightforward, if slightly tedious exercise. A few explicit comments
follow:

The weakest operators are or and and. These insist on Boolean operands, and if such an operation is performed,
it will result in a Boolean subexpression. Note how the short circuit "jumping code" is generated, and that there
is no mention of the rest of the MulOp operators from the original grammar!

Expression<out int type> (. int type2;
Label shortcircuit = new Label(!known); .)
= AndExp<out type>
{ "||" (. CodeGen.BooleanOp(shortcircuit, CodeGen.or); .)
AndExp<out type2> (. if (!IsBool(type) || IIsBool(type2))
SemError("Boolean operands needed");
type = Types.boolType; .)
b (. shortcircuit.Here(); .)

Computer Science 301 - 2017 - Practical 7 solutions 10

AndExp<out int type>

= EqglExp<out type>
{ II&&II
EqlExp<out type2>

. CodeGen.BooleanOp(shortcircuit, CodeGen.and);

int type2;

Label shortcircuit = new Label(!known); .)

if (1IsBool(type) || !IsBool(type2))
SemError("Boolean operands needed");
type = Types.boolType; .)

. shortcircuit.Here(); .)

)

At the next level of precedence come the comparisons for equality/inequality which can be applied to compatible
operands (essentially of the same type, or perhaps arithmetic (int/char) type), and the comparisons for "ordering"

which can only be applied to arithmetic operands (int/char).

Again, if these operators appear, the resulting

subexpression yields a value of the Boolean type. In the C family there are two levels of precedence to handle

what in the Pascal/Modula system was accomplished all at the same level.

Notice that no use has been made of

the Types.noType type in these last four productions - effectively the application of any of these operators is
coerced to generating a Boolean expression regardless. Do you suppose this is a good idea?

EglExp<out int type>
= RelExp<out type>

[EqualOp<out op>
Re LExp<out type2>

1
RelExp<out int type>
= AddExp<out type>

[RelOp<out op>
AddExp<out type2>

int type2;
int op; .)

if (!Compatible(type, type2))
SemError("incomparable operand types");

CodeGen.Comparison(op, type);

type = Types.boolType; .)

int type2;
int op; .)

if (1IsArith(type) || !IsArith(type2))
SemError("incomparable operand types");

CodeGen.Comparison(op, type);

type = Types.boolType; .)

The rest of the expression hierarchy deals mainly with arithmetic operators. AddExp and MulExp introduce the
possibility of pretending that an incorrect subexpression is of the fictitious Types.noType (do you remember
why?) and require their operands to being arithmetic (int/char), normally returning an integer subexpression.

AddExp<out int type>
= MultExp<out type>

{ Addop<out op>
MultExp<out type2>

> .
MultExp<out int type>
= Factor<out type>

{ MulOp<out op>
Factor<out type2>

int type2;
int op; .)

if (!IsArith(type) || IIsArith(type2)) {
SemError("arithmetic operands needed");
type = Types.noType;

X

else type = Types.intType;

CodeGen.BinaryOp(op); .)

int type2;
int op; .)

if (1IsArith(type) || !IsArith(type2)) <
SemError("arithmetic operands needed");
type = Types.noType;

b

else type = Types.intType;

CodeGen.BinaryOp(op); .)

Too many submissions did not get the production involving the prefix operators anywhere near correct.
at a rather different place in the grammar from where it was found in the Pascal/Modula grammar:

Factor<out int type>
= Primary<out type>
"+" Factor<out type>

Computer Science 301 - 2017 - Practical 7 solutions

. type = Types.noType; .)

if (1IsArith(type)) {
SemError("arithmetic operand needed");
type = Types.noType;

b

else type = Types.intType; .)

11

It appears

"-" Factor<out type> (. if (!IsArith(type)) {
SemError("arithmetic operand needed");
type = Types.noType;

b
else type = Types.intType;
CodeGen.NegateIlnteger(); .)

"I" Factor<out type> (. if (!IsBool(type))

SemError("Boolean operand needed");
type = Types.boolType;
CodeGen.NegateBoolean(); .) .

Finally, Primary is essentially the old Factor but with the code for "prefix not" removed. You might like to
consider whether the casting operator should be applied to a Factor (as here) or restricted to a Primary, rather
more like what was suggested earlier. Does it make any practical difference?

Primary<out int type> (. type = Types.noType;
int size;
DesType des;
ConstRec con;
bool upper = true; .)
= (IF (IsCall(out des)) /] |* use resolver to handle LL(1) conflict */
identifier (. if (des.type == Types.voidType)
SemError("void function call not allowed here");
CodeGen.FrameHeader(); .)
"(" Arguments<des> ")" (. CodeGen.Call(des.entry.entryPoint); .)

| Designator<out des> (. switch (des.entry.kind) {
case Kinds.Var:
CodeGen.Dereference();
break;
case Kinds.Con:
CodeGen.LoadConstant(des.entry.value);
break;
default:
SemError("wrong kind of identifier");
break;
YD
) (. type = des.type; .)
| Constant<out con> (. type = con.type;
CodeGen.LoadConstant(con.value); .)

| "new" BasicType<out type> (. typet++; .)
"[" Expression<out size> (. if (lIsArith(size))
SemError("array size must be integer");
CodeGen.Allocate(); .)
II] n

wen
("Char" II)II
Factor<out type> (. if (lIsArith(type))
SemError("invalid cast");
else type = Types.charType;
CodeGen.CastToChar(); .)
| Hiptt wyn
Factor<out type> (. if (IIsArith(type))
SemError("invalid cast");
else type = Types.intType; .)
| Expression<out type> ")"
)

| (¢ "cap" | "Llow" (. upper = false; .))
"(" Expression<out type> (. if (type != Types.charType)
SemError("character argument needed");
type = Types.charType;
CodeGen.ChangeCase(upper); .)
nyn

| "isLet"
"(" Expression<out type> (. if (type != Types.charType)
SemError("character argument needed");
type = Types.charType;
CodeGen.IsLetter(); .)
II)II

Of course, the productions defining the various grouping of operators at a given level are slightly different:

AddOp<out int op> (. op CodeGen.nop; .)
= R (. op = CodeGen.add; .)

Computer Science 301 - 2017 - Practical 7 solutions 12

| " (. op = CodeGen.sub; .) .

MulOp<out int op>
- e

(. op = CodeGen.nop; .)
(. op = CodeGen.mul; .)
u/u (. op = CodeGen.div; .)
gt (. op = CodeGen.rem; .)

EqualOp<out int op> (. op = CodeGen.nop; .)
= ==t (. op = CodeGen.ceq; .)
| w=n (. op = CodeGen.che; .) .

RelOp<out int op> (. op = CodeGen.nop; .)

= g (. op = CodeGen.clt; .)
=" (. op = CodeGen.cle; .)
" (. op = CodeGen.cgt; .)
"=t (. op = CodeGen.cge; .) .

If you did not do so before, you might like to think what advantages or disadvantages are to be found in having
fewer (Pascal-like) or more (C#-like) levels of precedence in the Expression hierarchy.

Task 13 (Bonus) - Generating tighter PVM code

Way back in earlier exercises we added some specialized opcodes like LDC_1, LDA 2 and so on to the PVM.
The problem asked for these to be used, and for a SO pragma or -o command line option to be added to the
system so that these "optimized" opcodes would be used only on request (or not used on request - suit yourself).

The extensions to the grammar and frame files were illustrated earlier.

The code generator can respond to the pragma setting with various routines modified on the following lines (it
does not seem necessary to give them all in full at this point). However, some of these optimized opcodes are,
when you think about it, of precious little use for the multifunction compiler. The first four elements of a stack
frame are used for "housekeeping" - RV, DL, RA and SM, and the first parameter or local variable has an offset
of 4 from the frame pointer FP. So it would be a better idea to introduce several more of these special codes, as
in the extract below, and this will be done in the source code in future.

public static void LoadAddress(Entry var) {
/| Generates code to push address of local variable with known offset onto evaluation stack
if (var.level == Entry.global)
if (Parser.optimize)
switch (var.offset) {
case 0: Emit(PVM.ldg_0); break;

case 1 Emit(PVM.ldg_1); break;
case 2 Emit(PVM.ldg_2); break;
case 3 Emit(PVM. ldg_3); break;
case &4 Emit(PVM. ldg_4); break;
case 5: Emit(PVM.ldg_5); break;
case 6: Emit(PVM.ldg_6); break;
case 7: Emit(PVM.ldg_7); break;
case 8: Emit(PVM.ldg_8); break;
default: Emit(PVM.ldga); Emit(var.offset); break;
b
else {
Emit(PVM. ldga); Emit(var.offset);
X

else // local variables
if (Parser.optimize)
switch (var.offset) {
case 0: Emit(PVM.lda_0); break;

case 1 Emit(PVM.lda_1); break;
case 2 Emit(PVM.lda_2); break;
case 3 Emit(PVM. lda_3); break;
case 4 Emit(PVM. lda_4); break;
case 5: Emit(PVM.lda_5); break;
case 6: Emit(PVM.lda_6); break;
case 7: Emit(PVM.lda_7); break;
case 8: Emit(PVM.lda_8); break;
default: Emit(PVM.lda); Emit(var.offset); break;

X

else {

Emit(PVM. lda); Emit(var.offset);

X
} // codeGen.LoadAddress

Computer Science 301 - 2017 - Practical 7 solutions 13

Task 14 - If you survive this I'll pass you a reference so that employers will know your value

As supplied, the Parva compiler could only pass parameters "by value", and you were challenged to extend it on
the lines of the approach adopted in C#, allowing you to write impressive methods like

void Swap(ref int i, ref int j) {
// Interchange values of i and j
int k = i;

i=73;
j=k;
} /] suap

void Main() {
int a, b;
readLine(a, b);
Swap(ref a, ref b);
writeLine(a, b);

¥ // main

This is remarkably easy to do. We need an extra field in the Entry class which will normally have the value of
false, and will be true only for formal parameters that were qualified with the ref keyword at their point of
declaration.

class Entry {
// ALl fields initialized, but are modified after construction (by semantic analyser)

; // functions
false; // true only for parameters passed by reference
new Label(false);
null;

public int nParams
* public bool byRef
public Label entryPoint
public Entry firstParam
} // end Entry

public int kind = Kinds.Var;

public string name = "

public int type = Types.noType;

public int value = 0; // constants

public int offset =0; // variables

public bool declared = true; // true for all except sentinel entry
public Entry nextInScope = null; // Link to next entry in current scope

Where needed, the byRef field is set true within the OneParam production:

OneParam<out Entry param, Entry func>
= (. param = new Entry();
param. level = Entry.local;
param.kind = Kinds.Var;
param.offset = CodeGen.headerSize + func.nParams;
func.nParams++; .)

* L "ref" (. param.byRef = true; .)
1 Type<out param.type> (. if (param.type == Types.voidType)
SemError("parameters may not be of void type"); .)
Ident<out param.name> (. Table.Insert(param); .)

When a function activation is in progress, a choice is made within the OneArg production between pushing an
address (for an argument denoted by a designator and qualified by ref for a reference argument) or the value of
an expression (for a value argument). Note the careful check that the correct passing mechanism is being selected,
as well as the assignment compatibility checks between formal and actual parameters. Finally, your attention is
drawn to the lookout for null entries in the parameter list.

OneArg<Entry fp> (. int argType;
DesType des; .)
= (Expression<out argType> (. if (fp I= null) {

if (!Assignable(fp.type, argType))
SemError("argument type mismatch");

* if (fp.byRef)

* SemError("this argument must be passed by reference");
YD

* "ref" Designator<out des> (. if (fp I= null) {

if (!Assignable(fp.type, des.type))
SemError("argument type mismatch");
* if (!fp.byRef)
* SemError("this argument must be passed by value");
YD

If a variable has been passed "by reference" (that is, where the actual argument is its address rather than its value)

Computer Science 301 - 2017 - Practical 7 solutions 14

then, when the Designator parser encounters the corresponding formal parameter within the function body, an
extra dereference opcode must be generated, to be able to follow the address found as the argument to find the
address of the actual variable being referenced:

Designator<out DesType des> (. string name;
int indexType; .)
= Ident<out name> (. Entry entry = Table.Find(name);

if (lentry.declared)
SemError("undeclared identifier");

des = new DesType(entry);

if (entry.kind == Kinds.Var)
CodeGen. LoadAddress(entry);

* if (entry.byRef)
* CodeGen.Dereference(); .)
L " (. if (IsArray(des.type)) des.type--;

else SemError("unexpected subscript");
if (des.entry.kind != Kinds.Var)
SemError("unexpected subscript");
CodeGen.Dereference(); .)
Expression<out indexType> (. if (lIsArith(indexType))
SemError("invalid subscript type");
CodeGen.Index(); .)

nyn

The following snapshots attempt to clarify the two modes of parameter passing for a very simple case. Firstly,
consider the situation where parameter passing is by value. The source code is given, as is most of the PVM
code, and a sequence of snapshots indicates the state of the stack frames as the execution takes place:

void One(int p) { LDA p ; p is a local variable
/ Passing by value LDV
int j =5, k=12, L = 'a'; PRNI ; write(p) (14)
write(p); LDA p ; address of locaL/parameter p (189)
p=73; LDA j
} // function LDV
STO ;p =3 (5
RETV ; return
void Main() { FHDR ; allocate frame header for call to One
inta=6, b=8, c=a+b; LDA ¢
One(c); LDV ; push value of ¢ (14) as the value for parameter p
write(c); CALL One
¥ // main LDA ¢
LDV
PRNI ; write(c) (still 14)
c b a Main frame header

Main initializes
T T T T T T T T T T Tl o] o] mow]otment
... 196

offsets from FP [5 4 3 2 1 0
actual 186 187 188 189 190 191 192 193| 194 195 196 197 198 199 200
for illustration SP FP

p One frame header c b a Main frame header

Main activates
' ‘ I ' ‘ 14) SM ' RA ‘ DL] RV " 14 ‘ 8] 6 ' SM ‘ RA ' DL ' RV H One, pushing the
value of ¢ as the

offsets from FP 4 3 2 1 0 6 5 4 3 2 1 0 arg corresponding
actual 186 187 188 189 190 191 192 193| 194 195 196 197 198 199 200 to p before calling
SP FP One to take control
L k j p One frame header c b a Main frame header

One is called and
initializes local
j, kand L in 186

[Toe [ve | 5[[on o o Jav 0] o] o on]wn[o]w]

offsets 7 6 5 4 3 2 1 0 6 5 4 3 2 1 0 ... 188
actual 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
SP FP
L k j p One frame header ¢ b a Main frame header
To print the value
’ ' ‘ 96 | 12 ' 5 ‘ 14 l SM ' RA ‘ DL l RV " 14 ‘ 8 l 6 ' SM ‘ RA | DL ' RV H of formal param p
One dereferences
offsets 7 6 5 4 3 2 1 0 6 5 4 3 2 1 0 Llocation 189 to get 14
actual 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
SP FP

Computer Science 301 - 2017 - Practical 7 solutions 15

L

k

j

p One frame header

[

b a Main frame header

L

[os [] 5] 5 on [[o [w [re] 5] ¢ on []]

offsets 5 4 3 2 1 0 6 5 4 3 2 1 0
actual 186 187 188 189 190 191 192 193| 194 195 196 197 198 199 200
SP FP
c b a Main frame header
N B B B B B Y A EA B N
offsets 6 5 4 3 2 1 0
actual 186 187 188 189 190 191 192 193| 194 195 196 197 198 199 200
SP

FP

One assigns j to
formal parameter

p at 189. Arg ¢ in
Main is not affected.

One relinquishes
control and its stack
frame is dscarded as
Main resumes control

Secondly, consider the situation where parameter passing is by reference. The source code is given, as is most of
the PVM code, and a sequence of snapshots indicates the state of the stack frames as the execution takes place:

FP

FP

Main initializes
a, b and ¢ in 194
... 196

Main activates One,
pushing the address
of local ¢ as the
arg corresponding

to formal parameter
p before calling One

One is called and

initializes local

j, kand L in 186
.. 188

To print the value of
formal parameter one

first dereferences
location 189 to obtain
address 194 and then
dereferences 194 to get 14

One assigns the value
of local j to variable
¢ at the address 194
still stored in formal
parameter p

One relinquishes
control and its stack
frame is dscarded as
Main resumes control

void One(ref int p) { LDA p ; p is a local variable storing the address of ¢
// Passing by reference LDV ; find the address stored in p
int j =5, k=12, L = "'a'; LDV ; dereference to find the value of variable ¢
write(p); PRNI ; write(p)
p=3j; LDA p ; address of parameter p (189)
X // function LDV ; find the address stored in formal parameter p (194)
LDA j
LDV ; p = j (equivalent to ¢ = j)
STO
void Main() { FHDR ; allocate frame header for call to One
inta=6,b=8,c=a+b; LDA ¢ ; push address of ¢ (194) as the value for parameter p
One(ref ¢); CALL One
write(c); LDA ¢
¥ // Main LDV
PRNI ; write(c)
c b a Main frame header
(T T T T T T T [[elelelmlulonle]
offsets 6 5 4 3 2 1 0
actual 186 187 188 189 190 191 192 193| 194 195 196 197 198 199 200
for illustration SP
p One frame header c b a Main frame header
T T [T oo m o][] o] 6] w o |w]
offsets 4 3 2 1 0 6 5 4 3 2 1 0
actual 186 187 188| 189 190 191 192 193| 194 195 196 197 198 199 200
SP FP
L k j p One frame header ¢ b a Main frame header
T Toe [2] s oe] on [wn o [av e] 5] o] n]wa]o]]
offsets 7 6 5 4 3 2 1 0 6 5 4 3 2 1 0
actual 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
SP FP
L k j p One frame header c b a Main frame header
T e [ve] 5w on oo [e] o] o on] o]
offsets 5 4 3 2 1 0 6 5 4 3 2 1 0
actual 186 187 188 189 190 191 192 193| 194 195 196 197 198 199 200
SP FP
L k j p One frame header c b a Main frame header
T Toe e] 5w on [w o [] 5] a] o o] o]
offsets 5 4 3 2 1 0 6 5 4 3 2 1 0
actual 186 187 188 189 190 191 192 193| 194 195 196 197 198 199 200
SP FP
c b a Main frame header
I I O B B B B 3 Y K E N EN
offsets 6 5 4 3 2 1 0
actual 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
SP
Computer Science 301 - 2017 - Practical 7 solutions 16

