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________________________________________________________________________________________________

The Concise Oxford English Dictionary may be used during this examination.

There are fourteen (14) questions. Answer ALL questions. Answers may be written in any medium except

red ink, and are preferably written in the spaces provided on the question paper. You may use pencil, and you

may also answer the questions by editing the supplied electronic copies of this material.

Hand in all material at the end of the examination.

A word of advice: The influential mathematician R.W. Hamming very aptly and succinctly professed that

"the purpose of computing is insight, not numbers".

Several of the questions in this paper are designed to probe your insight - your depth of understanding of

the important principles that you have studied in this course. If, as we hope, you have gained such insight,

you should find that the answers to many questions take only a few lines of explanation. Please don't write

long-winded answers.

Good luck!

(For the benefit of future readers of this paper, various free information was made available to the students 24

hours before the formal examination. This included an augmented version of "Section C" - a request to devise a

Parva compiler targetting the Parva Virtual Machine interpreter system studied in the course. This compiler was

to be extended to support simple string handling operations, missing from the original Parva compiler. Some 16

hours before the examination a complete grammar for such a compiler and other support files for building this

system were supplied to students, along with an appeal to study this in depth (summarized in "Section D").

During the examination, candidates were given machine executable versions of the Coco/R compiler generator,

the files needed to build the basic systems, access to a computer, and machine-readable copies of the questions.)

DO NOT OPEN THIS PAPER UNTIL YOU ARE TOLD TO DO SO



January 2018 - Computer Science 301 - Paper 2

Section A: Conventional questions [ 100 marks ]

QUESTION A1 [ 2 + 4 = 6 marks]

(a) What distinguishes a native code compiler from an interpretive compiler? [2 marks]

(b) Suggest (with some explanation) one property of native code compilation that is claimed to offer an
advantage over interpretive compilation, and also one property of interpretive compilation that is
claimed to offer an advantage over native code compilation. [4 marks]
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QUESTION A2 [ 6 marks ]

What distinguishes a concrete syntax tree from an abstract syntax tree? Illustrate your answer by drawing
both forms of tree corresponding to the simple C# statement [6 marks]

a = ( b + c ) ;
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QUESTION A3 [ 6 + 10 = 16 marks ]

(a) Scope and Existence/Extent are two terms that come up in any discussion of the implementation of
block-structured languages. Briefly explain what these terms mean, and the difference between
them. [ 6 marks ]

(b) Scope rules for a simple block-structured language like Parva can be implemented by making use of
a suitable data structure for the symbol table. Show what such a structure might look like when a
top-down one-pass compiler reaches each of the points marked (1) and (2), if it compiles the
program below. [ 10 marks ]

void main () {
int x = 10, y, z;
while (x > 0) {
read(y);
bool isPosY = y > 0;
int z = x / 2;
x = x - y;
// ++++++++++++++++++++++++++++ point (1)

}
int a = x + y + z;
// ++++++++++++++++++++++++++++++ point (2)

}

Page 4 of 19



January 2018 - Computer Science 301 - Paper 2

QUESTION A4 [ 15 + 15 = 30 marks ]

(Cocol and recursive descent parsing) The following familiar Cocol code describes a set of EBNF
productions (of the form found in the PRODUCTIONS section of the grammar itself).

CHARACTERS
eol = CHR(10) .
space = CHR(32) .
control = CHR(0) .. CHR(31) .
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
digit = "0123456789" .
lowline = "_" .
printable = ANY - control .
nonSpace = printable - space .
noquote1 = ANY - "'" - control .
noquote2 = ANY - '"' - control .

TOKENS
nonterminal = letter { letter | lowline | digit } .
terminal = "'" noquote1 { noquote1 } "'" | '"' noquote2 { noquote2 } '"' .

PRODUCTIONS
EBNF = { Production } EOF .
Production = nonterminal "=" Expression "." .
Expression = Term { "|" Term } .
Term = Factor { Factor } .
Factor = nonterminal | terminal | "(" Expression ")"

| "[" Expression "]" | "{" Expression "}" .

(a) In the original notation known as BNF, productions took a form exemplified by

<Children> ::= Ε | <Child> <Children>
<Child> ::= David | Helen | Kayd | Jamie

The notation allowed the use of an explicit Ε. () Parentheses, [] brackets and {} braces were not
used. Non-terminals and terminals were distinguished by the presence or absence of <> angle
brackets, and a production was terminated at the end of a line.

Using the same CHARACTERS as in the above grammar, give the TOKENS and PRODUCTIONS
sections for a Cocol grammar that uses EBNF to describe BNF style productions (don't write a
BNF style grammar to descripe EBNF style productions). Use the above grammar as a guide, use
"eps" to represent Ε and use BNF as the goal symbol. [15 marks]
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(b) Assume that you have available a suitable scanner method called GetSym that can recognize the
terminals of this new grammar for BNF and classify them appropriately as members of the
following set:

{ EOFSym, noSym, EOLSym, termSym, nontermSym, definedBySym, epsilonSym, barSym }

Develop a hand-crafted recursive descent parser for recognizing a set of such BNF productions (not
the original EBNF production set given earlier), that is based on your description in (a). (Your

parser can take drastic action if an error is detected. Simply call methods like Accept and

Abort to produce appropriate error messages and then terminate parsing. You are not required

to write any code to implement the GetSym, Accept or Abort methods.) [15 marks]
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QUESTION A5 [ 2 + 2 + 6 + 6 = 16 marks ]

(Grammars) By now you should be familiar with RPN or "Reverse Polish Notation" as a notation that can
describe expressions without the need for parentheses. The notation eliminates parentheses by using
"postfix" operators after the operands. To evaluate such expressions one uses a stack architecture, such as
formed the basis of the PVM machine studied in the course. Examples of RPN expressions are:

3 4 + - equivalent to 3 + 4
3 4 5 + * - equivalent to 3 * (4 + 5)

In many cases an operator is taken to be "binary" - applied to the two preceding operands - but the
notation is sometimes extended to incorporate "unary" operators - applied to one preceding operand:

4 sqrt - equivalent to sqrt(4)
5 - - equivalent to -5

Here are two attempts to write grammars describing an RPN expression:

(G1) RPN = RPN RPN binOp
| RPN unaryOp
| number .

binOp = "+" | "-" | "*" | "/" .
unaryOp = "-" | "sqrt" .

and

(G2) RPN = number REST .
REST = [ number REST binOp REST | unaryOp ].
binOp = "+" | "-" | "*" | "/" .
unaryOp = "-" | "sqrt" .

(a) Give a precise definition of what you understand by the concept of an ambiguous grammar.
[2 marks]

(b) Give a precise definition of what you understand by the concept of equivalent grammars. [2 marks]

(c) Using the expression

15 6 - -

as an example, and by drawing appropriate parse trees, demonstrate that both of the grammars
above are ambiguous. [6 marks]
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(d) Analyse each of these grammars to check whether they conform to the LL(1) conditions, explaining
quite clearly (if they do not!) where the rules are broken. [6 marks]

QUESTION A6 [ 2 + 4 + 14 = 20 marks ]

(a) What distinguishes a context free grammar from a context sensitive grammar? [2 marks]

(b) The syntax of many programming languages is described by a context free grammar, and yet there
are properties of most programming languages that are context sensitive. Mention one such
property, and indicate briefly how this context sensitivity is handled in practical compilers.
[4 marks]
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(c) (Static semantics) A BYTE (Bright Young Terribly Eager) student has been nibbling away at
writing extensions to her first Parva compiler, while learning the Python language at the same time.
She has been impressed by a Python feature that allows one to write multiple assignments into a
single statement, as exemplified by

A, B = X + Y, 3 * List[6];
A, B = B, A; // exchange A and B
A, B = X + Y, 3, 5; // incorrect

which she correctly realises can be described by the context-free production

Assignment = Designator { "," Designator } "=" Expression { "," Expression } ";"

So far the students have not been shown how to generate code, but have been made aware of the
need for static semantic checking, as exemplified in the following simple production for an
Assignment (for very simple assignments only):

Assignment (. DesType des;
int type; .)

= Designator<out des> (. if (des.entry.kind != Entry.Var)
SemError("invalid assignment"); .)

"=" Expression<out int type>
";" .

Assuming that her Parva compiler will eventually support Boolean, integer and character types, what
static semantic checks will be needed to implement the Python-like language extension, and will these
entail any special techniques? The Cocol and C# code that is needed turns out to be quite intricate,
so you need not attempt to give it in detail unless you wish to do so. Give an answer on the lines of

Each of the Designators must ....
....

[14 marks]
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QUESTION A7 [ 3 + 3 = 6 marks ]

In the compiler studied in the course the following production was used to handle code generation for a
WhileStatement:

WhileStatement<StackFrame frame> (. Label startLoop = new Label(known); .)
= "while" "(" Condition ")" (. Label loopExit = new Label(!known);

CodeGen.BranchFalse(loopExit); .)
Statement<frame> (. CodeGen.Branch(startLoop);

loopExit.Here(); .) .

This generates code that matches the template

startLoop: Condition
BZE loopExit
Statement
BRN startLoop

loopExit:

Some authors contend that it would be preferable to generate code that matches the template

whileLabel: BRN testLabel
loopLabel: Statement
testLabel: Condition

BNZ loopLabel
loopExit:

Their argument is that in most situations a loop body is executed many times, and that the efficiency of the
system will be markedly improved by executing only one conditional branch instruction on each iteration.

(a) Do you think the claim is justified for an interpreted system such as we have used? Explain your
reasoning. [ 3 marks ]

(b) If the suggestion is easily implementable in terms of our code generating functions, show how this
could be done. If it is not easily implementable, why not? [ 3 marks ]
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Section B [ 80 marks ]

Please note that there is no obligation to produce a machine readable solution for this section. Coco/R and other

files are provided so that you can enhance, refine, or test your solution if you desire. If you choose to produce a

machine readable solution, you should create a working directory, unpack EXAM.ZIP, modify any files that you

like, and then copy all the files back onto an exam folder on the network.

Until yesterday, the Parva language that you have got to know so well had but three basic data types - integer,
boolean, and character. Although it made provision for the use of string constants in read and write

statement lists, it did not provide for the declaration and use of string variables:

void main() { $C+
string yourName, myName, theBoff;
myName = "Pat";
theBoff = myName;
read("What is your name? ", yourName);
write(myName, " is pleased to meet ", yourName);
if (myName != yourName)
writeLine(" (Our names are different)");

if (upper(myName) == upper(yourName))
writeLine("(Our uppercased names are the same)");

} // main
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Yesterday you made history when you were invited to develop a version of the Parva compiler that at last
incorporated a string type, one which should have been able to support the following (at least):

(a) Declare variables and arrays of type string;
(b) Assign constant strings to such variables, and values of string variables to other string variables;
(c) Read and write values for string variables;
(d) Compare two strings for equality or inequality;
(e) Provide a function that returns an UPPERCASE version of a string;
(f) Perform any necessary semantic and constraint checking on strings.

Later in the day you were provided with a sample solution to that challenge. Continue now to answer the
following unseen questions. Where possible, express your answers in code rather than loose discussion.

QUESTION B8 [ 5 marks ]

The compiler as provided does not allow you to declare strings as named constants. Show (preferably give
code) how this might be done, to allow, for example: [5 marks]

void main () {
const title = "The thin edge of the wedge";
string s = title;

} // main
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QUESTION B9 [ 10 marks ]

String handling libraries usually make provision for determining the length of a string. Show how to
extend the compiler, code generator and interpreter to allow for Parva code like

void main () {
string str;
read(str);
write(str, length(str) );

} // main

where the length(str) function can only be applied to a single parameter expression of string type.
[10 marks]
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QUESTION B10 [ 10 marks ]

What does the system currently output if a program like the following is compiled and run?

void main () {
string str; // declared
write(str); // but never properly defined

} // main

Explain your reasoning. [10 marks]
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QUESTION B11 [ 15 marks ]

The situation in B10 is actually symptomatic of a larger problem. Some implementations of languages
ensure that all variables not explicitly "initialised" at the point of creation are implicitly initialised to a
known value - say zero - anyway. How could your compiler be changed to incorporate this device - both
for simple variables and also for arrays (preferably give code)? [15 marks]
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QUESTION B12 [ 5 marks ]

Show how the system could be extended to report situations like that in B10 as runtime errors. [5 marks]
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QUESTION B13 [ 20 marks ]

The compiler currently allows for string comparisons for equality and inequality. Show the modifications
that are needed to support "ordering" comparisons, such as exemplified by [20 marks]

void main () {
string s1, s2; // declared
read(s1, s2); // initialised
if (s1 < s2) // compare
write(s1, " is lexically less than ", s2);

} // main
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QUESTION B14 [ 15 marks ]

String concatenation (joining) is another useful feature. Show how the compiler, code generator and
interpreter should be modified to allow for a program like [15 marks]

void main () {
string s1, s2; // declared
s1 = "start ";
s2 = "end"; // initialised
string joined = s1 + s2;
write(joined); // start end

} // main

END OF THE EXAMINATION QUESTIONS
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Section C

(Summary of free information made available to the students 24 hours before the formal examination.)

Candidates were provided with the basic ideas, and were invited to extend a version of the Parva compiler to
incorporate a string type.

It was pointed out that string types in languages that support them usually come with a complete support library of
useful functions, but to begin with they might limit themselves to a system that would do the following:

(a) Declare variables and arrays of type string;
(b) Assign constant strings to such variables, and values of string variables to other string variables;
(c) Read and write values for strings;
(d) Compare two strings for equality or inequality;
(e) Provide a function that returns an UPPERCASE version of a string.

They were provided with an exam kit, containing the Coco/R system, a working Parva compiler that handles
integer, character and boolean types, along with a suite of simple, suggestive test programs. They were told that
later in the day some further ideas and hints would be provided.

Section D

(Summary of free information made available to the students 16 hours before the formal examination.)

A complete Parva compiler, incorporating one approach to the basic provision of a simple string type, was
supplied to candidates in a later version of the examination kit. They were encouraged to study it in depth and
warned that questions in Section B would probe this understanding; few hints were given as to what to expect,
other than that they might be called on to comment on the solution, and perhaps to make some modifications and
extensions. They were also encouraaged to spend some time thinking how any other ideas they had during the
earlier part of the day would need modification to fit in with the solution kit presented to them.

END OF THE EXAMINATION PAPER
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