
THE PROGRAMMING LANGUAGE PARVA (Level 2)

P.D. Terry, Computer Science Department, Rhodes University

27 June 2003

1 Introduction

Parva is a minimal toy programming language that evolved from Clang (Terry, 1997). Its features are
deliberately chosen as a mixture of those found in Pascal and C, so as to support introductory courses in compiler
development.

This specification of level 2 of Parva (which supports multiple function declarations and global variables and
constants) is modelled on the Modula-2 and Oberon specifications (Wirth (1985), Reiser and Wirth (1992)), but is
not intended as a programmer's tutorial. It is intentionally kept concise. Its function is to serve as a reference for
programmers, implementors, and manual writers. What remains unsaid is mostly left so intentionally, either
because it is derivable from stated rules of the language, or because it would require a general commitment in the
definition when a general commitment appears unwise.

2 Syntax

A language is an infinite set of sentences, namely the sentences well formed according to its syntax. Each
sentence is a finite sequence of symbols from a finite vocabulary. The vocabulary of Parva consists of identifiers,
numbers, strings, operators, delimiters, and comments. These are called lexical symbols and are composed of
sequences of characters. (Note the distinction between symbols and characters.)

To describe the syntax the variant of extended Backus-Naur formalism called Cocol/R is used. This is described
in full detail elsewhere (Terry, 2005). Brackets [and] denote optionality of the enclosed sentential form, and
braces { and } denote its repetition (possibly 0 times). Syntactic entities (non-terminal symbols) are denoted by
English words expressing their intuitive meaning. Symbols of the language vocabulary (terminal symbols) are
denoted by strings enclosed in quote marks (these include words written in lower-case letters, so-called reserved
key words).

3 Vocabulary and representation

The representation of symbols in terms of characters is defined using the ASCII set. Symbols are identifiers,
numbers, string literals, character literals, operators, delimiters, and comments.

The following lexical rules must be observed. Blanks and line breaks may appear between symbols but must not
occur within symbols (except that line breaks are allowed in comments, and blanks are allowed within string and
character literals). They are ignored unless they are essential for separating two consecutive symbols. Capital
and lower-case letters are considered as being distinct.

�������������
	
�
�
�� � ���������������
�
��������� ����!"� ��������#�$����
��%�&�'�()%*� � ���������+�,�
�-���
�.�)/0���,�
� 10'�'210(�43 ��5
�
6
	�798
��:�;�<�=2>�?�@�A2B��
���
C�D�E�F�G�H ������I�1�2J�!�K�L
�.�NM
&�%�O�P.(2��'9Q�R
S�T
U�V�3 �
IWKXJ.K�' �43 �.�2$�/�Y�Z�[�\�]�# 3 �
��'�(�K9&�J � ! � ��?�G�^`_ 3 _a^ ��%�&0'�()%*� ^ ���������+�N����! �
��!
�0(� ! � ��?�G�^ 3 _ 3 ^ ��%�&0'�()%*� ^ ���������+�N����! �
O�(
K�&0'9�
�b�N1"� ��?�G�^ ��%�&�'�(X%c� �

��@�>
>�	�?
�
�479��@�> 39d�d�3 ��@ ��
��@�>
>�	�?
�
�479��@�> 39d�eW3 ��@ 3Xe�d�3
:28�?�@���	f��������#+�,�
�-�����.�2�2/W�

Comments may be inserted between any two symbols in a program. They are arbitrary character sequences either
opened by the bracket /* and closed by */, or opened by the bracket // and closed at the end of that line.
Comments do not affect the meaning of a program.

��@�<�	�?
�
KXI�1�&0'
K20K�1�(� �N10'�'21�(� � 10'�'210(�� IWK)JWK�'�� 3��+3�� �
&
Q
M��
10(� I.KXJ.K�' � I.KXJWK�'�� �
��'�(�K9&�J = K�' � _ 3 _ � ��'�(�K9&�J � !��a�
�������+�N����!,O0(
K9&�'2���b� 1	� _ 3 _ �
��!
�0(= K�' �43 _ 3 � ��!
�0(� ! �a�
�������+�N����!,O0(
K9&�'2���b� 1 � 3 _ 3 �

Identifiers are sequences of letters and digits. The first character must be a letter.

Examples:

T �����
& A ��()R�� 8 10'�� � U�M
��%*� �K
(2��' = 10'
'91�(

Numbers are (unsigned) integers. Integers are sequences of digits, and have their usual decimal interpretation.
(The implementation uses 32-bit arithmetic.)

String literals are sequences of zero or more characters or escape sequences enclosed in quote marks ("). The
number of characters in a string is called the length of the string. Strings can be used only in fairly limited
contexts. A string literal may not extend over a line break in the source text.

Character literals are denoted by a single graphic character or a single escape sequence between single quote
marks ('). Character literals denote the integer value of the corresponding ASCII character.

Within a string or character literal the following escape sequences denote non-graphical characters

 � 5 ��������O
����1 �������.�)]W�
�
 ' � %W(�K2V2%�&0'9�b� '2�
� �������.� #+�
�
 & = K9&�1,�1
1�I �������.�2���+���
 7 %W(�M,�1
1�I �������.�2��$.���
 (� ��(�(
K���J�14(91�'2Q�(�& �������.�2�2/W���
 3 B Q�%�'2��'�KX%�&,M���(�� �������.�)/�Y.���
 _ � O�%���'
(X%�O�!
1 �������.�)/�#+���
 T � S�!�1�(�1 T K2� &�%�' ��� '� &��f(-%W(� I�1�&�%.'91�� T K�'���1b��

(Within a string \n denotes the sequence Carriage return, Line feed, on Microsoft systems.)

Examples:

3 A �0(XR�� S.K��
� �
1
��%�M
1 > ��J�&
��3 3 � 1,����K)I
 32�%�%
I��
 3 �
&�I �1�I�� �9K9&�1
 &03

Operators and delimiters are the special characters, character pairs, or reserved keywords listed below. The
reserved words cannot be used in the role of identifiers. Those in parentheses are not currently keywords, but are
reserved for use in later extensions .

��� � ��� � ��%�%*� � I�1���
Q+��' � !��b�X' (�10'9Q�(9&
��� � � � � � �0(91
��� � � I
% � K9 � ��S.K�'���! �
e � � ��� � ������1 � � 1b����1 � K�&0' '
(9Q�1
d � � � ^�^ � ��!
��(� ��b����1 &�1�S R�%WK)I
� � � � ��%�&���' � �%W(� &�Qb��� S�!�K0� 1
� � � � � � �2%�&0'
K9&�Q
1 � � J
%.'X% � (�1
��I S.(
K�'21
^ ���

4 Programs

A program is a collection of declarations of functions, constants and variables (whose values are said to constitute
the program state). Sequences of statements within the functions alter the program state.

A �0(XR��,� � 6 1���� ��(��0'
KX%�&	� �

5 Declarations and scope rules

Every identifier occurring in a program must be introduced by a declaration. Declarations also serve to specify
certain permanent properties of an entity, such as its type, and whether it is a constant, a variable, a parameter, a
function, or an array.

Parva-2 (27 June 2003) 2

The identifier is then used to refer to the associated entity. This is possible only in those parts of a program that
are within the scope of the declaration. No identifier may denote more than one entity within a given scope.

We distinguish between identifiers declared outside of functions and those declared within functions. Identifiers
declared outside of functions (including the identifiers of the functions themselves) are said to possess global

scope, which extends textually from the point of declaration to the end of the program.

Identifiers declared within functions (including identifiers that denote formal parameters of those functions) have a
scope that extends textually from the point of the declaration to the end of the block (see 13.1) in which the
declaration has been made, and to which the entity denoted by the identifier is said to be local.

6 1
�+� �0(9��'�KX%�&�� � %�&���' 6 1
�+� �0(9�0'
KX%�&�� � D ��(6 1���� ��(��0'�K)%�&
��� 7 Q�&���'
KX%�& 6 1
�+� �0(9�0'
KX%�& �

6 Type

In general, a type determines the set of values which variables, constants and parameters declared to be of that
type may assume, and the operators that are applicable to such variables, constants and parameters.

� U�O
1 � 5 ���0K9� � U�O
1 � 3 ��� 3 � �
5 �
�0K2� � U�O
1,�43�K9&0'
3 � 3���%
%c�93 �

(The so-called void type has a special meaning in the context of function declarations and is not used in other
contexts.)

Level 2 of Parva supports only two basic data types, representing the set of Boolean values {false, true} and the
set of integer values {min ... max}, where min and max are implementation defined (the implementation uses
32-bit arithmetic {-2147483648 ... 2147483647}).

A type that incorporates the [] token is said to be an array reference type. Arrays are constructed as components
of expressions by using the keyword new (see section 11.4).

Two entities are said to be type-compatible (for the purposes of assignment or comparison) if they are of the same
type. In general the type of a value defined by an Expression (see section 11) is computed from its operators and
the types of its operands; the type of a variable, constant or parameter is determined from the type used in its
declaration. However, the value denoted by null is a value of all array reference types.

7 Constant declarations

A constant declaration permanently associates an identifier with a constant value.

� %�&���' 6 1
�+� �0(9�0'
KX%�&
�f�439��%�&
��'�3 @ &
1 � %�&���' � 3��
3 @ &
1 � %�&���'��43���3 �
@ &�1 � %�&���' �4K)I�1
&�'�K2�K910(,39�03 � %�&
��'9�
&0' �
� %�&���'9�
&�' �f&�Q
M
��1�(� ��!
�0(= K�' � 3�'�(9Q�1�3 � 32��+����103�� 3�&
Qb���93 �

The type of the identifier is determined from the context of the declaration. true and false are the Boolean
constants. Numbers and character literals are deemed to define constants of integer type.

Examples:

��%�&
��'
M���T � ���
� �
G�	
� � '�(9Q�1 �
� �
O0K�'2�+� � � _ � _ �

8 Function declarations

A function declaration serves to define operations that may be performed on global constants and variables, on the
values of its local constants and variables, and on values passed to the function as arguments.

Parva-2 (27 June 2003) 3

7 Q�&���'
KX%�& 6 1
�+� �0(9�0'
KX%�&�� � 3)R
%WK)IW3 � � U�O�1 � K)I�1
&�'�K2�K910(,3 � 3 7 %W(�M
�+� A �0(9�
M�10'210(2� 3 � 3 5 � %���� �
7 %.(9M
�+� A ��(9��M
10'91�(2� � � @ &
1 A �0(9�
M � 3��
3 @ &
1 A ��(9��M	� � �
@ &�1 A �0(9��M � � U�O
14KXI�1
&0'
K20K�1�(�
5 � %���� � 3 � 3 � � '2�0'91
M
1�&0'��43 ��3 �
� U�O
1 � 5 �
�0K2� � U�O
1 � 3 ��� 3 � �
5 �
�0K2� � U�O
1 � 3
K�&0'�3 � 39��%
%*��3 �

A restriction is imposed in the current implementation which requires each identifier in a program to be
"declared" before it is "used". In many cases this is easily achieved by constituting a program as a set of
declarations arranged in an order that meets this requirement. In some situations - typically those in which
mutually recursive methods need to invoke one another - this will be found to be impossible. Solutions to this
restriction are left as an exercise.

A void function is activated by a function call that is a form of Statement (see section 13.3). A function of any
other type is activated by a function call that forms a constituent part of an Expression (see section 11), and yields
a result that is an operand of that expression.

The Block uniquely associated with each function incorporates a collection of declarations of constants and local
variables (whose values are said to constitute the program state), and a sequence of other statements whose
purpose is to alter the program state by manipulating the local constants and variables, formal parameters and
global constants and variables that are in scope.

The FormalParameters associated with a function provide one mechanism by which data may be transmitted from
one function to another (see sections 11.3 and 13.3).

One function is uniquely designated as the main function. This is the last to be declares, but the first to be
executed when the program as a whole is executed. It must be of type void and has no formal parameters; that
is, it is declared with the header void main().

9 Formal Parameters

Formal parameters that are a component part of a FunctionDeclaration are specified in a (possibly empty) list of
identifiers that denote actual parameters that are specified only when a function is called. The correspondence
between formal and actual parameters is established only when the call takes place.

7 %.(9M
�+� A ��(9��M
10'91�(2�f� � @ &
1 A ��(��
M � 3��
3 @ &�1 A ��(9��M � � �
@ &�1 A �0(9��M � � U�O
14KXI�1�&0'
K20K�1�(�
� U�O
1 � 5 �
�0K2� � U�O�1 � 3 ��� 3 � �
5 �
�0K2� � U�O
1 � 3
K�&0'�3 � 39��%
%*��3 �

The type of a formal parameter is specified in its declaration; this type must be compatible with the type of the
actual parameter used in the FunctionCall. There must be as many arguments in the ArgList of the FunctionCall

as there are parameters in the FormalParameters of the FunctionDeclaration. In particular, a function declared
without parameters has an empty parameter list, and must be invoked by a FunctionCall whose actual ArgList is
empty.

Examples:

K9&0' �N��(XJ�1�(� K9&�' ���fK9&0' � � �
d
d � 1�'2Q�(�&�� � ��()J�10(%� '9!
1 '�S�% �0(XJ�Q�M
1
&�'��

K9 � � � � � (�10'9Q�(9&f� �
(�10'9Q�(9&f� ��

K9&0' ��Q
M � K9&�' ��� ��K2��'��,K�&0' & � �
d
d � 1�'2Q�(�&��f��Q
M %�f&f1b�N1
M
1�&0'2� ^ �9K9��' � � � �
��� ��K2��' � & ^0� �

K�&0'f'�%�'2�b� � � �
K�&0',K � � �
S�!�K0� 1 � K � & � � 'X%.'2�+� � 'X%.'2�+� � �9K9��' � K � ��K � K � � � �
(�10'9Q�(9& '�%�'2�b����

Parva-2 (27 June 2003) 4

10 Variable declarations

Variables are those data items whose values may be changed by execution of the program. Variable declarations
serve to introduce variables and to associate them with identifiers that must be unique within their given scope.
They also serve to associate a fixed data type with each variable so introduced.

D �0(6 1
�+�N��(9��'�KX%�&��f� � U�O�1 @ &
1 D ��(� 3��
3 @ &�1 D ��(� 3 ��3 �
@ &�1 D �0(� KXI�1�&0'�K90K910(� 39�03 	 T�O0(91
�
�0K)%�& � �
� U�O
1 � 5 ����K2� � U�O
1 � 3 � � 3 � �
5 �
�0K2� � U�O
1 � 3
K9&�'�3 � 3���%�%*�93 �

Each variable identifier denotes either a simple scalar variable of a specified BasicType (integer or Boolean), or a
reference to an array structure of scalar elements that all have the BasicType specified in their declaration. Arrays
are constructed as components of expressions by using the keyword new (see section 11.4).

Variables whose identifiers appear in the same list are all of the type specified in the declaration.

When the statement sequence that is defined by a Block is activated, all local variables are deemed to have initially
undefined values, except for those variables that have been assigned the values of expressions within the variable
declaration sequence where they were declared.

Similarly, variables with global scope are deemed to have initially undefined values, except for those variables
that have been assigned the values of expressions within the global variable declaration sequence where they were
declared.

If a variable is assigned the value of an Expression the type of the variable must be compatible with the type of the
Expression.

Examples:

K9&0',K��fL �] �
��%
%c� ��'2�0(�'21�I 6 ��'�K�&�J � ��Q0K�'2���b�N1 � O�%�Q���1 �
K9&0' ��� �9K9��' �f&�1�S K9&�' � �2$ � �4��K2��' $ � &
Q+�
���

Variables used in future examples are assumed to have been declared as indicated above.

11 Expressions

Expressions are constructs denoting rules of computation whereby constants and current values of variables and
parameters are combined to derive other values by the application of operators. Expressions consist of operands
and operators. Parentheses may be used to express specific associations of operators and operands where the
normal rules of precedence are unsuitable on their own.

	 T�O�(91
�
��KX%�& � � I
I 	 T�O � � 1b� @ O � I�I 	 T�O � �
� I�I 	 T�O � � 3 � 3 � 3 ^ 3 � � 1�(�M � � I�I @ O � 1�(9M	� �
� 10(9M � 7 ����'�%W(� > Qb� @ O 7 �
��'�%.(�� �
7 �
��'�%.(� 6 1��0K)J�&
��'�%W(� � %�&���'9�
&0'�� 7 Q�&���'
KX%�& � �+�
�

� � (
(9��U D �+� Q
1�� 3���3 7 ����'X%W(
� 3 � 3 	 T�O0(91����0K)%�&43 � 3 �

� (�(9��U D �+� Q
1 �43�&
1�SW3 5 ����K2� � U�O�1 3 � 3 	 T�O0(91
�
�0K)%�&43 � 3 �
6 1
�0KXJ�&
��'�%W(�4K)I�1�&0'�K90K910(� 3 � 3 	 T�O0(91����0K)%�&43 � 3 �
� %�&���'9�
&�' �f&�Q
M��
1�(� ��!
�0(= K�'�� 3�'�(9Q�1�3 � 32��+����1�3 � 3�&
Qb���93 �
7 Q�&���'
KX%�& � �+�
� �4K)I�1�&0'�K90K910(,3 � 3 � ()J = K9��',3 � 3 �
� ()J = K9��' � � @ &
1 � (XJ � 3��
3 @ &�1 � ()J � � �
@ &�1 � ()J � 	 T�O0(91����0KX%�& �
� I�I @ O �43 � 3 � 3 ^ 3 � 3 ����3 �
> Q+� @ O �43)eW3 � 39d�3 � 3 � 3�� 3 ����3 �
� 1+� @ O �439�
��3�� 3�� �03 � 3 � 3 � 3 � ��3 � 3 � 3 � 3 � ��3 �

Parva-2 (27 June 2003) 5

11.1 Operands

With the exception of numbers and character literals, many operands in expressions are denoted by designators.
A Designator consists of an identifier referring to the constant, variable or parameter to be designated. This
identifier may be followed by a selector if the identifier denotes an array.

6 1
�0KXJ�&
��'�%W(� KXI�1�&0'
K20K�1�(� 3 � 3 	 T�O�(91
�
�0K)%�&43 � 3 � �

If A designates an array, then A[E] denotes that element of A whose index is the current value of the expression
E. E must be of integer or character type, and the value of E must lie within the range of possible values for the
index of A. This range is from 0 ... ArraySize - 1, as specified when A was created.

If the designated entity is a variable or an array element, then, when used as an operand, the designator refers to
the variable's current value, and the type of the operand is the type of that variable or array element. An operand
that is a literal constant denotes a value that is the value of that constant, and the type of the operand is the type of
that literal constant.

An operand may also be designated by a function call (see section 11.3) or by the application of the
&�1�S

operator (see section 11.4).

11.2 Operators

The syntax of expressions distinguishes between four classes of operators with different precedences (binding
strengths). The operator ! has the highest precedence, followed by multiplication operators, addition operators,
and then relational operators. Operators of the same precedence associate from left to right. Thus, for example,
x - y - z * w stands for (x - y) - (z * w).

The available operators are listed in the following tables.

11.2.1 Logical operators

symbol result

|| logical disjunction (Boolean OR)
&& logical conjunction (Boolean AND)
! negation

These operators apply only when both operands are of the Boolean type, and yield a Boolean result.

It is desirable that the implementation should enforce short-circuit semantics such that

p || q stands for "if p then true, else q"
p && q stands for "if p then q, else false"
! p stands for "not p"

However, this has been left as an exercise.

11.2.2 Arithmetic operators

symbol result

+ sum
- difference
* product
/ quotient
% modulus

These operators apply only to operands of integer type, and yield a result of integer type. When used as operators
with a single operand, - denotes sign inversion and + denotes the identity operation.

Parva-2 (27 June 2003) 6

The operator / produces a result that is truncated towards zero. Implementation of the operator % has been left as
an exercise: it is required to produce a result so that the following relation holds for any dividend x and divisor y:

T � � T�d U � efU � � T � U �

Examples

T U T�d U T � U

��$ \ � Z
��$ ^�\ ^�� Z

^���$ \ ^�� ^�Z
^���$ ^�\ � ^�Z

11.2.3 Relational operators

symbol relation

== equal
!= unequal
< less
<= less or equal
> greater
>= greater or equal

These operators yield a result of Boolean type. The ordering operators <, <=, > and >= apply to operands of
the integer type. The relational operators == and != also apply when both operands are of the Boolean type or of
the same array reference type (when the comprison is between the values of the references, and not between the
individual elements of the arrays referred to). The operands of a relational operator may be evaluated in any
convenient order.

Examples of expressions:

��#
#�[��: &0'91�J�10(�
K d / ��: &0'91�J�10(�
����'9��(�'21�I 6 �0'
K9&�J ��� ��Q�K�'9�
�b�N1 � O�%�Q
��1 �X5 %
%c� 1
��& �
� K � L � e � K ^ L � ��: &0'91�J�10(�
��� � � K � ��� � K � M
��T � �X5 %
%c� 1
��& �

11.3 Function calls

A FunctionCall that serves to activate a non-void function may appear as an operand in an Expression, where it
represents the value computed and returned by that particular activation of the designated function.

7 Q�&���'
KX%�& � �+�
� �4K)I�1�&0'�K90K910(,3 � 3 � ()J = K9��',3 � 3 �
� ()J = K9��' � � @ &
1 � (XJ � 3��
3 @ &�1 � ()J � � �
@ &�1 � ()J � 	 T�O0(91����0KX%�& �

The call may contain an ArgList of arguments or actual parameters which are substituted in place of the
corresponding FormalParameters defined in the FunctionDeclaration. The correspondence is established by the
positions of the parameters in the lists of actual and formal parameters respectively. The types of corresponding
actual and formal parameters must be compatible, and there must be as many actual arguments in the ArgList as
there are parameters in the FormalParameters of the function called.

Note: Parva does not support function overloading, whereby two or more functions may share a common name
and return type but differ in the number of arguments that may be supplied.

There are two kinds of actual parameters. If the formal parameter is of a reference type, the actual parameter,
while syntactically an Expression, must be a Designator denoting an entity of that type (or a formal parameter of
that type in the function in which the FunctionCall is an operand). In the case of a value parameter, the actual
parameter may be a more general Expression. Each expression is evaluated prior to the function activation, and
the resulting value is assigned to the formal parameter, which then constitutes a local variable of the called
function.

Parva-2 (27 June 2003) 7

The use of a function identifier in an Expression within the Body associated with the definition of that function
implies a recursive activation of that function.

11.4 Array instantiation

Operands in expressions may have values that are obtained when a new instance of an array is created.

� (�(9��U D �+� Q
1,� 39&
1�SW3 5 �
�0K2� � U�O�143 � 3 	 T�O�(91
�
��KX%�&43 � 3 �
5 �
�0K2� � U�O
1"� 3
K9&�'�3 � 39��%�%*�93 �

An array value allows for the creation of a new instance of an array, whose elements are all of the type specified
by BasicType. The number of elements is specified by the value of the Expression, which must yield a positive
value of integer type. The value of the operand is the reference to the newly created array. Typically this is
assigned to a variable declared to be of a type specified as BasicType[], whereafter the elements of the array
may be accessed by use of appropriate Designators.

Examples:

K9&0' ��� �9K9��' �f&�1�S K9&�' � �X�
� � �
��%
%c� � � ��K91�R�1�� &�1�S���%
%c� � > ��T � � � �

12 Statements

Statements denote actions or the declaration and possible initialization of variables and constants. Apart from
declarative statements, a distinction is drawn between elementary and structured action statements.

Elementary statements are not composed of any parts that are themselves statements. They are the assignment, the
void function call, the input statement, the output statement, the return statement, the halt statement and the empty
statement.

Structured statements are composed of parts that are themselves statements. They are used to express sequencing,
as well as conditional, selective, and repetitive execution.

A statement may assume the form of a Block, and may thus incorporate declarations of identifiers, whose scope is
local to that block.

� '2��'21
M�1
&�' � 5 � %������ � %�&
��' 6 1���� ��(��0'�K)%�&�� � D �0(6 1
�+�N��(9��'�KX%�&��
� � �
��KXJ�&
M
1�&0'�� D %WK)I 7 Q�&���'
KX%�& � �+�
� � 	 M
O�'�U � '2�0'91
M
1�&0'
� : � '2��'21
M�1
&0'�� E !0K�� 1 � '2��'21
M�1
&�'
� � 1
��I � '2�0'91
M
1�&0'�� E (
K�'21 � '2�0'91
M�1
&0'
� � 10'9Q�(�& � '9�0'21�M
1
&�'�� � �b��' � '2��'21�M
1
&�'

12.1 Blocks (statement sequences)

A Block statement may be used to group several statements and declarations into one indivisible unit. Block
statements are frequently used as parts of structured statements.

5 � %���� � 3 � 3 � � '9�0'91
M
1�&0'�� 3 ��3 �

Statement sequences within a Block statement denote the sequence of actions and declarations specified by the
component statements, executed in the order specified by the sequence.

12.2 Assignments

An Assignment denotes the replacement of the value of a variable with a new value, and results in a change to the
state of a program.

� ���0KXJ�&
M�1
&0' � D ��(�K9���b� 1432��3 	 T�O0(91����0KX%�& 3 ��3 �
D �0(
K9���b�N1 � 6 1���KXJ�&
�0'X%W(�

Parva-2 (27 June 2003) 8

If the Expression is present, the assignment serves to replace the current value of the designated Variable by the
value specified by the Expression. The assignment operator is written as "=" and pronounced as "becomes". The
types of the Expression and of the Variable must be compatible, and the Variable must designate a scalar variable,
an array element or an array reference.

Examples:

K � � �
��Q�K�'2���b� 1 � O�%�Q���1,� ��J�1 � /�� �
�9K2��' �f&�1�S K9&0' � M���T � �
�9K2��' � K � � ��K2��' � K � � � �

12.3 Void function calls

A VoidFunctionCall serves to activate a void function.

D %.KXI 7 Q
&
��'�K)%�& � �b�
� � KXI�1
&0'
K20K�1�(f3 � 3 � (XJ = K2��'�3 � 3 �
� ()J = K9��' � � @ &
1 � (XJ � 3���3 @ &
1 � (XJ � � �
@ &�1 � ()J � 	 T�O�(91
�
�0K)%�& �

The designated function must have been declared of type void. There is no concept, as in C# or Java, of
invoking a non-void function and silently discarding the return value.

The call may contain an ArgList of arguments or actual parameters which are substituted in place of the
corresponding FormalParameters defined in the FunctionDeclaration. The correspondence is established by the
positions of the parameters in the lists of actual and formal parameters respectively. The types of corresponding
actual and formal parameters must be compatible, and there must be as many actual arguments in the ArgList as
there are parameters in the FormalParameters of the function called.

Note: Parva does not support function overloading, whereby two or more void functions may share a common
name but differ in the number of arguments that may be supplied.

There are two kinds of actual parameters. If the formal parameter is of a reference type, the actual parameter,
while syntactically an Expression, must be a Designator denoting an entity of that type (or a formal parameter of
that type in the function in which the VoidFunctionCall is a statement). In the case of a value parameter, the
actual parameter may be a more general Expression. Each expression is evaluated prior to the function activation,
and the resulting value is assigned to the formal parameter, which then constitutes a local variable of the called
function.

The use of a function identifier in a VoidFunctionCall within the Body associated with the definition of that void
function implies a recursive activation of that function.

12.4 If statements

An IfStatement specifies the conditional execution of a guarded statement.

: � '2��'21�M
1
&�' � 3
K903f3 � 3 � %�&�I.K�'
KX%�&43 � 3 � '2��'21
M�1
&0' �
� %�&�IWK�'�K)%�& � 	 T�O�(�1��
��KX%�& �

The Expression (guard) must yield a Boolean result. If the guard evaluates to true the guarded Statement is
executed.

(There is no else clause in level 2 of Parva. Implementation of this is intended as an exercise.)

Examples:

K9 � K � M���T � � SW(�K�'21 � 3���K9M�K�' 1�T���1
1�I�1�I
 &�3 � �,(910'9Q�(�& ���
K9 � L � / � �+� SW(�K�'21 � 3XI.KXRWK9�0K��b� 1f��U / 3 � �

Parva-2 (27 June 2003) 9

12.5 While statements

A WhileStatement is one form of specifying the repetition of an associated statement.

E !0K�� 1 � '9�0'21�M
1
&�' � 3)S�!�K0� 1�3f3 � 3 � %�&�IWK�'
KX%�&43 � 3 � '2��'21�M
1
&�' �
� %�&�IWK�'�K)%�& � 	 T�O�(�1��
��KX%�& �

The Expression that is the Condition must yield a Boolean result. If this expression yields true, the associated
Statement is executed. Evaluation of the condition is performed once at the start of each complete iteration, and
the test and statement execution are repeated as long as the Condition yields true.

Example:

S�!0K��N1 � L � �+� � L � � L d $ ��K � � K � � ���

12.6 Input statements

� 1���I � '2��'21
M�1
&0' � 3
(�1
��I.3,3 � 3 � 1���I 	 � 1
M�1
&0' � 3���3 � 1
��I 	 �N1
M
1�&0'��43 � 3f3��
3 �
� 1���I 	 � 1�M
1
&�' �f��'
(
K9&�J � D �0(
K��
�b�N1 �

A ReadStatement specifies a list of variables that are to be assigned new values from an input source external to
the program. Each Variable must designate a scalar variable, or an element of an array. A string appearing in a
ReadStatement serves to act as a prompt to the user of the program.

Example:

(91���I � 3 � Q
O�Ob� U � J�1�3�� ��J�1��f3
 & � Q
O
O+� U > �
�
�03�� M������ � �

12.7 Output statements

E (�K�'21 � '9�0'21�M
1
&�' � 3)SW(
K�'21�3f3 � 3 E (
K�'21 	 � 1
M�1
&�' � 3���3 E (
K�'21 	 � 1
M�1
&�' �43��
3 �
E (�K�'21 	 �N1
M
1�&0' �f��'�(
K�&�J � 	 T�O0(91����0KX%�& �

A WriteStatement specifies a list of strings and expressions whose values are to be computed and then transferred
to an output sink external to the program.

Example:

SW(�K�'91 � 3 � !
14(91
��Q+��',K2� 3��fK � L �f3
 &03 � �

12.8 Return statements

A ReturnStatement causes immediate termination of execution of the function in which it appears, returning
control to the invoking environment.

� 1�'2Q0(9& � '2�0'91
M
1�&0' � 3
(91�'2Q�(�&�3 � 	 T�O0(91����0K)%�& � 3 ��3 �

In the case of void functions the Expression must be absent. In all other functions it must be present, and
defines the value to be returned as the result of invoking that function. The type of this Expression must be
compatible with that of the function as specified in the FunctionDeclaration. A function may incorporate several
ReturnStatements, although, of course, only one can be executed in any particular activation of the function. In
void functions an implicit ReturnStatement occurs at the end of the function Block.

12.9 Halt statements

A HaltStatement causes immediate termination of the program execution, returning control to the invoking
environment.

� �+��' � '2��'21
M�1
&0' � 39!��b��'
3,3 ��3 �

Parva-2 (27 June 2003) 10

12.10 Empty statements

An EmptyStatement causes no change to the program state.

	 M�O0'XU � '9�0'21�M
1
&�' � 3���3 �

The EmptyStatement is included in order to relax punctuation rules in statement sequences.

13 Complete example

d
d 7 K�&�I��b��� �2%*� Q�'�K)%�&�� '�% '2!�1 ? B Q
1
1�&�� O�()%��b�N1
M ^ !�%
SfI
%fS�1fO+� ����1 ? P�Q�1
1�&�� %�&
d
df�
& ? e ? ��!
1
�
����%��0(XI ��% '2!
��' &�%�&�1 %� '9!
1�M K9� '9!�(�1
�0'91
&
1�I ��U��
&�Uf%.'9!
1�(-%�&
1 �
d
d � %�I�1,�+� %���1+� U��
�
��1�If%�& '2!��0' ��U ? K��.� ��Q�� E K�(�'2!4K�& 3 � � J�%W(
K�'2!�M�� � 6 �0'2�
d
d � '
(9Q
��'2Q0(91��f� A ()%
JW(��
M���3 �XA (�1
&0'
K2��1 ^
� �+�
� � �X#�\�[� O
��J�1 �2Y�Z�� � �
Q0' J�1�&
1�(��b��K2��1�I
d
d '�%��+�
� %�S ? B Q�1
1�&�� �f(9��'2!
10('2!
��& %�&b� U]W�
d
d � %�Q
&�' �2%*� Q�'�KX%�&�� �
&�I K�'21�(��0'914'9!
1fO�(X%���1
�
� � (�1�P�Q
1���'21�I�&
Q�M
��1�(-%� '�K9M�1��
d
d > %�IWK90K2���0'�K)%�&�� ��U A �0' � 1�(�(XU � � !�%
I�1�� C &0KXR�10(2�0K�'�U � $2�
��/

K9&0' �2%*� Q�'�KX%�&�� �
R
%WK)I 6 K2��Ob� ��U � %c� Q�'�KX%�& � K�&0' � � T �fK9&0' & � �
d
d 6 K9��Ob�N��Uf%�&
1,�2%*� Q�'�KX%�&4'X% '2!
1 ? B Q
1�1
&
�fO0(X%��+� 1�M

K�&0',K � � �
S�!�K0� 1 � K � � & � �

S.(
K�'91 � T � K � � �
K � K � � ��

S.(
K�'21 � 3
 &03 � ��
R
%WK)I A � �
��1 � K9&0',K��,K�&0' &�� ��%�%*� � � � � ��%
%c� ��� ��� ��%
%*� ��� � �fK9&�' ��� T � �
d
d A �N����1 '2!�1 K ^ '9! P�Q
1
1�& %�& '2!
1f��%���(XIf%�,��K2V�1f& e�&

K�&0'fL � � �
S�!�K0� 1 � L � � & � �

K9 � � � L � ���f� � K � L � ���,� � K ^ L � & � � �
T � K � � L��
� � L � �,��b� ��1 � � � K � L � �,��b����1 � � � K ^ L � & � �f��+����1 �
K2 � K � & � A �N����1 � K � � � &�� ��� ��� � � T � �
K2 � K � � & � �

��%*�NQ0'�K)%�&
�,�f��%c� Q0'
KX%�&�� � � � 6 K2��Ob� ��U � %c� Q�'�KX%�& � T � & � ��
� � L � � '
(9Q�1 � � � K � L � � '�(�Q
1 � � � K ^ L � & � � '
(9Q
1 ��

L � L � � ���
R
%WK)I�M
��K�& �
� �

K�&0' &��fK�'91�(9��'�K)%�&�� �
(�1
��I � 3 5 %��0(XI �0K9V�1�� 3�� & � �
(�1
��I � 3 : '210(9�0'
KX%�&���� 3��fK�'91�(��0'�K)%�&�� � �
��%
%c� ��� �,�f&�1�S���%�%*� � & � � � �
��%
%c� ��� �,�f&�1�S���%�%*� � $ e�& � � � �
��%
%c� ��� �f�f&�1�S���%�%*� � $ e�& � � � �
K�&0' ��� T � &
1�S K9&0' � & � � � �
K�&0' ��%�Q
&0' � � �
S�!�K0� 1 � ��%�Q
&0' � K�'91�(9��'�KX%�&�� � �

�2%*� Q�'�KX%�&��f� � �
K�&0',K � � �
S�!�K��N1 � K � � & � �

� � K � � '
(9Q�1 �,K � K � � ��
K � � �
S�!�K��N1 � K � � $ e�& � �

� � K � � '
(9Q�1 � � � K � � '
(9Q
1 ��K � K � � ��
A � ����1 ��� � & � ��� ��� � �-T � �
�2%�Q
&�' �f��%�Q
&�' � � ��

S.(
K�'21 � 3 5 %���(XI ��K2V�143�� & � �
S.(
K�'21 � 3 � %*� Q�'�K)%�&�� 3�� ��%c� Q�'�KX%�&�� � �
S.(
K�'21 � 3 : '21�(��0'
KX%�&
�43��,K�'210(9�0'
KX%�&
� � ��

Parva-2 (27 June 2003) 11

14 Missing statements

There are no do, goto, for, break, switch or continue statements in this release of the language. Their
implementation is left as a series of exercises!

15 Bibliography

Engel, J. (1999) Programming for the Java Virtual Machine, Addison-Wesley, Reading MA.

Mössenböck, H. (2004)
!0'�'2O � d
d�S�S
S � �
�2S � Q�&�K ^ �9K�&�V � ��� � �0'2d � 1
��1
�0(2��!�d A (X%.L91���'2��d � %��2%�d

Reiser, M. and Wirth, N. (1992) Programming in Oberon, Addison-Wesley, Wokingham, England.

Terry, P.D. (1997) Compilers and Compiler Generators: an Introduction With C
���

, International Thomson,
London.

Terry, P.D. (2005) Compiling with C# and Java, Pearson, London.

Wirth, N. (1985) Programming in Modula-2 (3rd edn), Springer, Berlin.

Parva-2 (27 June 2003) 12

