
RHODES UNIVERSITY

November Examinations - 2001

Computer Science 301 - Paper 2

Examiners: Time 3 hours
Prof P.D. Terry Marks 180
Prof E.H. Blake Pages 7 (please check!)

Answer all questions. Answers may be written in any medium except red ink.

(For the benefit of future readers of this paper, various free information was made available to the students 24

hours before the formal examination. This included the full text of Section B. During the examination,

candidates were given machine executable versions of the Coco/R compiler generator, access to a computer and

machine readable copies of the questions.)

Section A [95 marks]

1. Draw a diagram clearly depicting the various phases found in a typical compiler. Indicate which phases
belong to the "front end" and which to the "back end" of the compiler. [9 marks]

2. (a) What is meant by the term "self-compiling compiler"? [2 marks]

(b) Describe (with the aid of T-diagrams) how you would perform a "half bootstrap" of a compiler for
language X, given that you have access to the source and object versions of a compiler for X that can
be executed on machine OLD and wish to produce a self-compiling compiler for language X that can
be executed on machine NEW. [10 marks]

3. Consider the following grammar expressed in EBNF for describing the progress of a typical university
course:

Course = Introduction Section { Section } Conclusion .
Introduction = "lecture" ["handout"] .
Section = { "lecture" | "prac" "test" | "tut" | "handout" } "test" .
Conclusion = ["Panic"] "Examination" .

(a) Develop a recursive descent parser for the grammar (matching the EBNF as given above). Assume
that you have suitable Abort, Accept and GetSym routines (which you need not develop), and
that GetSym decodes Sym as one of the tokens below. Your system should detect errors, of course,
but need not incorporate "error recovery". [12 marks]

{ EOFSym, lectSym, hanSome, pracSym, testSym, tutSym, PANICSYM, examSym, unknownSym }

(b) What do you understand by the statement "two grammars are equivalent"? [2 marks]

(c) Rewrite these productions so as to produce an equivalent grammar in which no use is made of the
EBNF meta-brackets { ... } or [...]. [5 marks]

(d) Analyse the equivalent grammar derived in (c) to determine whether it obeys the LL(1) constraints.
[8 marks]

(e) If you found that the grammar did not obey the LL(1) constraints, does that mean that the parser
produced in (a) would fail for some valid inputs? If so, give an example of input that could not be
parsed; otherwise justify your claim that it would always succeed. [3 marks]

November 2001 - Computer Science 301 - Paper 2 2

4. The CS301 language for which a compiler was developed in this course allows for various statements,
including a "while" loop. Relevant parts of the attributed grammar are shown below.

StatementSequence
= Statement { WEAK ";" Statement } .

Statement
= SYNC [Assignment

| IfStatement | WhileStatement
| ReadStatement | WriteStatement
| ReturnStatement | CaseStatement

] .

WhileStatement
= (. CGEN_labels startloop, testlabel, dummylabel; .)

"WHILE" (. CGen->storelabel(startloop); .)
Condition "DO" (. CGen->jumponfalse(testlabel, CGen->undefined); .)
StatementSequence (. CGen->jump(dummylabel, startloop);

CGen->backpatch(testlabel); .)
"END" .

An enthusiastic language extender has suggested that CS301 would be greatly improved by the addition of a
post-test loop, and has come up with two possibilities:

PostTestStatement = "DO" StatementSequence "WHILE" Condition .

or

PostTestStatement = "DO" StatementSequence "UNTIL" Condition .

(a) Advise her, with reasons, as to whether or not either or both of these suggestions would be
acceptable, and which (if either) would be preferable. [5 marks]

(b) For the form of your choice, show how the grammar above would be extended to recognise the
statement form and generate correct code. [5 marks]

5. As you should recall, CS301 is a "strictly typed" language, and expressions of the form

NOT 6

or
TRUE > 56

or
3 + 4 AND 5

are unacceptable. Most strictly typed languages allow for programmers to circumvent (bypass) these
restrictions, typically by allowing so-called "type casting", as exemplified by

NOT BOOL(6)

or
INT(TRUE) > 56

or
3 + INT(BOOL(4) AND BOOL(5))

(a) In the free information for this paper appears an attributed grammar for generating code to evaluate
expressions which does not incorporate such type casting. Show how the grammar could be altered to
do so. (Only write out those parts that would have to change.) [6 marks]

(b) If strict type checking can be bypassed in this way, what advantages or disadvantages do strictly typed
languages possess over languages like C++, where Boolean, integer and character types are all
compatible? [4 marks]

November 2001 - Computer Science 301 - Paper 2 3

6. As you should be aware, IP addresses as used in Internet communication are typically expressed in "dotted
decimal" form, as exemplified by 146.231.128.6. The IP address actually represents a 32 bit integer;
the four numbers in the quadruple corresponding to successive 8 bit components of this integer. For
humans, machine addressing is usually more memorable when expressed in "DNS" format, as exemplified
by terrapin.ru.ac.za. Some systems maintain tables of matching addresses, for example

146.231.122.13 cspt1.ict.ru.ac.za #comments appear like this
146.231.128.6 terrapin.ru.ac.za
146.231.56.10 thistle-sp.ru.ac.za
147.28.0.62 psg.com

When we moved our CS and IS departments to new premises recently, a decision was made to rename and
uniquely renumber all the many machines in our possession. Our system administrators tried to draw up a
table like the one above, which was then merged with the existing table in the IT division. Unfortunately, a
few mistakes were made, which caused havoc until they were ironed out. For example, there were lines
reading

146.231.122.11235 cspt1.ict.ru.ac.za #invalid IP address
146.231.122.15 cspt2.ict.ru.ac.za
146.231.122.15 cspt3.ict.ru.ac.za # non-unique IP address

Complete the ATG file below to show how Coco/R could be used to develop a system that would enable a
file in this format quickly to be checked and the errors identified. (Hint: make use of the template list
handling class that proved useful in various other applications in this course, the interface to which is
provided below). There is no need to reproduce the code below; it will suffice merely to develop the
TOKENS and PRODUCTIONS section in your solution, and to indicate what, if any declarations and/or
#include lines would be added at the beginning. [24 marks]

COMPILER CheckIP $XCN

IGNORE CASE
IGNORE CHR(1) .. CHR(31)

CHARACTERS
digit = "0123456789" .
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
eol = CHR(10) .

COMMENTS FROM "#" TO eol

TOKENS

PRODUCTIONS

END CheckIP.

Generic List Template Class

/* Simple generic linked list class. Only the interface is shown here
George Wells -- 27 February 1996 */

template<class T> class List
{ public:

List (void); // Constructor
List (const List& lst); // Copy constructor
~List (void); // List destructor
void add (T item, int position = INT_MAX); // Place new item in a List
void remove (int position, T &item); // Remove item at position in List
int length (void); // Return number of elements in List
T& operator[] (int index); // Subscript a List
int position (T item); // Return position item in a List (or -1)
int isMember (T item); // True if item is in List

}; // class List

November 2001 - Computer Science 301 - Paper 2 4

Expression parser from CS 301 compiler - Question 5

Expression<TABLE_types &e>
= (. TABLE_types a;

CGEN_labels shortcircuit; .)
AndExp<e>
{ "OR" (. if (shortBoolean) CGen->booleanop(shortcircuit, CGEN_opor) .)
AndExp<a> (. if (!(booltypes.memb(e) && booltypes.memb(a)))

{ SemError(218); e = TABLE_none; }
else e = TABLE_bools;
if (shortBoolean) CGen->backpatch(shortcircuit);
else CGen->binarybooleanop(CGEN_orrop); .)

} .

AndExp<TABLE_types &a>
= (. TABLE_types e;

CGEN_labels shortcircuit; .)
RelExp<a>
{ "AND" (. if (shortBoolean) CGen->booleanop(shortcircuit, CGEN_opand) .)
RelExp<e> (. if (!(booltypes.memb(a) && booltypes.memb(e)))

{ SemError(218); a = TABLE_none; }
else a = TABLE_bools;
if (shortBoolean) CGen->backpatch(shortcircuit);
else CGen->binarybooleanop(CGEN_andop); .)

} .

RelExp<TABLE_types &r>
= (. TABLE_types a;

CGEN_operators op; .)
AddExp<r>
[RelOp<op> AddExp<a> (. if (r == TABLE_bools || a == TABLE_bools) SemError(218);

r = TABLE_bools; CGen->comparison(op) .)
] .

AddExp<TABLE_types &a>
= (. TABLE_types m;

CGEN_operators op; .)
MultExp<a>
{ AddOp<op> MultExp<m> (. if (!(arithtypes.memb(a) && arithtypes.memb(m)))

{ SemError(218); a = TABLE_none; }
else CGen ->binaryintegerop(op); .)

} .

MultExp<TABLE_types &m>
= (. TABLE_types u;

CGEN_operators op; .)
UnaryExp<m>
{ MulOp<op> UnaryExp<u> (. if (!(arithtypes.memb(m) && arithtypes.memb(u)))

{ SemError(218); m = TABLE_none; }
else CGen ->binaryintegerop(op); .)

} .

UnaryExp<TABLE_types &u>
= Factor<u>

| "+" UnaryExp<u> (. if (!arithtypes.memb(u)) {
SemError(218); u = TABLE_none; } .)

| "-" UnaryExp<u> (. if (!arithtypes.memb(u)) {
SemError(218); u = TABLE_none; }

else CGen->negateinteger(); .)
| "NOT" UnaryExp<u> (. if (!booltypes.memb(u)) SemError(218);

else CGen->negateboolean();
u = TABLE_bools; .) .

Factor<TABLE_types &f>
= (. int value;

TABLE_entries entry; .)
Designator<classset(TABLE_consts, TABLE_vars), entry>

(. f = entry.type;
switch (entry.idclass)
{ case TABLE_vars :

CGen->dereference(); break;
case TABLE_consts :
CGen->stackconstant(entry.c.value); break;

} .)
| Number<value> (. CGen->stackconstant(value); f = TABLE_ints; .)
| "TRUE" (. CGen->stackconstant(1); f = TABLE_bools .)
| "FALSE" (. CGen->stackconstant(0); f = TABLE_bools .)
| "(" Expression<f> ")" .

November 2001 - Computer Science 301 - Paper 2 5

Section B [85 marks]

Please note that there is no obligation to produce a machine readable solution for this section. Coco/R and other

files are provided so that you can enhance, refine, or test your solution if you desire. If you choose to produce a

machine readable solution, you should create a working directory, unpack EXAM.ZIP, modify any files that you

like, and then copy all the files back to the blank diskette that will be provided.

For several years your predecessors in this course - and even yourselves - have been expected, as part of the
practical course, to gain an understanding of a stack machine architecture by preparing programs written in a very
limited form of assembler language in which all addressing had to be done in terms of numerical values which
students were supposed to calculate for themselves - with understandable frustration setting in every time they
inserted or deleted a few statements into programs as they debugged them. During this time students have begged
me to give them a "real" assembler in which alphanumeric labels could be used to identify constants, variables,
and the destinations of branch instructions. I have, of course, always been too busy to do this, but with 24 hours
at your disposal and the expert knowledge you have amassed after studying the translators course this year, you
should be able to remedy this situation - and if you succeed you may be able to make some useful pocket money
selling your system to the class next year!

We start by observing that, rather than writing code as exemplified by the columns on the left, most people would
prefer to write code as exemplified by the columns on the right

ASSEM $D+ ³ ASSEM $D+ # Read a list and write it backwards
³ CONST # High level declarations
³ Max = 10; # constants
³ Width = 6;
³ INT # variables

BEGIN ³ List[Max], I, Item;
DSP 13 ³ BEGIN # DSP 13 can be generated automatically
ADR -12 ³ ADR I # I := 0;
LIT 0 ³ LIT 0 #
STO ³ STO #
ADR -13 ³ READ ADR Item # LOOP
INN ³ INN # Read(Item);
ADR -13 ³ ADR Item #
VAL ³ VAL #
BZE 32 ³ BZE DONE # IF Item = 0 THEN EXIT END;
ADR -1 ³ ADR List #
ADR -12 ³ ADR I #
VAL ³ VAL #
LIT 11 ³ LIT SIZE(List) #
IND ³ IND #
ADR -13 ³ ADR Item #
VAL ³ VAL #
STO ³ STO # List[I] := Item;
ADR -12 ³ ADR I # I++;
PPP ³ PPP #
BRN 7 ³ BRN READ # END;
PRS 'Reversed' ³ DONE PRS 'Reversed' # Write('Reversed');
ADR -12 ³ PRINT ADR I # WHILE I > 0 DO
VAL ³ VAL #
LIT 0 ³ LIT 0 #
GTR ³ GTR #
BZE 59 ³ BZE EXIT #
ADR -12 ³ ADR I # I--;
MMM ³ MMM #
ADR -1 ³ ADR List #
ADR -12 ³ ADR I #
VAL ³ VAL #
LIT 11 ³ LIT Max + 1 #
IND ³ IND #
VAL ³ VAL #
LIT 6 ³ LIT Width # Write(List[I] : 6);
PRN ³ PRN #
BRN 34 ³ BRN PRINT # END
HLT ³ EXIT HLT # RETURN

END. ³ END.

Since it might be dangerous to place too much reliance on what would be required of an assembler, or indeed
determine exactly what is permitted in the assembler language itself from studying this one single example, here
are some suggestions for deriving a complete system. (In the exam kit will be found some other example
programs to assist in your development of the assembler.)

November 2001 - Computer Science 301 - Paper 2 6

(a) You can make use of Coco/R, and in particular derive a solution by making use of the attributed grammar
and support modules (symbol table handler, code generator, error handler, frame files etc) that were useful
in the development of a CS301 compiler/interpreter.

(b) The assembler statements should appear between a bracketing BEGIN and END, and may optionally be
preceded by declarations of constants and variables (like Max, Width, List, I and Item) using
similar syntax to that found in CS301 programs.

(c) The assembler system should be able to assemble simple programs in which the addressing is all given in
absolute form (as in the example on the left), as well as those with alphanumeric names and labels.

(d) Treat the mnemonics as key (reserved) words. Since AND and NOT are mnemonic opcodes, use !, && and
|| for Boolean operators.

(e) Alphanumeric labels (like READ, PRINT, DONE and EXIT) used as the targets of branch instructions
must be uniquely defined. For simplicity, these labels should not be allowed to duplicate identifiers used in
the declaration of named constants or variables.

(f) It is acceptable to define labels without ever having branch instructions that referred to them, to have
multiple labels defined at one point, or to have multiple branches to one point, for example

BRN START # Unnecessary, but legal
START
LOOP LIT 6

LIT 7
PRN
BRN START # equivalent to BRN LOOP

(g) It would not be acceptable to have branch instructions refer to labels that are never defined, for example

BEGIN
LOOP LIT 6

LIT 7
PRN
BRN START # Start is undefined

END

(h) The LIT and DSP mnemonics should be allowed to take a constant-generating expression as a parameter:

DSP 6 # Absolute form
LIT Max # Equivalent to LIT 10
LIT Max * 10 + Width # Equivalent to LIT 106
LIT Size(Array) # Equivalent to LIT 11

where Size is a pseudo function that can return the storage space needed for the variable quoted as its
actual argument (this would clearly be useful in applications that use arrays in particular).

(i) The ADR mnemonic should be allowed to take a (possibly signed) number or a variable name as its
parameter. In the case where this name refers to an array a possible extension would be to allow it to have
a constant subscript indicating a further offset that could be computed at assemble time, for example:

ADR -1 # absolute addressing
ADR Item # equivalent to ADR -13
ADR List # equivalent to ADR -1
ADR List[0] # equivalent to ADR -1
ADR List[2] # equivalent to ADR -3

(j) Not much attention need be paid to type checking - at this level programmers should be relied on to get
these semantics correct for themselves.

(k) Apart from situations where they are necessary for separating other alphanumeric quantities, whitespace
characters may be used at the coder's discretion to improve the appearance of source code.

(l) In the extended compiler for CS301 you may have made use of additional opcodes to the ones listed below,
in particular to handle switch/case statements. For the purposes of this examination you may confine your
assembler to the opcodes in the table on page 7.

November 2001 - Computer Science 301 - Paper 2 7

Instruction set for stack machine

Several of these operations belong to a category known as zero address instructions. Even though operands are
clearly needed for operations such as addition and multiplication, the addresses of these are not specified by part
of the instruction, but are implicitly derived from the value of the stack pointer SP. The two operands are
assumed to reside on the top of the stack and just below the top; in our informal descriptions their values are
denoted by TOS (for "top of stack") and SOS (for "second on stack"). A binary operation is performed by popping
its two operands from the stack into (inaccessible) internal registers in the CPU, performing the operation, and
then pushing the result back onto the stack.

AND Pop TOS and SOS, and SOS with TOS, push result to form new TOS

ORR Pop TOS and SOS, or SOS with TOS, push result to form new TOS

ADD Pop TOS and SOS, add SOS to TOS, push sum to form new TOS

SUB Pop TOS and SOS, subtract TOS from SOS, push difference to form new TOS

MUL Pop TOS and SOS, multiply SOS by TOS, push product to form new TOS

DVD Pop TOS and SOS, divide SOS by TOS, push quotient to form new TOS

REM Pop TOS and SOS, divide SOS by TOS, push remainder to form new TOS

EQL Pop TOS and SOS, push 1 to form new TOS if SOS = TOS, 0 otherwise
NEQ Pop TOS and SOS, push 1 to form new TOS if SOS≠ TOS, 0 otherwise
GTR Pop TOS and SOS, push 1 to form new TOS if SOS > TOS, 0 otherwise
LSS Pop TOS and SOS, push 1 to form new TOS if SOS < TOS, 0 otherwise
LEQ Pop TOS and SOS, push 1 to form new TOS if SOS ≤ TOS, 0 otherwise
GEQ Pop TOS and SOS, push 1 to form new TOS if SOS ≥ TOS, 0 otherwise
NEG Integer negation of TOS
NOT Boolean negation of TOS

STK Dump stack to output (useful for debugging)
PRN Pop TOS and SOS, write SOS to output as an integer value in field width TOS

PRB Pop TOS and SOS, write SOS to output as a Boolean value in field width TOS

PRS A Write the nul-terminated string that is assumed to be stacked in the literal pool from Mem[A]

NLN Write a newline (carriage-return-line-feed) sequence
INN Read integer value, pop TOS, store the value that was read in Mem[TOS]

INB Read Boolean value, pop TOS, store the value that was read in Mem[TOS]

DSP A Decrement value of stack pointer SP by A

LIT A Push the integer value A onto the stack to form new TOS

ADR A Push the value BP + A onto the stack to form new TOS. (This value is conceptually the address
of a variable stored at an offset A within the stack frame pointed to by the base register BP.)

IND (Range checked indexing of array) Pop TOS to yield Size; pop TOS and SOS; if 0 ó TOS < Size

then subtract TOS from SOS, push result to form new TOS

INX (Unchecked indexing of array) Pop TOS and SOS, subtract TOS from SOS, push result to form new TOS

VAL (Dereferencing) Pop TOS, and push the value of Mem[TOS] to form new TOS

DUP Push TOS to form duplicate copy
STO Pop TOS and SOS; store TOS in Mem[SOS]

PPP Pop TOS and increment Mem[TOS] by 1
MMM Pop TOS and decrement Mem[TOS] by 1

HLT Halt
BRN A Unconditional branch to instruction A

BZE A Pop TOS, and branch to instruction A if TOS is zero
BAN A Branch to instruction A if TOS is false; else pop TOS

BOR A Branch to instruction A if TOS is true; else pop TOS

NOP No operation

The instructions in the first group are concerned with arithmetic and logical operations, those in the second group
afford I/O facilities, those in the third group allow for the access of data in memory by means of manipulating
addresses and the stack, and those in the last group allow for control of flow of the program itself.

November 2001 - Computer Science 301 - Paper 2 8

Computer Science 301 - November 2001 - Paper 2 - Answer sheet for Question 6.

Hand this page in with your answer book - fill in your student number clearly

COMPILER CheckIP $XCN

IGNORE CASE

IGNORE CHR(1) .. CHR(31)

CHARACTERS

digit = "0123456789" .

letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .

eol = CHR(10) .

COMMENTS FROM "#" TO eol

TOKENS

PRODUCTIONS

END CheckIP.

