November 2012 - Computer Science 301 - Paper 2
RHODES UNIVERSITY
November Examinations - 2012

Computer Science 301 - Paper 2

Examiners: Time 4 hours
Prof P.D. Terry Marks 180
Prof D.G. Kourie Pages 16 (please check!)

Answer all questions. Answers may be written in any medium except red ink.

A word of advice: The influential mathematician R.W. Hamming very aptly and succinctly professed that
"the purpose of computing is insight, not numbers".

Several of the questions in this paper are designed to probe your insight - your depth of understanding of
the important principles that you have studied in this course. If, as we hope, you have gained such insight,
you should find that the answers to many questions take only a few lines of explanation. Please don't write
long-winded answers - as Einstein put it "Keep it as simple as you can, but no simpler".

Good luck!

(For the benefit of future readers of this paper, various free information was made available to the students 24
hours before the formal examination. This included an augmented version of "Section C" - a request to devise a
simple calculator based on the Parva Virtual Machine interpreter system studied in the course. Some 16 hours
before the examination a complete grammar for a calculator and other support files for building this system were
supplied to students, along with an appeal to study this in depth (summarized in "Section D"). During the
examination, candidates were given machine executable versions of the Coco/R compiler generator, the files
needed to build the basic systems, access to a computer, and machine readable copies of the questions.)

November 2012 - Computer Science 301 - Paper 2
Section A: Conventional questions [100 marks 1]
QUESTION Al [10 marks]

(Compiler structure) A syntax-directed compiler usually incorporates various components, of which the
most important are the scanner, parser, constraint analyser, error reporter, code generator, symbol table
handler and I/O routines. Draw a diagram indicating the dependence of these components on one
another, and in particular the dependence of the central syntax analyser on the other components. Also
indicate which components constitute the front end and which the back end of the compiler. [10 marks]

QUESTION A2 [16 marks]

(Recursive descent parsers) The following Cocol grammar describes the form of an index to a textbook
and should be familiar from the practical course.

COMPILER Index $CN
/* Grammar describing index in a book
P.D. Terry, Rhodes University, 2012 */

CHARACTERS
/* Notice the careful and unusual choice of character sets */
digit = "0123456789" .
startword = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz('" + '"' .
inword = startword + digit + "-+)" .
eol = CHR(10) .
TOKENS

/* Notice the careful and unusual definition for word */

word = startword { inword } .
number = digit { digit » .
EOL = eol .

IGNORE CHR(O) .. CHR(9) + CHR(11) .. CHR(31)

PRODUCTIONS
Index = { Entry > EOF .
Entry = Key References EOL .
Key = word { "," word | word ¥ .
References = DirectRefs | CrossRef .
DirectRefs = PageRefs { "," PageRefs } .
PageRefs = ["Appendix" 1 number ["-" number 1 .
CrossRef = "--W Ugee" Key .
END Index .

Assume that you have available a suitable scanner method called getSym that can recognize the
terminals of Index and classify them appropriately as members of the following enumeration

EOFSym, noSym, EOLSym, wordSym, numberSym, appendixSym, commaSym,
dashSym, dashDashSym, seeSym

Develop a hand-crafted recursive descent parser for recognizing the index of a book based on the
grammar above. (Your parser can take drastic action if an error is detected. Simply call methods like
accept and abort fo produce appropriate error messages and then terminate parsing. You are not
required to write any code to implement the get Sym, accept or abort methods.) [16 marks]

QUESTION A3 [8+6+2+ 3+ 2+ 3 =24 marks]
(Grammars) Formally, a grammar G is defined by a quadruple { N, 7, S, P } with the four components
(a) N - afinite set of non-terminal symbols,
(b) T - afinite set of terminal symbols,
(c) § - aspecial goal or start or distinguished symbol,

(d) P - afinite set of production rules or, simply, productions.

where a production relates to a pair of strings, say « and 3, specifying how one may be transformed into
the other:

Page 2 of 16

November 2012 - Computer Science 301 - Paper 2

a—B where « e NUT)"NINUT) , Be WNUT)*

and we can then define the language L(G) produced by the grammar G by the relation

LG ={w| S="wAweT"}

(a) In terms of this style of notation, define precisely (¢that is to say, mathematically; we do not want a
long-winded essay) what you understand by [2 marks each]
(1) FIRST(o) where o0 e (NUT)*
(2) FOLLOW(A) where A ¢ N
(3) A context-free grammar
(4) A reduced grammar
(b) In terms of the notation here, concisely state the two rules that must be satisfied by the productions
of a context-free grammar in order for it to be classified as an LL(1) grammar. [6 marks]
(©) Describe the language generated by the following grammar, using English or simple mathematics.
[2 marks]
S— AB
A—- ad|a
B—- bBc| bc
(d) Is the grammar in (c) an LL(1) grammar? If not, why not, and can you find an equivalent grammar
that is LL(1)? [3 marks]
(e) The following grammar describes strings comprised of an equal number of the characters a and b,
terminated by a period, such as aababbba. Is this an LL(1) grammar? Explain. [2 marks]
S— B.
B—- aBbB|bBaB|¢
® "Keep it as simple as you can, but no simpler" said Einstein. Strings that might be members of the
language of (e) can surely be accepted or rejected by a very simple algorithm, without recourse to the
direct use of a grammar. Give such an algorithm, using a Java-like notation. [3 marks]
QUESTION A4 [16 marks]

(T diagrams) The process of "porting" a compiler to a new computer incorporates a retargetting phase
(modifying the compiler to produce target code for the new machine) and a rehosting phase (modifying
the compiler to run on the new machine). Illustrate these two phases for porting a C compiler, by
drawing a set of T diagrams. Assume that you have available the compilers (a) and (b) below and wish
to produce compiler (c). [16 marks]

(a) old Compiler Source (b) old Compiler Executable (c) New Compiler Executable
Ctoold.cC CtoOLD.O CtoNew.N
c -——==> 0oldMc c ----- > oldmc c - > NeuwMC
C oldmMc NewMC

(You may conveniently make use of the outline T-diagrams at the end of this paper; complete these and
attach the page to your answer book.)

Page 3 of 16

November 2012 - Computer Science 301 - Paper 2
QUESTION A5 [18 marks]

(Attributed Grammars in Cocol) XML (eXtensible Markup Language) is a powerful notation for marking
up data documents in a portable way. XML code looks rather like HTML code, but has no predefined
tags. Instead a user can create customized markup tags, similar to those shown in the following extract.

<l-- comment - a sample extract from an XML file -->
<personnel>
<entry>
<name>John Smith</name>
</entry>
<entry_2>
<name>Joan Smith</name>
<address/>
<gender>femaLe</gender>
<[entry 2>
</personnel>

An element within the document is introduced by an opening tag (like <personnel>) and terminated
by a closing tag (like </personnels), where the obvious correspondence in spelling is required. The
name within a tag must start with a letter or lowline character (_), and may then incorporate letters,
lowlines, digits, periods or hyphens before it is terminated with a > character. Between the opening and
closing tags may appear a sequence of free format fext (like John Smith) and further elements in
arbitrary order. The free format text may not contain a < character - this is reserved for the beginning of
atag. An empty element - one that has no internal members - may be terminated by a closing tag, or may
be denoted by an empty tag - an opening tag that is terminated by /> (as in <address/> in the above
example). Comments may be introduced and terminated by the sequences <! -- and --> respectively,
but may not contain the pair of characters - - internally (as exemplified above).

Develop a Cocol specification, incorporating suitable CHARACTER sets and TOKEN definitions for

(a) opening tags,
(b) closing tags,
(c) empty tags,

(d) free format text

and give PRODUCTIONS that describe complete documents like the one illustrated. You may do this
conveniently on the page supplied at the end of the examination paper.

Tags must be properly matched. A document like the following must be rejected

<bad.Tag>
This is valid internal text
<okayTag>
More internal stuff
</okayTag>
</badTag> <!-- badTag should have been written as bad.Tag -->

Show how your grammar should be attributed to perform such checks. [18 marks]

Incidentally, it should be noted that the full XML specification defines far more features than those
considered here!

QUESTION A6 [16 marks]
(Code generation) A BYT (Bright Young Thing) has been nibbling away at writing extensions to her
first Parva compiler. It has been suggested that a function that will return the maximum element from a
variable number of arguments would be a desirable addition, one that might form part of an expression as
in
a = max(x, y, z) + 5 - max(a, max(c, d));

and that this could be achieved by adding a keyword max, extending the production for a Factor in a

Page 4 of 16

November 2012 - Computer Science 301 - Paper 2

fairly obvious way, and adding a suitable opcode to the PVM. To refresh your memory, the production
for Factor in the simple Parva compiler is defined as follows:

Factor<out int type> (. int value = 0;
type = Types.noType;
int size;

DesType des;
ConstRec con; .)
= Designator<out des> (. type = des.type;
switch (des.entry.kind) {
case Kinds.Var:
CodeGen.dereference();
break;
case Kinds.Con:
CodeGen. loadConstant(des.entry.value);
break;
default:
SemError("wrong kind of identifier");
break;
YD
Constant<out con> (. type = con.type;
CodeGen. loadConstant(con.value); .)
| "new" BasicType<out type> (. type++; .)
"[" Expression<out size> (. if (lisArith(size))
SemError("array size must be integer");
CodeGen.allocate(); .)

II] n

"I" Factor<out type> (. if (lisBool(type)) SemError("boolean operand needed");
else CodeGen.negateBoolean();
type = Types.boolType; .)

"(" Expression<out type> ")"

while a sample of the opcodes in the PVM that deal with simple arithmetic and logic arithmetic are
interpreted with code of the form

case PVM.ldc: // push constant value
push(next());
break;

case PVM.add: // integer addition
tos = pop(); push(pop() + tos);
break;

case PVM.sub: // integer subtraction
tos = pop(); push(pop() - tos);
break;

case PVM.not: // logical negation
push(pop() == 0?21 : 0);
break;

Suggest, in as much detail as time will allow, how the Factor production and the interpreter would need
to be changed to support this language extension. Allow your max function to take one or more
arguments, and ensure that it can only be applied to arithmetic arguments. Assume that a suitable
CodeGen routine can be introduced to generate any new opcodes introduced. [16 marks]

Page 5 of 16

November 2012 - Computer Science 301 - Paper 2
Section B[80 marks]

Please note that there is no obligation to produce a machine readable solution for this section. Coco/R and other
files are provided so that you can enhance, refine, or test your solution if you desire. If you choose to produce a
machine readable solution, you should create a working directory, unpack EXAM.ZIP, modify any files that you
like, and then copy all the files back onto an exam folder on the network.

Your answers to the following questions should, whenever possible, take the form of actual code, and not
simply vague discussion.

QUESTION B7 [4 marks]
After studying the CalcPVM grammar that has been provided, you should realize that the compiler
derived from it takes a very casual approach to ensuring that the static semantics of the language are
obeyed. What, in general, do you understand by the concept of static semantics and what is the
difference between static semantics and syntax?

QUESTION B8 [6 marks]
The grammar makes no provision for checking that an expression on the right hand side of an assignment
must be of integer type, that the value returned by a function must be of integer type, and that the

arguments used in a function call must be of integer type. Modify it so that these checks will be carried
out.

QUESTION B9 [3+ 3 =6 marks]

(@) Can you use constants as arguments in a function call - for example

Fun(x, y) returns x + y;
write(Fun(200, 400));

Explain! If you think it is possible, might there be any constants that you could not use in this
way? Explain.

(b) Discuss (giving reasons) whether or not the above definition of Fun(x,y) can be followed by calls
like

Fun(y, x); // parameters seem to have been inverted

@
n

or

Fun(x, x); // the same parameter has been used twice

@
n

QUESTION B10 [8 + 4 =12 marks]
(@) The system as supplied makes no attempt to verify that the number of arguments supplied in a
function call is the same as the number of parameters specified in the function definition. Remedy

this deficiency.

(b) What might be the run-time effect of omitting this compile-time check if, for example, you compiled
and then ran a program of the form

Fun(x, y) returns x + y; /| two parameters

a = Fun(x) + Fun(x, y, z); // one and then three arguments

Page 6 of 16

November 2012 - Computer Science 301 - Paper 2

QUESTION B11 [3+ 8=11 marks]

(@) Should it be regarded as an error if a function appears not to refer to, or to use, some of its
parameters - for example

Fun(x, y, z) returns x;

Justify your answer.

(b) If you wished to alert a user to this situation, show the changes to the code needed to check for it.

QUESTION B12 [4+ 4= 8 marks]
Incorporate code that allows the system to detect and report erroneous function definitions like
Fun(x, y) returns x +y + z;
and

Fun(x, x) returns x * x;

QUESTION B13 [3+3+3=9 marks]

(a) Under what conditions can one function call another - in other words, can one write code like

Double(x) returns 2 * x;
Triple(x) returns x + Double(x);

(b) Given that there may be conditions in which this is possible, what would be the effect of using the
supplied system with the following code

Silly(x) returns 2 * Silly(x);
write ¢ Silly(x));

(c) What modification to the supplied system will prevent that sitly sort of behaviour? Explain.

QUESTION B14 [14 marks]

You may have wondered why it was suggested that you leave all the machinery for evaluating Boolean
expressions in place when the whole system seems geared to integers only. But consider - if we redefine
the form of a function specification to be

FunDefinition

= "(" ParamList ")"

"returns" Definition .
Definition

= Expression ";"
| "if" "(" Expression ")" ["returns"] Definition "else" ["returns"] Definition .

then we should presumably be allowed to write a recursive definition like

Factorial(n) returns if (n <= 0) returns 1; else returns n * Factorial(n - 1);

Add the necessary extensions to the system to incorporate this powerful feature.

Page 7 of 16

November 2012 - Computer Science 301 - Paper 2
QUESTION B15 [4+ 6 =10 marks]
(a) What would be the effect of replacing the syntax suggested in question B14 by
FunDefinition
= "(" ParamList ")"
"returns" Definition .
Definition
= Expression ";"
| "if" "(" Expression ")" Expression ";" "else" Expression ";" .
(b) What would be the effect of replacing the syntax suggested in question B14 by
FunDefinition
= "(" ParamList ")"
"returns" Definition .
Definition

= Expression ";"
"if" "(" Expression ")" Definition ["else" Definition 1 .

END OF EXAMINATION QUESTIONS

Page 8 of 16

November 2012 - Computer Science 301 - Paper 2
Section C
(Summary of free information made available to the students 24 hours before the formal examination.)

Candidates were provided with the basic ideas, and were invited to extend a version of the supplied calculator
grammar so as to define simple "one-liner" functions that could be incorporated into the evaluation of
expressions.

It was pointed out that the PVM supplied to them incorporated the codes needed to support function calls, on the
lines discussed in chapter 14 of the text book. Although there had been some discussion of the mechanisms in
lectures, there had been no room to explore these in the practical course. However, a CFG for the Parva language
(but devoid of attributes and actions) had been extended in an earlier practical, so candidates who had completed
that exercise should surely have seen the connection. A skeleton symbol table handler was provided, as was a
code generator virtually identical to the one they had seen previously.

They were provided with an exam kit for Java or C#, containing the Coco/R system, along with a suite of simple,
suggestive test programs. They were told that later in the day some further ideas and hints would be provided.

Section D
(Summary of free information made available to the students 16 hours before the formal examination.)

A complete grammar for a rudimentary solution to the exercise posed earlier in the day was supplied to candidates
in a later version of the examination kit. They were encouraged to study it in depth and warned that questions in
Section B would probe this understanding; few hints were given as to what to expect, other than that they might
be called on to comment on the solution, and perhaps to make some modifications and extensions. They were also
encouraged to spend some time thinking how any other ideas they had during the earlier part of the day would
need modification to fit in with the solution kit presented to them.

Free information

Summary of useful library classes

The following summarizes the simple set handling and I/O classes that have been useful in the development of
applications using the Coco/R compiler generator.

class IntSet { // simple set handling routines - There are matching versions for C#
public IntSet()
public IntSet(int ... members)
public Object clone()
public IntSet copy() {
public boolean equals(Symset s)
public void incl(int 1)
public void excl(int i)
public boolean contains(int i)
public boolean isEmpty()
public int members()
public IntSet union{(IntSet s)
public IntSet intersection(IntSet s)
public IntSet difference(IntSet s)
public IntSet symDiff(IntSet s)
public void write()
public String toString()

¥ /] IntsSet

public class OutFile { // text file output - There are matching versions for C#
public static OutFile Stdout
public static OutFile StdErr
public OutFile()
public OutFile(String fileName)
public boolean openError()

Page 9 of 16

November 2012 - Computer Science 301 - Paper 2

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

void write(String s)
void write(Object o)
void write(byte o)

void write(short o)

void write(long o)

void write(boolean o)
void write(float o)

void write(double o)
void write(char o)

void writeLine()

void writeLine(String s)
void writeLine(Object o)
void writeLine(byte o)
void writeLine(short o)
void writeLine(int o)
void writeLine(long o)
void writeLine(boolean o)
void writeLine(float o)
void writeLine(double o)
void writeLine(char o)

void write(String o, int
void write(Object o, int
void write(byte o, int
void write(short o, int
void write(int o, int
void write(long o, int
void write(boolean o, int

void write(float o, int
void write(double o, int
void write(char o, int
void writeLine(String o,
void writeLine(Object o,
void writeLine(byte o,
void writeLine(short o,
void writeLine(int o,
void writeLine(long o,
void writeLine(boolean o,
void writeLine(float o,
void writeLine(double o,
void writeLine(char o,
void close()

¥ // outFile

public class InFile {

public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public
public

static InFile StdIn
InFile()

InFile(String fileName)
boolean openError()
int errorCount()
static boolean done()
void showErrors()

void hideErrors()
boolean eof()

boolean eol()

boolean error()
boolean noMoreData()
char readChar()

void readAgain()

void skipSpaces()

void readLn()

String readstring()
String readString(int max)
String readLine()
String readWord()

int readInt()

int readInt(int radix)
long readlLong()

int readShort()

float readFloat()
double readbDouble()
boolean readBool()
void close()

} // InFile

width)
width)
width)
width)
width)
width)
width)
width)
width)
width)
int width)
int width)
int width)
int width)
int width)
int width)
int width)
int width)
int width)
int width)

/] text file input - There are matching versions for C#

Page 10 of 16

November 2012 - Computer Science 301 - Paper 2
Strings and Characters in Java

The following rather meaningless code illustrates various of the string and character manipulation methods that

are available in Java and which are useful in developing translators.

import java.util.*;

/1

char ¢, ¢1, ¢2;
boolean b, b1, b2;
String s, s1, s2;
int i, i1, i2;

= Character.isLetter(c);

= Character.isDigit(c);

= Character.isLetterOrDigit(c);
= Character.isWhitespace(c);
= Character.isLowerCase(c);
= Character.isUpperCase(c);
= Character.tolLowerCase(c);
= Character.toUpperCase(c);
= Character.toString(c);
s.length();

= s.equals(s1);

= s.equalsIgnoreCase(s1);

= s1.compareTo(s2);
s.trim();

= s.toUpperCase();
s.toLowerCase();

rL] ca = s.toCharArray();
s1.concat(s2);
s.substring(i1);
s.substring(i1, i2);
s.replace(c1, c2);
s.charAt(i);

s[il = ¢;

= s.index0f(c);

= s.index0f(c, i1);
.index0f(s1);
.index0f(s1, i1);

. lastIndex0f(c);

. lastIndex0f(c, i1);

. lastIndex0f(s1);

= s.lastIndex0f(s1, i1);

= Integer.parselnt(s);

= Integer.parselnt(s, i1);
= Integer.toString(i);

h

n o n

nmnn

OvwVvwY oV =L TT=0wOO0UTUTUTUTUTUT
n

17 Y T VPP P R
nn
wonnnon

StringBuffer
sb = new StringBuffer(),
sb1 = new StringBuffer("original");
StringBuilder
sb = new StringBuilder(),
sb1 = new StringBuilder("original");
sb.append(c);
sb.append(s);
sb.insert(i, ¢);
sb.insert(i, s);
b = sb.equals(sb1);
i sb. length();
i = sb.index0f(s1);
sb.delete(i1, i2);
sb.deleteCharAt(i1);
sb.replace(i1, i2, s1);
s = sb.toString();
¢ = sb.charAt(i);
sb.setCharAt(i, c¢);

StringTokenizer
st = new StringTokenizer(s, ".,");
st = new StringTokenizer(s, ".,",
while (st.hasMoreTokens())
process(st.nextToken());

Stringll]
tokens = s.split(".;");

for (i = 0; i < tokens.length; i++)
process(tokens[il);

true);

e T s e e T e e e e e e e T e e e e T T e e T e e e e e T e e e e e
B e it i i i e s Tt

S~

letter

digit

letter or digit
white space
true if lowercase

true if uppercase
equivalent lowercase
equivalent uppercase
convert to string

true if
true if
true if
true if

length of string
true if s == s1
true if s == s1, case irrelevant

i=-1,0,11if s1<=>s2
remove Leading/traiLing whitespace
equivalent uppercase string
equivalent lowercase string
create character array

s1 + s2

substring starting at s[i1]
substring s[Ci1 i2-11
replace all ¢1 by c2

extract i-th character of s

not allowed

position of ¢ in s[0 ...
position of ¢ in sLi1

position of s1 in s[0 ...
position of s1 in sLi1

last position of ¢ in s

last position of ¢ in s, <= i1
last position of s1 in s

last position of s1 in s, <= i1
convert string to integer
convert string to integer, base i1
convert integer to string

build strings (Java 1.4)

build strings (Jaba 1.5 and 1.6)

append ¢ to end of sb
append s to end of sb
insert ¢ in position i
insert s in position i

true if sb == sb1

length of sb

position of s1 in sb

remove sbli1 .. i2-1]

remove sbli1]

replace sb[i1 .. i2-1]1 by s1
convert sb to real string
extract sbli]

sblil = ¢

tokenize strings
delimiters are . and ,
delimiters are also tokens
process successive tokens

tokenize strings
delimiters are defined by a regexp
process successive tokens

Page 11 of 16

November 2012 - Computer Science 301 - Paper 2
Strings and Characters in C#

The following rather meaningless code illustrates various of the string and character manipulation methods that
are available in C# and which will be found to be useful in developing translators.

/] for stringBuilder
| for char

using System.Text;
using System;

char ¢, c¢1, c2;
bool b, b1, b2;
string s, s1, s2;
int i, i1, i2;

= Char.IsLetter(c);
= Char.IsDigit(c);
= Char.IsLetterOrDigit(c);
= Char.IsWhiteSpace(c);
= Char.IsLower(c);
= Char.IsUpper(c);
= Char.ToLower(c);
= Char.ToUpper(c);
= ¢.ToString();
= s.Length;
s.Equals(s1);
= String.Equals(s1, s2);
= String.Compare(s1, s2);
= String.Compare(s1, s2, true);
= s.Trim();
= s.ToUpper();
= s.ToLower();
har[]l ca = s.ToCharArray();
= String.Concat(s1, s2);
= s.Substring(i1);
= s.Substring(i1, i2);
= s.Remove(i1, i2);
= s.Replace(c1, c2);
= s.Replace(s1, s2);

= s[il;
// sCil = c;
= s.Index0f(c);
= s.Index0f(c, i1);
. Index0f(s1);
.Index0f(s1, i1);
.LastIndex0f(c);
.LastIndex0f(c, i1);
.LastIndex0f(s1);
= s.LastIndex0f(s1, i1);
= Convert.ToInt32(s);
= Convert.ToInt32(s, i1);
= Convert.ToString(i);

O VWYYV YO VYW TT =W OOTTTTOTOT
n

17 Y T P P PP R
nn
w o nnon

StringBuilder
sb = new StringBuilder(),
sb1 = new StringBuilder("original");
sb.Append(c);
sb.Append(s);
sb.Insert(i, c);
sb.Insert(i, s);
b = sb.Equals(sb1);
i = sb.Length;
sb.Remove (i1, i2);
sb.Replace(c1, c2);
sb.Replace(s1, s2);

s = sb.ToString();

¢ = sblil;

sbl[il = ¢;

charll delim = new charll {'a', 'b'};
stringl]l tokens;

tokens = s.Split(delim);

tokens = s.Split('."' ,':', 'a');

tokens = s.Split{(new charll {'+', '-'});

for (int i = 0; i < tokens.Length; i++)
Process(tokens[il);

e T e e e e e e e
B e e T et]

letter

digit

letter or digit

white space

true if lowercase

true if uppercase

equivalent lowercase

equivalent uppercase

convert to string

length of string

true if s == s1

true if s1 == s2

i=-1,0,1if s1<=>5s2
i=-1,0,1if s1 < = > s2, ignoring case
remove Leading/traiLing whitespace
equivalent uppercase string
equivalent lowercase string
create character array

s1 + s2

substring starting at sLCi1]
substring sLCi1 i1+i2-11
remove i2 chars from s[Ci1]
replace all ¢1 by c2
replace all s1 by s2
extract i-th character of s
not allowed

position of ¢ in s[0 ...
position of ¢ in sLi1
position of s1 in s[O ...
position of s1 in s[i1

last position of ¢ in s
last position of ¢ in s, <= i1
last position of s1 in s

last position of s1 in s, <= i1
convert string to integer

convert string to integer, base i1
convert integer to string

true if
true if
true if
true if

(i2 is Llength)

build strings

append ¢ to end of sb
append s to end of sb
insert ¢ in position i
insert s in position i
true if sb == sb1

length of sb

remove i2 chars from sb[i1]
replace all ¢1 by c2
replace all s1 by s2
convert sb to real string
extract sbli]

sblil = ¢

tokenize strings
delimiters are a and b
delimiters are . : and @
delimiters are + -7
process successive tokens

Page 12 of 16

November 2012 - Computer Science 301 - Paper 2

Simple list handling in Java

The following is the specification of useful members of a Java (1.5/1.6) list handling class

import java.util.*;

class ArraylList

/1

>

Class for constructing a list of elements of type E

public ArrayList<E>()
// Empty list constructor

public void add(E element)
Appends element to end of Llist

public void add(int index, E element)
Inserts element at position index

public E get(int index)
// Retrieves an element from position index

public E set(int index, E element)
| stores an element at position index

public void clear()
Clears all elements from Llist

public int size()
// Returns number of elements in Llist

public boolean isEmpty()
Returns true if Llist is empty

public boolean contains(E element)
// Returns true if element is in the Llist

public int indexOf(E element)
// Returns position of element in the Llist

public E remove(int index)
// Removes the element at position index

// ArrayList

Simple list handling in C#

The following is the specification of useful members of a C# (2.0/3.0) list handling class.

using System.Collections.Generic;

class List

// Class for constructing a Llist of elements of type E

>

public List<E> ()
// Empty Llist constructor

public int Add(E element)
// Appends element to end of Llist

public element this [int index] {set; get;
Inserts or retrieves an element in position index
// listlindex] = element; element = ListL[index]

public void Clear()
Clears all elements from Llist

public int Count { get; 2}
Returns number of elements in Llist

public boolean Contains(E element)
// Returns true if element is in the list

public int IndexOf(E element)
Returns position of element in the Llist

public void Remove(E element)
// Removes element from Llist

public void RemoveAt(int index)
// Removes the element at position index

/] List

Page 13 of 16

November 2012 - Computer Science 301 - Paper 2

Page deliberately left blank.

Page 14 of 16

November 2012 - Computer Science 301 - Paper 2

A4. T Diagrams for a compiler port Give your student number

Retargetting the compiler

Rehosting the compiler

Page 15 of 16

November 2012 - Computer Science 301 - Paper 2

AS. Cocol grammar for describing elements of an XML subset Give your student number

using Library;

COMPILER XML $CN
/* Parse a set of simple XML elements */

CHARACTERS
letter
incomment

" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijk Tmnopgrstuvwxyz" .
ANY - "-"

TOKENS
opentag =

closetag

emptytag =

text =

PRAGMAS /* We cannot use the comment feature of Cocol which only allows
two character delimiters */

comment = "<!--" { incomment | '-' incomment } "-->"
IGNORE CHR(O) .. CHR(31)
PRODUCTIONS
ML =
END XML.

Page 16 of 16

November 2012 - Computer Science 301 - Paper 2

This question was derived, but on the advice of our local shredding panel we have decided not to incorporate it.
Pity, becuase it is an excellent discriminator! It is included here merely to keep it in mind for future excercises.

QUESTION B17 [25 marks]

Mutually recursive functions cause problems for a system like this, which essentially requires "declare
before use" almost everywhere. One way around this problem is to allow for the use of "function
prototypes", as illustrated by

Fun(x, y); // notice that there is no "returns" clause here
Gun{(x, y) returns Fun(x, y); // Gun(x, y) knows that Fun(x,y) requires 2 arguments
Fun(x, y) returns Gun(x,y); // Fun(x,y) knows that Gun{(x, y) requires 2 arguments

and for which the syntax is described by a very simple modification

FunDefinition
= "(" ParamList ")"
("returns" Definition /] complete
| oy /] prototype only
) .
Definition
= Expression ";"
| "if" "(" Expression ")" Definition "else" Definition .

A full implementation of this idea would probably take longer than time allows, but discuss in general
terms how you would go about implementing it, and what precautions you would have to take to get it
correct.

Page 17 of 16

