November 2017 - Computer Science 301 - Paper 2

RHODES UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

EXAMINATIONS : NOVEMBER 2017
COMPUTER SCIENCE 301 - PAPER 2 - COMPILERS

Examiners: Duration: 4 hours
Internal : Prof P.D. Terry Marks: 180
External : Prof M. Kuttel Pages: 21 (please check!)

The Concise Oxford English Dictionary may be used during this examination.

There are fifteen (15) questions. Answer ALL questions. Answers may be written in any medium except
red ink, and are preferably written in the spaces provided on the question paper. You may use pencil, and
you may also answer the questions by editing the supplied electronic copies of this material.

Hand in all material at the end of the examination.

A word of advice: The influential mathematician R.W. Hamming very aptly and succinctly professed that
"the purpose of computing is insight, not numbers".

Several of the questions in this paper are designed to probe your insight - your depth of understanding of
the important principles that you have studied in this course. If, as we hope, you have gained such insight,
you should find that the answers to many questions take only a few lines of explanation. Please don't write
long-winded answers.

Good luck!

(For the benefit of future readers of this paper, various free information was made available to the students 24
hours before the formal examination. This included an augmented version of "Section C" - a request to devise a
simple Boolean expression compiler targetting the Parva Virtual Machine interpreter system studied in the course.
Some 16 hours before the examination a complete grammar for such a compiler and other support files for
building this system were supplied to students, along with an appeal to study this in depth (summarized in
"Section D"). During the examination, candidates were given machine executable versions of the Coco/R
compiler generator, the files needed to build the basic systems, access to a computer, and machine-readable
copies of the questions.)

DO NOT OPEN THIS PAPER UNTIL YOU ARE TOLD TO DO SO

November 2017 - Computer Science 301 - Paper 2
Section A: Conventional questions [90 marks]

QUESTION Al [8 marks]

(Compiler structure) A syntax-directed compiler usually incorporates various components, of which the
most important are the scanner, parser, constraint analyser, error handler/reporter, code generator,
symbol table handler and I/O routines. Draw a diagram indicating the dependence of these components
on one another, and in particular the dependence of the central syntax analyser on the other components.

[4 marks]
> Source Listing
Source —> Input/Output routines > Error Listing
Code | 35— Object Code File

|

Driver —>

For each component, indicate whether it it would be considered as belonging to the front end or the back

end of a compiler, and whether or not Coco/R could generate it from an attributed grammar (as opposed
to generating it in some other way). [4 marks]

Front or Generated by Coco/R?
Back End? Yes [/ No?

Scanner

Parser

Constraint Analyser

Error HandLer/Reporter

Code Generator

Symbol Table Handler

Page 2 of 21

November 2017 - Computer Science 301 - Paper 2

QUESTION A2 [8+6+3+4+2+ 5 =28 marks]

(Grammars) Formally, a grammar G is defined by a quadruple { N, T, S, P } with the four components

(@ N - afinite set of non-terminal symbols,

(b) T - afinite set of terminal symbols,

(¢) S -aspecial goal or start or distinguished symbol,

(d) P - afinite set of production rules or, simply, productions.

where a production relates to a pair of strings, say « and 3, specifying how one may be transformed into

the other:

a—=0 where « e NUT) " NINUT) , B e WUT)"
and we can then define the language L(G) produced by the grammar G by the relation
LG={w| S="wAweT"}

(a) In terms of this style of notation, define precisely (that is to say, mathematically; we do not want a
long essay or English description) what you understand by [2 marks each]

(1) FIRST(0) where 0 e (NUT)™*

(2) FOLLOW(A) where A4 ¢ N

(3) A context-free grammar

(4) A reduced grammar

(b) A student, asked for a concise statement of the rules that must be satisfied by the productions of a
context-free grammar in order for it to be classified as an LL(1) grammar, came up with the

answer on the next page:

Page 3 of 21

November 2017 - Computer Science 301 - Paper 2
For each non-terminal A4; « N that admits alternatives, two rules must be obeyed. If
e TR IR 77T IR 77 3 B
Rule 1 :
FIRST(§;;) N FIRST(¢;;) N FIRST(¢;3 N ... N FIRST(¢;,) = @
Rule 2 :
FIRST(4;)) N FOLLOW(4,) = <

While this is admirably concise, it may not be quite correct. Suggest how it might be
improved and/or corrected (quite simply). [6 marks]

(© Describe the language generated by the following grammar, using English or simple
mathematics. [3 marks]

S—= AB
A—- aAd|a
B- bBc|bc

(d) Is the grammar in (c) an LL(1) grammar? If not, why not, and can you find an equivalent
grammar that is LL(1)? [3 marks]

(e) This simple grammar describes strings comprised of an equal number of the characters a and b,
terminated by a period, such as aababbba. Is this an LL(1) grammar? Explain. [2 marks]

S— B.
B— aBbB|bBaB|¢

Page 4 of 21

November 2017 - Computer Science 301 - Paper 2
® "Keep it as simple as you can, but no simpler" said Einstein. Strings that might be
members of the language of (e) can surely be accepted or rejected by a very simple

algorithm, without recourse to the direct use of a grammar. Suggest such an algorithm,
using a high-level notation. [5 marks]

QUESTION A3 [24 marks]

(Recursive descent parsers) An index to a departmental guide might have entries exemplified by

abstraction, data 165, Appendix 1, 300-312
aegrotat examinations -- see unethical doctors
aggregate pass, chances of 0

class attendance, intolerable 12, 745

class members 38

deadlines, compiler course -- see sunrise

lectures missed 1, 3, 5-9, 12, 14-19, 21-25, 28
loss of DP certificate 2017

probable exclusion from Rhodes 2018

senility, onset of 21-24, 72

subminimum for aggregation 40

The following Cocol grammar describes the form of such an index:

COMPILER Index $CN
/* Grammar describing very simple index in a departmental guide */

CHARACTERS
digit = "0123456789"
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz"
eol = CHR(10) .
TOKENS
word = letter { letter > .
number = digit { digit ¥ .
EOL = eol .
IGNORE CHR(O) .. CHR(9) + CHR(11) .. CHR(31)
PRODUCTIONS
Index = { Entry ¥ EOF .
Entry = Key References EOL .
Key = word { "," word | word } .
References = DirectRefs | CrossRef .
DirectRefs = PageRefs { "," PageRefs } .
PageRefs = ["Appendix" number "," 1 number ["-" number 1
CrossRef = "——t tgee" Key .
END Index .

(a) Assume that you have available a suitable scanner method called Get Sym that can recognize the
terminals of Index and classify them appropriately as members of the following set

{ EOFSym, noSym, EOLSym, wordSym, numberSym, appendixSym,
commaSym, dashSym, dashDashSym, seeSym }

Page 5 of 21

November 2017 - Computer Science 301 - Paper 2

(b)

Compute the FIRST and FOLLOW sets of each of the following non-terminals in this grammar
(the first one has been done for you). [10 marks]

FIRST(Entry) { wordSym }
FOLLOW(Entry)
FIRST(References)

FOLLOW (References)
FIRST(PageRefs)

FOLLOW (PageRefs)

Develop a hand-crafted recursive descent parser for recognizing the index of this guide based on
the grammar above. (Your parser can take drastic action if an error is detected. Simply call
methods like Accept and Abort, familiar from your practical course, to produce appropriate
error messages and then terminate parsing. You are not required to write any code to implement
the GetSym, Accept or Abort methods.) [14 marks]

static void Index()
// Index = { Entry } EOF

} // Index

static void Entry() {
// Entry = Key References EOL

} // Entry

static void Key() {
// Key =word { "," word | word } .

} /7 Key

Page 6 of 21

November 2017 - Computer Science 301 - Paper 2

static void References() {
// References = DirectRefs | CrossRef .

} // References

static void DirectRefs()
// DirectRefs = PageRefs { "," PageRefs } .

} // DirectRefs

static void PageRefs() {
// PageRefs = ["Appendix" number "," 1 number ["-" number] .

} // PageRefs

static void CrossRef() {
// CrossRef = "--" "see" Key .

} // CrossRef

Page 7 of 21

November 2017 - Computer Science 301 - Paper 2

QUESTION A4 [4+4+ 3+ 3 =14 marks]

(T diagrams) The process of "porting" a compiler for an established language to a new computer
incorporates a retargetting phase (modifying the compiler to produce target code for the new machine)
and a rehosting phase (modifying the compiler to run on the new machine). Enlarge on aspects of the
process for porting a C compiler, by drawing a set of T diagrams. Assume that you have available the
compilers (a) and (b) below and wish to produce compiler (c).

(a) old Compiler Source (b) old Compiler Executable (c) New Compiler Executable
Ctoold.cC CtoOLD.O CtoNew.N
c -———=> oldMc [> oldmc c - > NewMC
c oldmMc NewMC

(a) Retarget the compiler. [4 marks]

(b) Rehost the compiler. [4 marks]

Page 8 of 21

November 2017 - Computer Science 301 - Paper 2

(c) Check a claim that the old compiler is a self-compiling compiler. [3 marks]

(d) Is the new compiler a self-compiling compiler? Justify your answer. [3 marks]

QUESTION A5 [16 marks]

(Attributed Grammars in Cocol) XML (eXtensible Markup Language) is a powerful notation for
marking up data documents in a portable way. XML code looks rather like HTML code, but has no
predefined tags. Instead, a user can create customized markup tags, similar to those shown in the
following extract.

<l-- comment - a sample extract from an XML file -->

<personnel>
<entry>
<name>John Smith</name>
</entry>
<entry_2>
<name>Joan Smith</name>
<address/>
<gender>female</gender>
</entry_2>
</personne >

An element within the document is introduced by an opening tag (like <personnel>) and terminated
by a closing tag (like </personnels>), where the obvious correspondence in spelling is required. The
name within a tag must start immediately with a letter or lowline character (_), and may then
incorporate letters, lowlines, digits, periods or hyphens before it is terminated with a > character.
Between the opening and closing tags may appear a sequence of free format zext (like John Smith) and
further elements in arbitrary order. The free format fext may not contain a < character - this is reserved
for the beginning of a tag. An empty element - one that has no internal members - may be terminated by
a closing tag, or may be denoted by an empty tag - an opening tag that is terminated by /> (as in
<address/ > in the above example). Comments may be introduced and terminated by the sequences
<!-- and --> respectively, but may not contain the pair of characters -- internally (as exemplified
above).

Page 9 of 21

November 2017 - Computer Science 301 - Paper 2
Develop a Cocol specification, incorporating suitable CHARACTER sets and TOKEN definitions for

(a) opening tags,
(b) closing tags,
(c) empty tags,

(d) free format text

and give PRODUCTIONS that can analyse complete documents like the one illustrated .
Tags must be properly matched. A document like the following must be rejected

<bad.Tag>
This is valid internal text
<okayTag>
More internal stuff
</okayTag>
</badTag> <!-- badTag should have been written as bad.Tag -->

Show how your grammar should be attributed to perform such checks. [16 marks]

Incidentally, it should be noted that the full XML specification defines far more features than those
considered here!

using Library;

COMPILER XML $CN
/* Parse a set of simple XML elements */

CHARACTERS
letter
incomment

" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi jk Tmnopgrstuvwxyz”
ANY - "=

TOKENS
opentag

closetag

emptytag

text

PRAGMAS /* We cannot use the comment feature of Cocol which only allows
two character delimiters */

comment = "<!--" { incomment | '-' incomment } "-->

IGNORE CHR(0) .. CHR(31)

Page 10 of 21

November 2017 - Computer Science 301 - Paper 2

PRODUCTIONS
ML =

END XML.

Section B[90 marks 1]

Please note that there is no obligation to produce a machine readable solution for this section. Coco/R and other
files are provided so that you can enhance, refine, or test your solution if you desire. If you choose to produce a
machine readable solution, you should create a working directory, unpack EXAM.ZIP, modify any files that you
like, and then copy all the files back onto an exam folder on the network.

Your answers to the following questions should, whenever possible, include actual code, and not
simply become a vague discussion.

QUESTION B6 [4 marks]
After studying the LogicCom grammar that has been provided, you should realize that the compiler
derived from it takes a very casual approach to ensuring that the static semantics of the language are

obeyed. What, in general, do you understand by the concept of static semantics and what is the
difference between static semantics and syntax?

Page 11 of 21

November 2017 - Computer Science 301 - Paper 2

QUESTION B7 [3+ 3 =6 marks]

(a) Can you use Boolean constants frue, false as arguments in a function call - for example

Fun(x, y) returns x or y;
write(Fun(true, false));

Justify your answer! If you think it is possible, might there be any constants that you could not
use in this way? Explain. [3 marks]

(b) Discuss (giving reasons) whether or not the above definition of Fun(x,y> can be followed by calls
like [3 marks]

Fun(y, x); // parameters seem to have been inverted

@
n

or

Fun(x, x); // the same parameter has been used twice

@
n

Page 12 of 21

November 2017 - Computer Science 301 - Paper 2
QUESTION B8 [8+ 3 =11 marks]
(a) The system as supplied makes no attempt to verify that the number of arguments supplied in a

function call is the same as the number of parameters specified in the function definition. Remedy
this deficiency. [8 marks]

(b) What might be the run-time effect of omitting this compile-time check if, for example, you
compiled and then ran the program [3 marks]

Fun(x, y) returns x or y; // two parameters

a = Fun(x) + Fun(x, y, z); // one and then three arguments

Page 13 of 21

November 2017 - Computer Science 301 - Paper 2
QUESTION B9 [2+ 10 = 12 marks]

(a) Should it be regarded as an error if a function appears not to refer to, or to use, some of its
parameters - for example

Fun(x, y, z) returns x;

Justify your answer. [2 marks]

(b) If you wished to warn a user of this situation, give the changes to the code that would be needed
to do so. [10 marks]

Page 14 of 21

November 2017 - Computer Science 301 - Paper 2
QUESTION B10 [8 marks]
Incorporate code that allows the system to detect and report erroneous function definitions like
Fun(x, y) returns x or y or z;
and

Fun(x, x) returns x and x;

[8 marks]

Page 15 of 21

November 2017 - Computer Science 301 - Paper 2
QUESTION B11 [2+ 3+ 5 =10 marks]
(a) Under what conditions can one function call another? For example, can one write code like [2 marks]

AND3(x, y, 2) returns x and y and z;
AND4(a, b, ¢, d) returns a and AND3(b, c, d);

(b) Given that there may be conditions in which this is possible, what would be the effect of using the
supplied system with the following code? [3 marks]

Silly(x) returns true and Silly(x);
write (Silly(x));

(c) What modification to the supplied system will prevent that silly sort of behaviour? Explain.
[5 marks]

Page 16 of 21

November 2017 - Computer Science 301 - Paper 2
QUESTION B12 [8 marks]
Code generation in the system supplied to you treats the and and or operators as binary infix

operators. Change the code generation to make use of "short circuit" semantics (hint: suitable
opcodes are already to be found in the supplied PVM). [8 marks]

Page 17 of 21

November 2017 - Computer Science 301 - Paper 2

QUESTION B13 [10 + 5 = 15 marks]

(@)

(b)

The Logic Lecturer is bound to make another appearance. This time his request is to be able to
use the traditional operators . + and ' as well as the words and or and not, to be able to use 0
and 1 as representations of false and true, and to be able to leave the and operator out altogether,
so that the following would be equivalent Boolean expressions [10 marks]

w and x and y or not z Ww.x y + 2z'

Implement a simple pragma $N so that one can write the value of an expression using either the
words false and true, or the digits 0 and 1. A truth table for x and y in each style could then
be obtained with the alternative code shown below. [5 marks]

writeLine(" x y x.y"); writeLine(" x y X.y");
loop x { loop x {
loop y € $N+ // use 0O and 1 loop y { $N- // default: use false and true
writeLine(x, Y, XaY); writeLine(x, Y, X.Y);
b b
X X
X y X.y X y X.y
0 0 0 false false false
0 1 0 false true false
1 0 0 true false false
1 1 1 true true true

Page 18 of 21

November 2017 - Computer Science 301 - Paper 2
QUESTION B14 [8 marks]

A danger in using the LoopStatement is that code in the loop might attempt to change the value of the
loop variable (this is known as "threatening" the control variable). For example, code like this could
prove troublesome:

Lloop x {
read(x);
X = not x;
b

Implement a system for detecting such threatening code at compile-time (and preventing such code from
being executed). [8 marks]

Page 19 of 21

November 2017 - Computer Science 301 - Paper 2
QUESTION B15 [8 marks]

Examination of the way in which the LoopStatement has been implemented might suggest that the compiler
writer has treated

loop x {
e /| code for the body of the loop goes here

X
as equivalent to

x = false;
repeat

X = not x;
until (x == false); // again

and that the code generated follows that template, leading to

LDC 0
STL X ; x = false;
start ; code for the body of the loop goes here
LDL X
NOT
STL X ; X = not x;
LDL X
LDC 0 ; false
CEQ ; x == false?
BZE start ; no - loop again
exit ; rest of code after Lloop

Show that this can easily be done more elegantly, and modify the code for the LoopStatement parser
accordingly. [8 marks]

END OF THE EXAMINATION QUESTIONS

Page 20 of 21

November 2017 - Computer Science 301 - Paper 2

Section C

(Summary of free information made available to the students 24 hours before the formal examination.)

Candidates were provided with the basic ideas, and were invited to devise a simple compiler based on a supplied
grammar to generate PVM code for evaluating Boolean expressions, ando then to extend this to allow a user to

define simple "one-liner" functions that could be incorporated into the evaluation of such expressions.

It was pointed out that the PVM supplied to them incorporated the codes needed to support function calls, on the
lines discussed in chapter 14 of the text book. A skeleton symbol table handler was provided, as was a
code generator virtually identical to the one they had seen previously.

They were provided with an exam kit for C#, containing the Coco/R system, along with a suite of simple,
suggestive test programs. They were told that later in the day some further ideas and hints would be provided.
Section D

(Summary of free information made available to the students 16 hours before the formal examination.)

A complete grammar for a rudimentary solution to the exercise posed earlier in the day was supplied to candidates
in a later version of the examination kit. They were encouraged to study it in depth and warned that questions in
the formal exam would probe this understanding; few hints were given as to what to expect, other than that they might
be called on to comment on the solution, and perhaps to make some modifications and extensions. They were also

encouraged to spend some time thinking how any other ideas they had during the earlier part of the day would
need modification to fit in with the solution kit presented to them.

END OF THE EXAMINATION PAPER

Page 21 of 21

