
RHODES UNIVERSITY

November Examinations - 2017

Computer Science 301 - Paper 2 - Compilers - Solutions

Examiners: Time 4 hours
Prof P.D. Terry Marks 180
Prof M. Kuttel Pages 16 (please check!)

Answer all questions. Answers may be written in any medium except red ink.

(For the benefit of future readers of this paper, various free information was made available to the students 24
hours before the formal examination. This included an augmented version of "Section C" - a request to devise a
simple Boolean expression compiler targetting the Parva Virtual Machine interpreter system studied in the course.
Some 16 hours before the examination a complete grammar for such a compiler and other support files for
building this system were supplied to students, along with an appeal to study this in depth (summarized in
"Section D"). During the examination, candidates were given machine executable versions of the Coco/R
compiler generator, the files needed to build the basic systems, access to a computer, and machine-readable
copies of the questions.)

Section A [90 marks]

QUESTION A1 [8 marks]

(Compiler structure) A syntax-directed compiler usually incorporates various components, of which the
most important are the scanner, parser, constraint analyser, error handler/reporter, code generator,
symbol table handler and I/O routines. Draw a diagram indicating the dependence of these components
on one another, and in particular the dependence of the central syntax analyser on the other components.
[4 marks]

TPPW
Q ��lPPPP> Source Listing

Source PPP>_����$ Input/Output routines ����������������������������lPPPP> Error Listing
Code Q � � ��������lPPPP> Object Code File

ZPP]
� � �
� � �
� �����������������4������������� �
� � Error Handler/Reporter � �
� ������������������������������� ����������������
� � � � � �
� � � � � �
� � � � ����������������� �
� � � � � �

�����4���������4����� � �������4����������������� ��������4������4��������
� Lexical Analyser � � � Symbol Table Handler � � Code Generator �
� (Scanner) � � � � � �
��������������������� � ������������������������� ������������������������

� � � �
� � � �

�����4����������������4���������������4������������������������4�����������
� Syntax Analyser (Parser) combined with Static Semantic Analyser �

Driver ��>� �
���

For each component, indicate whether it it would be considered as belonging to the front end or the back
end of a compiler, and whether or not Coco/R could generate it from an attributed grammar (as opposed
to generating it in some other way). [4 marks]

���������������������������,���������������,����������������������
� � Front or � Generated by Coco/R?�
� � Back End? � Yes / No? �
���������������������������<���������������<���������������������$
� Scanner � Front � Yes �
���������������������������<���������������<���������������������$
� Parser � Front � Yes �
���������������������������<���������������<���������������������$
� Constraint Analyser � Front � Yes �
���������������������������<���������������<���������������������$
� Error Handler/Reporter � Both (Front) � Yes �
���������������������������<���������������<���������������������$
� Code Generator � Back � No �
���������������������������<���������������<���������������������$
� Symbol Table Handler � Front � No �
���������������������������4���������������4����������������������

November 2017 - Computer Science 301 - Paper 2 2

QUESTION A2 [8 + 6 + 3 + 4 + 2 + 5 = 28 marks]

(Grammars) Formally, a grammar G is defined by a quadruple { N, T, S, P } with the four components

(a) N - a finite set of non-terminal symbols,
(b) T - a finite set of terminal symbols,
(c) S - a special goal or start or distinguished symbol,
(d) P - a finite set of production rules or, simply, productions.

where a production relates to a pair of strings, say ± and ², specifying how one may be transformed into
the other:

± � ² where ± � (N * T)* N (N * T)* , ² � (N * T)*

and we can then define the language L(G) produced by the grammar G by the relation

L(G) = { w | S Ò* w ' w T * }

(a) In terms of this style of notation, define precisely (that is to say, mathematically; we do not want a
long essay or English description) what you understand by [2 marks each]

(1) FIRST(Ã) where Ã � (N * T)+

a � FIRST(Ã) if Ã Ò* aÄ (a � T ; Ã , Ä � (N * T)+)

(2) FOLLOW(A) where A � N

a � FOLLOW(A) if S Ò* ¾Aa¶ (A, S � N ; a � T ; ¾ , ¶ � (N * T)*)

(3) A context-free grammar

All productions are of the form ± � ² where ± � N , ² � (N * T)*

(4) A reduced grammar

A context-free grammar is said to be reduced if, for each non-terminal B we can write

S Ò * ± B ²

for some strings ± and ² (B is reachable), and where

B Ò * ³

for some ³ � T * . (B can be derived to a sentence)

(b) A student, asked for a concise statement of the rules that must be satisfied by the productions of a
context-free grammar in order for it to be classified as an LL(1) grammar, came up with the
answer below:

For each non-terminal Ai � N that admits alternatives, two rules must be obeyed. If

Ai � ¾i1 | ¾i2 | ¾i3 | . . . ¾in

Rule 1 :

FIRST(¾i1)) FIRST(¾i2)) FIRST(¾i3))) FIRST(¾in) = �

Rule 2 :

FIRST(Ai)) FOLLOW(Ai) = �

November 2017 - Computer Science 301 - Paper 2 3

While this is admirably concise, it may not be quite correct. Suggest how it might be
improved and/or corrected (quite simply). [6 marks]

A better answer would be as follows

For each non-terminal Ai � N that admits alternatives

Ai � ¾i1 | ¾i2 | . . . ¾in

the sets of initial terminal symbols of all strings that can be generated from each of the alternative
¾ik must be disjoint, that is (Rule 1)

FIRST(¾ij)) FIRST(¾ik) = � for all j ` k

and, in addition (Rule 2)

For each nullable non-terminal Ai � N that admits alternatives

Ai � ¾i1 | ¾i2 | . . . ¾in

where ¾ik Ò ì for some k, the sets of initial terminal symbols of all sentences that can be
generated from each of the ¾ij for j ` k must be disjoint from the set FOLLOW(Ai) of
symbols that may follow any sequence generated from Ai, that is

FIRST(¾ij)) FOLLOW(Ai) = �, j ` k

or, rather more loosely,

FIRST(Ai)) FOLLOW(Ai) = �

One does not form one intersection of all the FIRST sets; and Rule 2 only applies when A is nullable.
These are both commonly misunderstood by students.

(c) Describe the language generated by the following grammar, using English or simple
mathematics. [2 marks]

S � A B
A � a A | a
B � b B c | bc

L = { am bn cn | m > 0, n > 0 }

(d) Is the grammar in (c) an LL(1) grammar? If not, why not, and can you find an equivalent
grammar that is LL(1)? [3 marks]

No it is not. The productions for A and B both break Rule 1. LL(1) grammars are easily written.
One is:

S � A B
A � a { a }
B � b { B } c

(e) The following grammar describes strings comprised of an equal number of the characters a
and b, terminated by a period, such as aababbba. Is it an LL(1) grammar? Explain.
[2 marks]

S � B .
B � a B b B | b B a B | ì

No it is not. B is nullable, and FIRST(B) = { a , b } = FOLLOW(B) so Rule 2 is broken

November 2017 - Computer Science 301 - Paper 2 4

(f) "Keep it as simple as you can, but no simpler" said Einstein. Strings that might be
members of the language of (e) can surely be accepted or rejected by a very simple
algorithm, without recourse to the direct use of a grammar. Suggest such an algorithm,
using a high-level notation. [5 marks]

int count = 0;
char ch = IO.ReadChar();
while (ch != '.') {

if (ch == 'a') count++;
else if (ch == 'b') count--;
else Abort("invalid string");
ch = IO.ReadChar();

}
if (count == 0) IO.Write("valid string"); else IO.Write("invalid string");

QUESTION A3 [24 marks]

(Recursive descent parsers) An index to a departmental guide might have entries exemplified by

abstraction, data 165, Appendix 1, 300-312
aegrotat examinations -- see unethical doctors
aggregate pass, chances of 0
class attendance, intolerable 12, 745
class members 38
deadlines, compiler course -- see sunrise
lectures missed 1, 3, 5-9, 12, 14-19, 21-25, 28
loss of DP certificate 2017
probable exclusion from Rhodes 2018
senility, onset of 21-24, 72
subminimum for aggregation 40

The following Cocol grammar describes the form of such an index:

COMPILER Index $CN
/* Grammar describing very simple index in a departmental guide */

CHARACTERS
digit = "0123456789" .
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
eol = CHR(10) .

TOKENS
word = letter { letter } .
number = digit { digit } .
EOL = eol .

IGNORE CHR(0) .. CHR(9) + CHR(11) .. CHR(31)

PRODUCTIONS
Index = { Entry } EOF .
Entry = Key References EOL .
Key = word { "," word | word } .
References = DirectRefs | CrossRef .
DirectRefs = PageRefs { "," PageRefs } .
PageRefs = ["Appendix" number ","] number ["-" number] .
CrossRef = "--" "see" Key .

END Index .

(b) Assume that you have available a suitable scanner method called GetSym that can recognize the
terminals of Index and classify them appropriately as members of the following set

{ EOFSym, noSym, EOLSym, wordSym, numberSym, appendixSym,

commaSym, dashSym, dashDashSym, seeSym }

Compute the FIRST and FOLLOW sets of each of the following non-terminals in this grammar
(the first one has been done for you). [10 marks]

FIRST(Entry) { wordSym }

FOLLOW(Entry) { EOFSym, wordSym }

November 2017 - Computer Science 301 - Paper 2 5

FIRST(References) { appendixSym, dashDashSym, numberSym }

FOLLOW(References) (EOLSym }

FIRST(PageRefs) { appendixSym, numberSym }

FOLLOW(PageRefs) { commaSym, EOLSym }

(b) Develop a hand-crafted recursive descent parser for recognizing the index of this guide based on
the grammar above. (Your parser can take drastic action if an error is detected. Simply call
methods like Accept and Abort, familiar from your practical course, to produce appropriate
error messages and then terminate parsing. You are not required to write any code to implement
the GetSym, Accept or Abort methods.) [14 marks]

static void Index() {
// Index = { Entry } EOF .

while (sym == wordSym) {
Entry();

}
Accept(EOFSym, "EOF expected");

} // Index

static void Entry() {
// Entry = Key References EOL .

Key(); References();
Accept(EOLSym, "entries must be terminated by end-of-line");

} // Entry

static void Key() {
// Key = word { "," word | word } .

Accept(wordSym, "word expected");
while (sym = commaSym || sym == wordsym) {

if (sym == commaSym) GetSym();
Accept(wordSym, "word expected");

}
} // Key

static void References() {
// References = DirectRefs | CrossRef .

switch(sym) {
case appendixSym:
case numberSym;

DirectRefs(); break;
case dashDashSym:

CrossRef(); break;
default: // this one tends to get "forgotten"

Abort("invalid reference");
}

} // References

static DirectRefs() {
// DirectRefs = PageRefs { "," PageRefs } .

PageRefs();
while (sym == commaSym) {

GetSym(); PageRefs();
}

} // DirectRefs

November 2017 - Computer Science 301 - Paper 2 6

static void PageRefs() {
// PageRefs = ["Appendix" number ","] number ["-" number] .
if (sym == appendixSym) {

GetSym();
Accept(numberSym, "number expected");
Accept(commaSym, "comma expected");

}
Accept(numberSym, "number expected");
if (sym == dashSym) {

GetSym();
Accept(numberSym, "number expected");

}
} // PageRefs

static CrossRef() {
// CrossRef = "--" "see" Key .

Accept(dashDashSym, "-- expected");
Accept(seeSym, "see expected");
Key();

} // CrossRefs

QUESTION A4 [4 + 4 + 3 + 3 = 14 marks]

(T diagrams) The process of "porting" a compiler to a new computer incorporates a retargetting phase
(modifying the compiler to produce target code for the new machine) and a rehosting phase (modifying
the compiler to run on the new machine). Illustrate these two phases for porting a C compiler, by
drawing a set of T diagrams. Assume that you have available the compilers (a) and (b) below and wish
to produce compiler (c). [16 marks]

(a) Old Compiler Source (b) Old Compiler Executable (c) New Compiler Executable

������������������������ ������������������������ ������������������������
� CtoOld.C � � CtoOLD.O � � CtoNew.N �
� � � � � �
� C ----> OldMC � � C -----> OldMC � � C -----> NewMC �
� � � � � �
�������� �������� �������� �������� �������� ��������

� � � � � �
� C � � OldMC � � NewMC �
� � � � � �
���������� ���������� ����������

Retargetting

�������������������������������� ��������������������������������
� CtoNew.C � � CtoNew.O �
� � � �
� C ------> NewMC � � C -------> NewMC �
� � � �
������������ �����������4��������4����������� ������������

� � CtoOld.O � �
Rewrite � � � � Intermediate
back � C � C -------> OldMC � OldMC � Cross
end of � � � � Compiler
CtoOld.C ���������4����������� �����������4���������

� � � �
� � OldMC � �
� � � �
� ���������� �
� ���������� �
� � OldMC � �
� ���������� �
� �

Rehosting � ���������������������
V �

�������������������������������� � ��������������������������������
� CtoNew.C � � � CtoNew.N �
� � � � �
� C -------> NewMC � � � C -------> NewMC �
� � V � �
������������ �����������4��������4����������� ������������

� � CtoNew.O � �
� � � � Desired
� C � C ------> NewMC � NewMC � Final
� � � � Compiler
���������4����������� �����������4���������

� �
� OldMC �
� �
����������
����������
� OldMC �
����������

November 2017 - Computer Science 301 - Paper 2 7

Check for being a self compiling compiler.

It should be. To test, try compiling the source of the old compiler with the executable supplied

for OldMC

�������������������������������� ��������������������������������
� CtoOld.C � � Self.O �
� � � �
� C -------> OldMC � � C -------> OldMC �
� � � �
������������ �����������4��������4����������� ������������

� � CtoOld.O � �
� � � �
� C � C ------> OldMC � OldMC �
� � � �
���������4����������� �����������4���������

� � �
� OldMC � �
� � <������������� If these two are the same
���������� we can claim it is a self
���������� compiling compiler
� OldMC �
����������

Is the new compiler also a self-compiling compiler?

It should be. To test, try compiling the source of the new compiler with the executable produced

in parts (a) and (b)

�������������������������������� ��������������������������������
� CtoNew.C � � Self.N �
� � � �
� C -------> NewMC � � C -------> NewMC �
� � � �
������������ �����������4��������4����������� ������������

� � CtoNew.N � �
� � � �
� C � C ------> NewMC � NewMC �
� � � �
���������4����������� �����������4���������

� � �
� NewMC � �
� � <������������� If these two are the same
���������� we can claim it is a self
���������� compiling compiler
� NewMC �
����������

QUESTION A5 [16 marks]

(Attributed Grammars in Cocol) XML (eXtensible Markup Language) is a powerful notation for marking
up data documents in a portable way. XML code looks rather like HTML code, but has no predefined
tags. Instead a user can create customized markup tags, similar to those shown in the following extract.

<!-- comment - a sample extract from an XML file -->
<personnel>

<entry>
<name>John Smith</name>

</entry>
<entry_2>

<name>Joan Smith</name>
<address/>
<gender>female</gender>

</entry_2>
</personnel>

An element within the document is introduced by an opening tag (like <personnel>) and terminated
by a closing tag (like </personnel>), where the obvious correspondence in spelling is required. The
name within a tag must start with a letter or lowline character (_), and may then incorporate letters,
lowlines, digits, periods or hyphens before it is terminated with a > character. Between the opening and
closing tags may appear a sequence of free format text (like John Smith) and further elements in
arbitrary order. The free format text may not contain a < character - this is reserved for the beginning of
a tag. An empty element - one that has no internal members - may be terminated by a closing tag, or may
be denoted by an empty tag - an opening tag that is terminated by /> (as in <address/> in the above
example). Comments may be introduced and terminated by the sequences <!-- and --> respectively,
but may not contain the pair of characters -- internally (as exemplified above).

November 2017 - Computer Science 301 - Paper 2 8

Develop a Cocol specification, incorporating suitable CHARACTER sets and TOKEN definitions for

(a) opening tags,
(b) closing tags,
(c) empty tags,
(d) free format text

and give PRODUCTIONS that describe complete documents like the one illustrated. You may do this
conveniently on the page supplied at the end of the examination paper.

Tags must be properly matched. A document like the following must be rejected

<bad.Tag>
This is valid internal text
<okayTag>

More internal stuff
</okayTag>

</badTag> <!-- badTag should have been written as bad.Tag -->

Show how your grammar should be attributed to perform such checks. [16 marks]

This problem is totally unseen, but straightforward

COMPILER XML $CN
/* Parse a set of simple XML elements (no attributes)

P.D. Terry, Rhodes University, 2017 */

CHARACTERS
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
lowline = "_" .

intag = letter + "0123456789_.-" .
intext = ANY - "<" .
incomment = ANY - "-" .

TOKENS
opentag = "<" (letter | lowline) { intag } ">" .
closetag = "</" (letter | lowline) { intag } ">" .
emptytag = "<" (letter | lowline) { intag } "/>" .
text = intext { intext } .

PRAGMAS
comment = "<!--" { incomment | '-' incomment } "-->" .

IGNORE CHR(0) .. CHR(31)

PRODUCTIONS
XML = Element { Element } .

Element = (. String open; .)
opentag (. open = token.val.Substring(1); .)
{ Element
| text
}
closetag (. if (!token.val.Substring(2).Equals(open))
SemError("mismatched tag"); .)
| emptytag .

END XML.

Incidentally, it should be noted that the full XML specification defines far more features than those
considered here.

Section B [90 marks]

Please note that there is no obligation to produce a machine readable solution for this section. Coco/R and other
files are provided so that you can enhance, refine, or test your solution if you desire. If you choose to produce a
machine readable solution, you should create a working directory, unpack EXAM.ZIP, modify any files that you
like, and then copy all the files back onto an exam folder on the network.

November 2017 - Computer Science 301 - Paper 2 9

QUESTION B6 [4 marks]

After studying the BoolPVM grammar that has been provided, you should realize that the compiler
derived from it takes a very casual approach to ensuring that the static semantics of the language are
obeyed. What, in general, do you understand by the concept of static semantics and what is the
difference between static semantics and syntax?

This is standard stuff. Syntax is concerned (usually) with context-free representation of statements and
programs, so that

A = B + C;

is a syntactically correct assignment, whereas

A = B + C +;

is not. Static semantics refers to those context-sensitive features that can be checked at compile time without
actually "executing" the program. So a set of statements like

int A;
string B;
bool C;
A = B + C;

while all being syntactically acceptable, would (probably) be meaningless, as addition of two disparate values
followed by assignment to an even more disparate target could have no sensible meaning.

QUESTION B7 [3 + 3 = 6 marks]

(a) Can you use the Boolean constants true, false as arguments in a function call - for example

Fun(x, y) returns x or y;

write(Fun(true, false));

Justify your answer! If you think it is possible, might there be any constants that you could not
use as arguments in this way? Explain. [3 marks]

Yes of course we can. A constant is just the simplest form of expression.

Perhaps the second part is a trick question. The grammar they have been given does not define any other
constants, except string constants. I suspect to find answers that mention integer constants like 1234, rather than
strings, which tend to be forgotten in Parva. A later question might lead to the correct answer that the Boolean
constants 0 and 1 could be made permissible (see question B13).

(b) Discuss (giving reasons) whether or not the above definition of Fun(x,y) can be followed by calls
like [3 marks]

a = Fun(y, x); // parameters seem to have been inverted

or

a = Fun(x, x); // the same parameter has been used twice

Any student who gets this wrong does not deserve to have made it through to third year. Yes, both calls are valid.
It is the value of an expression that is being passed, not the address of one, and an argument specified by a single
variable is a very simple form of expression.

QUESTION B8 [8 + 3 = 11 marks]

(a) The system as supplied makes no attempt to verify that the number of arguments supplied in a
function call is the same as the number of parameters specified in the function definition. Remedy
this deficiency. [8 marks]

November 2017 - Computer Science 301 - Paper 2 10

This requires a bit more work. The symbol table entry for a function needs to record the number of formal
parameters for each function, and this needs to be checked when we parse an argument list.

FunDefinition (. string name;
int nParams; .)

= FunName<out name> (. varTable = new VarTable(); .)
"(" ParamList<out nParams> WEAK ")" (. Label entryPoint = new Label(known);
FunTable.AddEntry(new FunEntry(name,

nParams,
entryPoint)); .)

"returns" Definition (. CodeGen.FunctionTrap(); .) .

ParamList<out int nParams> (. char name;
nParams = 0; .)
= [Variable<out name> (. varTable.Add(name); nParams++; .)
{ WEAK "," Variable<out name> (. varTable.Add(name); nParams++; .)

}
] .

FunctionCall (. String name; .)
= FunName<out name> (. FunEntry entry = FunTable.findEntry(name);

if (!entry.defined)
SemError("unknown function");

CodeGen.frameHeader(); .)
"(" ArgumentList<entry.nParams>

WEAK ")" (. CodeGen.call(entry.entryPoint); .) .

ArgumentList<int args>
= [Expression (. args--;
{ WEAK "," Expression (. args--;
}] (. if (args != 0)
SemError("formal/actual parameter mismatch"); .)

Another solution that did not occur to me at first, but might be suggested by candidates is:

FunDefinition (. string name; .)
= FunName<out name> (. varTable = new VarTable(); .)

"(" ParamList WEAK ")" (. Label entryPoint = new Label(known);
FunTable.AddEntry(new FunEntry(name,

varTable.varList.Count,
entryPoint)); .)

"returns" Definition (. CodeGen.FunctionTrap(); .) .

(b) What might be the run-time effect of omitting this compile-time check if, for example, you
compiled and then ran the program [3 marks]

Fun(x, y) returns x or y; // two parameters

a = Fun(x) + Fun(x, y, z); // but then called with one and then three arguments

If Fun(x, y) is called with two few arguments, the effect is to OR two values, the first of which will be the value
of the argument x, and the second of which will be whatever value happens to be in the stack element that should
have been initialised to the value of the missing second argument. So the effect is to produce a wrong, generally
unpredictable answer. If Fun (x,y) is called with too many arguments, the extra ones will be pushed onto the
stack in positions that the function will never address, and so the effect will be to return the OR of the first two
arguments only.

I thought at first that the stack pointer would be corrupted. In fact this does not happen, because of the way in
which the CALL and RET codes are interpreted. The stack and frame pointer are saved in the frame header, and
restored from this later. If they had been manipulated using the count of the actual arguments rather than the
count of the formal arguments, trouble would have soon followed. So the design of the PVM has been safe after
all, but it is still sensible to modify the system to compare the counts.

November 2017 - Computer Science 301 - Paper 2 11

QUESTION B9 [2 + 10 = 12 marks]

(a) Should it be regarded as an error if a function appears not to refer to, or to use, some of its
parameters - for example

Fun(x, y, z) returns x;

Justify your answer. [2 marks]

There is no problem at all - just as any program might declare variables or define methods that are never used, no
harm is done (other than wasting a bit of space).

(b) If you wished to warn a user of this situation, give the changes to the code that would be needed
to do so. [10 marks]

This can be done with a slight hack to the symbol table, as below. It cannot be done by simply counting the
number of times the Find method is called, as some candidates might try:

class Entry {
public char name;
public int offset;
public int level = local;

public bool used = false;

public Entry(char name, int offset) {
this.name = name;
this.offset = offset;

this.used = false;

} // constructor

public override string ToString() {
return name + " " + offset + " " + used;

} // ToString

} // Entry

class VarTable {
// Symbol tables for single letter variables and parameters

List<Entry> varList = new List<Entry>();

Entry sentinel = new Entry('?', 0);

public Entry Find(char name) {
// Searches table for an entry matching name.
// If found then returns the corresponding entry

for (int look = 0; look < varList.Count; look++)
if (varList[look].name == name) {

varList[look].used = true;
return varList[look];

}
Parser.SemError("undeclared");
return sentinel;

} // VarTable.Find

public void CheckUnused() {
// Checks for unreferenced parameters
for (int i = 0; i < varList.Count; i++)
if (!varList[i].used)
Parser.Warning("parameter " + varList[i].name + " never referenced");
} // VarTable.CheckUnused

} // end VarTable

and to the grammar

November 2017 - Computer Science 301 - Paper 2 12

FunDefinition (. string name;
int nParams; .)

= FunName<out name> (. varTable = new VarTable(); .)
"(" ParamList<out nParams> WEAK ")" (. Label entryPoint = new Label(known);

FunTable.AddEntry(new FunEntry(name,
nParams,
entryPoint)); .)

returns" Definition (. CodeGen.FunctionTrap();
varTable.CheckUnused(); .) .

QUESTION B10 [8 marks]

Incorporate code that allows the system to detect and report erroneous function definitions like

Fun(x, y) returns x or y or z;

and

Fun(x, x) returns x and x;

[8 marks]

The first of these require no additions - the reference to parameter z will simply show up as undeclared in any
case, as the code for this check was provided in the supplied table handler class.

The second one requires that the AddVar method requires a preliminary check for a repeated parameter name:

public void AddVar(char name) {
// Adds an entry, computing what its offset would be in a stack frame

for (int look = 0; look < varList.Count; look++)
if (varList[look].name == name) {
Parser.SemError("redeclared");
return;
}

varList.Add(new VarEntry(name, varList.Count + PVM.headerSize));
} // AddVar

QUESTION B11 [2 + 3 + 5 = 10 marks]

(a) Under what conditions can one function call another? For example, can one write code like [2 marks]

AND3(x, y, z) returns x and y and z;

AND4(a, b, c, d) returns a and AND3(b, c, d);

Yes, one can write code like this provided that a function refers only to functions that have already been defined.

(b) Given that there may be conditions in which this is possible, what would be the effect of using the
supplied system with the following code

Silly(x) returns 2 * Silly(x);

write (Silly(x));

The system will enter an infinite recursive "loop" and eventually collapse with a stack overflow.

(c) What modification to the supplied system will prevent that Silly sort of behaviour? Explain.
[5 marks]

One can do this by delaying the addition to the Function Table until after the Definition has been parsed:

FunDefinition (. string name;
int nParams; .)

= FunName<out name> (. varTable = new VarTable(); .)
"(" ParamList<out nParams> WEAK ")" (. Label entryPoint = new Label(known); .)
"returns" Definition (. FunTable.AddFun(new FunEntry(name, nParams, entryPoint));

varTable.CheckUnused();
CodeGen.FunctionTrap(); .) .

November 2017 - Computer Science 301 - Paper 2 13

There are several other ways of doing it, for example, when parsing a function call to check that the name of the
function being called is not the same as the name of the function being defined:

QUESTION B12 [8 marks]

Code generation in the system supplied to you treats the and and or operators as binary infix
operators. Change the code generation to make use of "short circuit" semantics (hint: suitable
opcodes are already to be found in the supplied PVM). [8 marks]

This is very easy if you are really familiar with the Parva compiler.

Expression
= AndExp (. Label shortCircuit = new Label(!known); .)
{ ("or" | "+") (. CodeGen.BooleanOp(shortCircuit, CodeGen.or); .)
AndExp
} (. shortCircuit.Here(); .) .

AndExp
= EqlExp (. Label shortCircuit = new Label(!known); .)
{ ["and" | "."] (. CodeGen.BooleanOp(shortCircuit, CodeGen.and); .)
EqlExp
} (. shortCircuit.Here(); .) .

QUESTION B13 [10 + 5 = 15 marks]

(a) The Logic Lecturer is bound to make another appearance. This time his request is to be able to
use the traditional operators . + and ' as well as the words and or and not, to be able to use 0
and 1 as representations of false and true, and to be able to leave the and operator out altogether,
so that the following would be equivalent Boolean expressions [10 marks]

w and x and y or not z w.x y + z'

The modifications for and and or are included in the solution to Question B12. The remaining changes are

NotExp
= Factor { "'" (. CodeGen.NegateBoolean(); .)
}

| "not" Factor (. CodeGen.NegateBoolean(); .) .

Constant<out int value> (. value = FALSE; .)
= ("true" | "1") (. value = TRUE; .)
| ("false" | "0") (. value = FALSE; .) .

(b) Implement a simple pragma $N so that one can write the value of an expression using either the
words false and true, or the digits 0 and 1. A truth table for x and y in each style could then
be obtained with the alternative code shown below. [5 marks]

writeLine(" x y x.y"); writeLine(" x y x.y");
loop x { loop x {

loop y { $N+ // use 0 and 1 loop y { $N- // default: use false and true
writeLine(x, y, x.y); writeLine(x, y, x.y);

} }
} }

x y x.y x y x.y

0 0 0 false false false
0 1 0 false true false
1 0 0 true false false
1 1 1 true true true

We add to the PRAGMA section
PRAGMAS

...
NumericOn = "$N+" . (. numeric = true; .)
NumericOff = "$N-" . (. numeric = false; .)

and then modify the WriteElement actions:

November 2017 - Computer Science 301 - Paper 2 14

WriteElement (. string str; .)
= StringConst<out str> (. CodeGen.WriteString(str); .)

| Expression (. if (numeric) CodeGen.Write(Types.intType);
else CodeGen.Write(Types.boolType); .) .

QUESTION B14 [8 marks]

A danger in using the LoopStatement is that code in the loop might attempt to change the value of the
loop variable (this is known as "threatening" the control variable). For example, code like this could
prove troublesome:

loop x {

read(x);

x = not x;

}

Implement a system for detecting such threatening code at compile-time (and preventing such code from
being executed). [8 marks]

This can be done by adding another field mutable (changeable) to an entry in the varTable.

The field is set true when the table entries are first made. However. when a variable is identified as a loop
control, the value of its mutable field is saved, and then set to false. The sections in the grammar where a
variable might be altered then incorporate a test of this field, which is restored again at the end of generating
code for the loop.

LoopStatement (. char name; .)
= "loop"

Variable<out name> (. Entry var = varTable.Find(name);
if (!var.mutable)
SemError("loop variable may not be altered");
bool mutable = var.mutable; // save
var.mutable = false; // protect
Statement (. var.mutable = mutable; /* restore */ .) .

Assignment (. char name; .)
= Variable<out name> (. Entry var = varTable.Find(name);

if (!var.mutable)
SemError("loop variable may not be altered"); .)

"=" Expression (. CodeGen.StoreValue(var); .)
WEAK ";".

ReadElement (. string str;
char name; .)

= StringConst<out str> (. CodeGen.WriteString(str); .)
| Variable<out name> (. Entry var = varTable.Find(name);

if (!var.mutable)
SemError("loop variable may not be altered");

CodeGen.LoadAddress(var);
CodeGen.Read(Types.boolType); .) .

QUESTION B15 [8 marks]

Examination of the way in which the LoopStatement has been implemented might suggest that the compiler
writer has treated

loop x {
... // code for the body of the loop goes here

}

as equivalent to

x = false;
repeat

...
x = not x;

until (x == false); // again

November 2017 - Computer Science 301 - Paper 2 15

and that the code generated follows that template, leading to

LDC 0
STL x ; x = false;

start ; code for the body of the loop goes here
LDL x
NOT
STL x ; x = not x;
LDL x
LDC 0 ; false
CEQ ; x == false?
BZE start ; no - loop again

exit ; rest of code after loop

Show that this can easily be done more elegantly, and modify the code for the LoopStatement parser
accordingly. [8 marks]

There are probably several ways of cutting down on the amount of generated code. Here is one of them

LDC 0
STL x ; x = false;

start ; code for the body of the loop goes here
LDL x ; push current value of x to await later test
LDC 1
STL x ; x = true; ready for next iteration of loop
BZE start ; retrieve previous x from TOS for this test

exit ; rest of code after loop

for which the code generation could be accomplished as follows:

LoopStatement (. char name; .)
= "loop"

Variable<out name> (. Entry var = varTable.Find(name);
if (!var.mutable)

SemError("loop variable may not be altered");
CodeGen.LoadConstant(0);
CodeGen.StoreValue(var);
bool mutable = var.mutable; // save
var.mutable = false;
Label startLoop = new Label(known); .)

Statement (. CodeGen.LoadValue(var);
CodeGen.LoadConstant(TRUE);
CodeGen.StoreValue(var);
CodeGen.BranchFalse(startLoop);

var.mutable = mutable; /* restore */ .) .

Section C

(Summary of free information made available to the students 24 hours before the formal examination.)

Candidates were provided with the basic ideas, and were invited to devise a simple compiler based on a supplied
grammar to generate PVM code for evaluating Boolean expressions, ando then to extend this to allow a user to
define simple "one-liner" functions that could be incorporated into the evaluation of such expressions.

It was pointed out that the PVM supplied to them incorporated the codes needed to support function calls, on the
lines discussed in chapter 14 of the text book. A skeleton symbol table handler was provided, as was a code
generator and PVM identical to the one they had seen previously.

They were provided with an exam kit for C#, containing the Coco/R system, along with a suite of simple,
suggestive test programs. They were told that later in the day some further ideas and hints would be provided.

November 2017 - Computer Science 301 - Paper 2 16

Section D

(Summary of free information made available to the students 16 hours before the formal examination.)

A complete grammar for a rudimentary solution to the exercise posed earlier in the day was supplied to candidates
in a later version of the examination kit. They were encouraged to study it in depth and warned that questions in
the formal exam would probe this understanding; few hints were given as to what to expect, other than that they
might be called on to comment on the solution, and perhaps to make some modifications and extensions. They
were also encouraged to spend some time thinking how any other ideas they had during the earlier part of the day
would need modification to fit in with the solution kit presented to them.

