
RHODES UNIVERSITY

June Examinations - 1997

Computer Science 301 - Paper 2
Examiners: Time 3 hours

Prof P.D. Terry Marks 180

Prof D. Kourie

Answer all questions. Answers may be written in any medium except red ink.

(For the benefit of future readers of this paper, various free information was made available to the students 24

hours before the formal examination. This included the full text of Section B. During the examination, candidates

were given machine executable versions of the Coco/R compiler generator, and access to a computer.)

Section A [120 marks]

A1 Briefly explain the differences between each pair of concepts below:

(a) Self resident compilers and cross compilers

(b) Phrase structure and lexical structure

(c) Scope and extent of identifiers

[9]

A2 Draw a diagram outlining the relationship between the various phases that occur in compilation, and briefly

describe the responsibility of each phase.

[10]

A3 Draw T-diagrams that represent the processes that are used in the compiler generator/compiler/interpreter

system that you have developed in the practicals of this course.

[8]

A4 A grammar G may be described by a 4-tuple.

(a) Name, and briefly describe, each component of this 4-tuple.

(b) In terms of your notation, define precisely (mathematically) what is meant by a language L defined

on the grammar G.

(c) Define precisely (mathematically) what conditions must be satisfied by G to ensure that it is a

"reduced grammar".

[6, 3, 3]

A5 What do you understand by the concepts "ambiguous grammars" and "equivalent grammars"? Illustrate your

answer by giving a simple example of an ambiguous grammar, and of an equivalent non-ambiguous

grammar.

[8]

A6 Explain what is meant by the FIRST and FOLLOW sets as applied to grammar analysis, and in terms of

these state the rules that a grammar must obey for it to be LL(1).

[8]

June 1997 - Computer Science 301 - Paper 2 2

A7 You should be familiar with the use of the CASE statement in Modula-2. (A few examples of syntactically

correct CASE statements appear in appendix A so as to refresh your memory.)

(a) Describe the form of a CASE statement in EBNF. You do not need to give productions for Statement

or for Expression, but you should give detailed productions for any other non-terminals you

introduce.

(b) Does your set of productions satisfy the LL(1) critera? Explain in detail.

(c) When a Modula-2 compiler translates a CASE statement it must check not only that the syntax is

correct, but also that various static semantic constraints have been met. Identify at least two of these

constraints.

[8, 8, 4]

A8 Appendix B shows an extract from a simple recursive descent compiler that handles compilation of a simple

if - then statement. Suppose the statement syntax were to be extended to

IfStatement = "IF" Condition "THEN" StatementSequence

["ELSIF" Condition "THEN" StatementSequence]

["ELSE" StatementSequence]

"END" .

How would the IfStatement routine in the compiler have to be changed to accommodate this?

[18]

A9 Appendix C shows a simple recursive Clang program for reading and sorting a list of 6 numbers using a

selection sort algorithm.

(a) Indicate how a symbol table might appear when compilation had proceeded as far as the point

indicated by the comment.

(b) Discuss the run-time appearance of the stack if this program were to have been translated by the

compiler studied in the course, at the stage where the SelectionSort routine had made the first

recursive call to itself, and had just called the function MaxPos. You may assume either of the two

possibilities - using a static link, or using a display. (Indicate clearly which you are describing.)

(c) Discuss briefly the advantages and disadvantages of using the static link as opposed to the display

method for storage management.

[9, 12, 6]

June 1997 - Computer Science 301 - Paper 2 3

SECTION B [60 Marks]

Please note that there is no obligation to produce a machine readable solution for this section. Coco/R and other

files are provided so that you can enhance, refine, or test your solution if you desire. If you choose to produce a

machine readable solution, you should create a working directory, unpack EXAMM.ZIP (Modula-2) or

EXAMC.ZIP (C++), modify any files that you choose, and then copy all the files back to the blank diskette that

will be provided. In this case it would help if you were to highlight your changes with +++++++++

comments ++++++++ .

The manufacturers of a range of pocket calculators are anxious to prototype their latest idea. This is for what is

essentially a four function calculator with an extensive set of memory cells. Input to the calculator is to be in the

form of what programmers would recognise as a list of assignment statements and print statements, terminated by

QUIT, for example

X := 4

Z := 15.4

Y := 12.5 / (5 * X + 6 * Z)

PRINT X, Y, - Z - X

QUIT

However, the calculator has some interesting features:

The user may choose his or her names for memory cells (variables) "on the fly". They do not have to be

predeclared - effectively they are "declared" when they are first encountered on the left of an assignment

statement. Until such time as they have a value assigned to them, all variables are deemed to have "undefined"

values and be of unknown type. If an attempt is made to evaluate an expression containing undefined values, this

is to be reported as erroneous. Thus similar input to the above, but of the form

X := 4

Y := 12.5 / (5 * X + 6 * Z)

Z := 15.4

PRINT X, Y, - Z - X

would be erroneous, as Z has not been defined by the time the second assignment is encountered.

The calculator is to be intelligent enough to work in either integer or real (floating point) mode. Expressions

whose operands consist only of integer literals (or variables currently known to store integer values) and whose

operators are limited to + - * and DIV are to be evaluated in integer mode, while expressions containing any

operands of real type, and operators including + - * and / are to be evaluated in real mode. (DIV thus

denotes familiar integer "divide and truncate" operation, / denotes floating point division).

When a value is assigned to a variable, the type of that variable is determined. Note that this type may be altered

by a later assignment. Thus the sequence

ABC := 5 + 12 DIV 3

ABC := - (5.2 + ABC)

first assigns the integral value 9 to ABC, and then later assigns the value -14.2 to ABC, changing the type to real.

Although promotion of types in mixed mode expressions such as those given earlier happens automatically much

as is done in C++ or Pascal, two functions are provided to allow users explicitly to convert operand values from

one type to another. These are exemplified in the expressions below:

ANNE := REAL(5 + 6 * 7) - 3.5

(* ANNE is assigned 47.0 - 3.5 = real 43.5 *)

BOB := INTEGER(6.3 / 2) + 5

(* BOB is assigned 3 + 5 = integer 8 *)

That is, REAL(i) simply converts the value of its integer argument i to the corresponding real value, while

INTEGER(r) converts its real argument r to the closest integer value, truncating where necessary.

June 1997 - Computer Science 301 - Paper 2 4

It is considered erroneous to apply the REAL function to an argument that has been evaluated to be of real type,

to apply the INTEGER function to an argument that is of integer type, or to apply the DIV operation when either

or both operands are of real type.

To illustrate the automatic promotion of types, the statements

X := 4

Z := 15.4

Y := 12.5 / (150 DIV X + 6 * Z)

are thus equivalent to

X := 4

Z := 15.4

Y := 12.5 / (REAL(150 DIV X) + REAL(6) * Z)

The calculator manufacturers (BPSFH (Pty) Ltd) have heard of Coco/R, and have been led to believe that it can be

used to develop a program that will simulate the action of the calculator, reading input expressions from a file,

and producing syntactic and semantic analysis of this in a listing file, and the results of the calculations in an

output file. They are offering a substantial reward - 33% of a semester credit in Computer Science at a well

known university - to anyone who can convince them of this.

Take up the challenge. Being open minded, the firm is prepared to accept implementations written in either

Modula-2 or C++, of course. They are also prepared to accept a fairly simple-minded approach to implementing

the structure needed to handle the user-defined names for memory locations (for example, limiting this to a linear

bounded array). And, since they have a licensed copy of Coco/R, they are prepared to accept submissions in the

form of a Cocol attribute grammar plus any support modules needed, either on diskette or simply written on

paper.

(The complete attribute grammar may turn out to be rather long. For examination purposes it will suffice to write

out enough of the attributes for an intelligent examiner to be convinced that you could actually implement the

entire system; be careful in which you choose for illustration, of course.)

June 1997 - Computer Science 301 - Paper 2 5

Appendix A - Some Modula-2 CASE statements

(* VAR

integer : INTEGER;

char : CHAR;

Color : (Red, Orange, Yellow, Green, Blue, Indigo, Violet); *)

CASE integer + 5 OF

1 : Statement1; Statement2;

| 2 : Statement3;

| 3 : Statement4; Statement5

END

CASE char OF

'a' : Statement1; Statement2;

| 'b' : Statement3;

| 'e' .. 'f', 'x' .. 'z' : Statement4; Statement5

| CHR(0) .. CHR(31) : Statement6

ELSE Statement7

END

CASE Color OF

| Green : Statement1; Statement2;

|

| Red : Statement3;

|

| Yellow .. Violet : Statement4; Statement5

ELSE Statement6

END

Appendix B An IfStatement parser

In C++

void PARSER::IfStatement(symset followers)

// IfStatement = "IF" Condition "THEN" StatementSequence "END" .

{ CGEN_labels testlabel;

GetSym();

Condition(symset(SCAN_thensym, SCAN_dosym) + followers);

CGen->jumponfalse(testlabel, CGen->undefined);

if (SYM.sym == SCAN_thensym)

GetSym();

else

{ Report->error(23); if (SYM.sym == SCAN_dosym) GetSym(); }

StatementSequence(followers);

CGen->backpatch(testlabel);

Accept(SCAN_endsym, 24);

}

In Modula-2

PROCEDURE IfStatement;

(* IfStatement = "IF" Condition "THEN" StatementSequence "END" . *)

VAR

TestLabel : CGEN.LABELS;

BEGIN

SCAN.GetSYM; Condition(SYMSET{ThenSym, DoSym} + Followers);

CGEN.JumpOnFalse(TestLabel, CGEN.undefined);

IF SYM.Sym = ThenSym

THEN SCAN.GetSYM

ELSE Error(23); IF SYM.Sym = DoSym THEN SCAN.GetSYM END

END;

StatementSequence(Followers);

CGEN.BackPatch(TestLabel);

Accept(EndSym, 24);

END IfStatement;

June 1997 - Computer Science 301 - Paper 2 6

Appendix C A sorting program in Clang

PROGRAM SortDemo;

PROCEDURE SelectionSort (List [], N);

(* Sorts N elements of List[0..N] into order *)

VAR

T, M;

FUNCTION MaxPos (List[], N);

(* Returns position of maximum element in List[0..N] *)

VAR

I, Max;

BEGIN

(* +++++ Discuss run time storage management when this point is reached for the second time *)

I := 1; Max := 0;

WHILE I <= N DO BEGIN

IF List[I] > List[Max] THEN Max := I;

I := I + 1

END;

RETURN Max

(* +++++ Discuss symbol table structure when parsing reaches this point *)

END;

BEGIN

IF N > 0 THEN BEGIN

M := MaxPos(List, N);

T := List[N]; List[N] := List[M]; List[M] := T;

SelectionSort(List, N-1)

END

END;

VAR

Data[5], I;

BEGIN

I := 0; WHILE I <= 5 DO BEGIN Read(Data[I]); I := I + 1 END;

SelectionSort(Data, 5);

I := 0; WHILE I <= 5 DO BEGIN Write(Data[I]); I := I + 1 END;

END.

