
RHODES UNIVERSITY

November Examinations - 1998

Computer Science 301 - Paper 2

Examiners: Time 3 hours
Prof P.D. Terry Marks 180
Prof D. Kourie

Answer all questions. Answers may be written in any medium except red ink.

(For the benefit of future readers of this paper, various free information was made available to the students 24

hours before the formal examination. This included the full text of Section B. During the examination, candidates

were given machine executable versions of the Coco/R compiler generator, and access to a computer.)

Section A [110 marks]

A1 Write a sentence or two to explain your understanding of the differences between the following pairs of
concepts (keep the answers short and to the point; we do not need "essays").

(a) Nonterminals and terminals
(b) The front end and the back end of a translator
(c) A sentential form and a sentence
(d) Static semantics and dynamic semantics

[12]

A2 Write notes to show that you understand what is commonly meant by each of the terms compiler, interpreter,
and interpretive compiler. Also indicate situations in which the use of each of these might be particularly
favoured over the use of the other two.

[9]

A3 "Computer languages are not totally context-free, although syntactically they can almost always be described
by context-free grammars". Give two examples of context-sensitive features of an imperative language with
which you are familiar. If these features cannot be described by context-free grammars, how are they
handled in practical syntax-directed compilers that are based on context-free grammars?

[6]

A4 Write down a regular expression (or a set of regular expressions) that define all possible words that have
each vowel appearing exactly once, and in the correct order (vowels are a, e, i, o and u; an example of such
a word is "facetious").

[3]

A5 The following forms part of a hand-crafted scanner for the language Clang whose familiar context-free
grammar is supplied as an appendix to this paper

(A Pascal equivalent scanner also appears in the appendix; all these files are available in machine readable
form in the exam kit).

In Clang, keywords like BEGIN and WHILE have to be distinguished from identifiers. Suggest the sort of
modifications that would be needed to the scanner below to enable this to be done. (Your answer can be
expressed either in C++ or in Pascal, and does not need to be syntactically perfect.)

[5]

November 1998 - Computer Science 301 - Paper 2 2

void getSym(symbols &SYM)
{ int length = 0; // index into SYM.Name

while (ch <= ' ') getChar(); // Ignore spaces between tokens
if (isalpha(ch))
{ SYM.sym = identsym;

while (isalnum(ch)) { SYM.name[length++] = toupper(ch); getChar(); }
SYM.name[length] = '\0'; // Terminate string properly

}
else if (isdigit(ch)) // Numeric literal
{ SYM.sym = numsym;

while (isdigit(ch)) { SYM.name[length++] = toupper(ch); getChar(); }
SYM.name[length] = '\0'; // Terminate string properly

}
else switch (ch) {

case '<':
getChar();
if (ch == '=') { SYM.sym = leqsym; strcpy(SYM.name, "<="); getChar(); }
else if (ch == '>') { SYM.sym = neqsym; strcpy(SYM.name, "<>"); getChar(); }
else SYM.sym := lsssym; SYM.name := "<"
break;

...
}

}

A6 (a) Give a precise definition of the terms FIRST(A) and FOLLOW(A) as they are applied to grammar
analysis.

(b) By computing relevant FIRST and FOLLOW sets, discuss whether the following grammar adheres to the
LL(1) restrictions on parsing.

N = { A , B , C , D , E}
T = { w , x , y , z }
S = A

P = A Ò BC | DE

B Ò [E]
C Ò x E

D Ò E { A } (E | w)

E Ò y | z

[18]

A7 Given the following set of productions for describing numerical expressions:

exp = term "�" exp | term .
term = term "*" factor | term "/" factor | factor .
factor = number .

(a) Write a leftmost derivation for the string 2 � 3 * 4 / 6.
(b) Draw a parse tree for this string.
(c) If the operators � * and / represent the operations of raising to a power, integer multiplication, and
integer (truncated) division respectively, what would be the value represented by this string?
(d) Would the value represented by the string 2 � 2 � 3 be 28 or 43? Why?
(e) How would you rewrite the grammar so that the string 2 � 2 � 3 would have the other meaning from
that in (d)?

[15]

A8 Consider the Clang grammar in the appendix, and in particular the productions

OneConst = identifier "=" number ";" .
Assignment = Variable ":=" Expression .
Variable = Designator .
Expression = ("+" Term | "-" Term | Term) { AddOp Term } .
Term = Factor { MulOp Factor } .
Factor = Designator | number | "(" Expression ")" .
AddOp = "+" | "-" .
MulOp = "*" | "/" .
RelOp = "=" | "<>" | "<" | "<=" | ">" | ">=" .

November 1998 - Computer Science 301 - Paper 2 3

Suppose that we wished to extend the language so that we could write

OneConst = identifier "=" ConstExpression ";" .

ConstExpression = Expression .

that is, we wish to be able to define constants in terms of expressions, rather than being restricted to positive
integers. To do this we should need to write an attributed version of the grammar so that the parser could
distinguish between constant expressions, which would be semantically acceptable in handling OneConst,
and general expressions, which would be acceptable in handling Assignment.

(a) Making the simplifying assumption that an Expression in which only numbers appear as operands is a
constant expression, but that the presence of a general Designator would not be allowed in a constant
expression, suggest how one might attribute the productions for Expression,
Term and Factor so that the ConstExpression parser could make the appropriate semantic check.

(b) Discuss clearly whether your solution has made use of synthesized attributes or inherited attributes.

(c) To develop a compiler one would, of course, have to add further to the grammar to incorporate calls to
suitable code generating routines, and in this course we have discussed how this could be done. Would the
routines that we illustrated - augmented only by the modifications suggested in (a) above - enable us to
incorporate constant expressions into constant declarations, and if not, why not? (You do not have to show
the development of the code generating routines in any detail, simply discuss the principles involved.)

(The Clang grammar is available to you in machine readable form; you are under no obligation to produce
a machine readable solution, however.)

[20]

A9 After careful consideration of the overwhelming success of the Clang language, its inventor has decided to
release Clang-2. In this language, the productions for IfStatement and WhileStatement are to be
changed to

IfStatement = "IF" Condition
"THEN" Statement { ";" Statement }

["ELSE" Statement { ";" Statement }]
"END" .

WhileStatement = "WHILE" Condition "DO"
Statement { ";" Statement }

"END" .

The proud inventor was overheard to say that this would dispel of the famous "dangling else" problem.

(a) What do you understand by the "dangling else" problem?
(b) Analyse in some detail whether the inventor's claim is correct.

[10]

A10 Howls of protest arose when Clang-2 was released. All those millions of lines of code produced in the
Braae Laboratory by generations of students were, at a stroke, rendered syntactically incorrect.

The inventor was unperturbed, and promised to use Coco/R to write a quick Clang to Clang-2 translator.
He argued that all he needed to do was to write a sort of pretty printer that would reformat existing Clang
programs with extra ENDs inserted into statements (and/or redundant BEGINs removed) at appropriate
places, and sketched out a few T-diagrams to show how he would do this. What did the T diagrams look
like? (Make the assumption that you have available the executable versions of the Coco/R compiler-
generator for either Pascal or C++, an executable version of a Pascal or C++ compiler, and at least one
Clang program to be converted.)

[12]

November 1998 - Computer Science 301 - Paper 2 4

PROCEDURE GetSYM (VAR SYM : SYMBOLS);
VAR

Length : INTEGER (* index into SYM.Name *);
BEGIN

IF NOT Started THEN BEGIN GetChar; Started := TRUE END;
WHILE CH <= ' ' DO GetChar (* ignore spaces between tokens *);
Length := 1;
CASE CH OF

'A' .. 'Z', 'a' .. 'z' :
BEGIN

SYM.Sym := IdentSym;
WHILE IsAlphaNum(CH) DO BEGIN

SYM.Name[Length] := UpCase(CH); INC(Length); GetChar
END;
SYM.Name[0] := CHR(Length - 1) (* set length byte *)

END;
'0' .. '9' :

BEGIN
SYM.Sym := NumSym;
WHILE IsDigit(CH) DO BEGIN

SYM.Name[Length] := UpCase(CH); INC(Length); GetChar
END;
SYM.Name[0] := CHR(Length - 1) (* set length byte *)

END;
'<' :

BEGIN
GetChar;
IF CH = '='

THEN BEGIN SYM.Sym := LeqSym; SYM.Name := '<='; GetChar END
ELSE IF CH = '>'

THEN BEGIN SYM.Sym := NeqSym; SYM.Name := '<>'; GetChar END
ELSE SYM.Sym := LssSym; SYM.Name := "<"

END;
...

END
END;

COMPILER Clang

IGNORE CASE
IGNORE CHR(9) .. CHR(13)
COMMENTS FROM "(*" TO "*)"

CHARACTERS
cr = CHR(13) .
lf = CHR(10) .
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .
digit = "0123456789" .
instring = ANY - "'" - cr - lf .

TOKENS
identifier = letter { letter | digit } .
number = digit { digit } .
string = "'" (instring | "''") { instring | "''" } "'" .

PRODUCTIONS
Clang = "PROGRAM" identifier ";" Block "." .
Block = { ConstDeclarations | VarDeclarations } CompoundStatement .
ConstDeclarations = "CONST" OneConst { OneConst } .
OneConst = identifier "=" number ";" .
VarDeclarations = "VAR" OneVar { "," OneVar } ";" .
OneVar = identifier [UpperBound] .
UpperBound = "[" number "]" .
CompoundStatement = "BEGIN" Statement { ";" Statement } "END" .
Statement = [CompoundStatement | Assignment | IfStatement

| WhileStatement | ReadStatement | WriteStatement] .
Assignment = Variable ":=" Expression .
Variable = Designator .
Designator = identifier ["[" Expression "]"] .
IfStatement = "IF" Condition "THEN" Statement .
WhileStatement = "WHILE" Condition "DO" Statement .
Condition = Expression RelOp Expression .
ReadStatement = "READ" "(" Variable { "," Variable } ")" .
WriteStatement = "WRITE"

["(" WriteElement { "," WriteElement } ")"] .
WriteElement = string | Expression .
Expression = ("+" Term | "-" Term | Term) { AddOp Term } .
Term = Factor { MulOp Factor } .
Factor = Designator | number | "(" Expression ")" .
AddOp = "+" | "-" .
MulOp = "*" | "/" .
RelOp = "=" | "<>" | "<" | "<=" | ">" | ">=" .

END Clang.

November 1998 - Computer Science 301 - Paper 2 5

Section B [70 marks]

Please note that there is no obligation to produce a machine readable solution for this section. Coco/R and other

files are provided so that you can enhance, refine, or test your solution if you desire. If you choose to produce a

machine readable solution, you should create a working directory, unpack EXAMP.ZIP (Pascal) or EXAMC.ZIP

(C++), modify any files that you like, and then copy all the files back to the blank diskette that will be provided.

The manufacturers of a microprocessor that is currently being developed have been provided with an assembler
for it, but are keen to work at a higher level, and have called upon various software houses to bid for a contract to
provide a simple compiler that will generate assembler code from a simple source language, which is itself in the
process of being developed.

Potential suppliers have been asked to meet an initial specification that calls for a compiler to support a language
that can declare simple variables, and have simple assignment statements, if-then-else statements and compound
statements. Because things are not yet stable, they would like to be able to mix inline assembler code with higher
level source code, so as to compensate for the absence of some high level features.

The microprocessor design is also rather unstable. At this stage all that is known of the instruction set is that it
has five opcodes MOV, CMP, BRN, BZE and BNZ. These can be described as follows:

The load/store instructions are of the form

MOV Rx, Ry ; Rx := Ry
MOV Rx, a ; Rx := a
MOV [a], Rx ; Mem[a] := Rx
MOV [a], b ; Mem[a] := b
MOV [a], [b] ; Mem[a] := Mem[b]

where Rx and Ry are chosen from R1, R2, R3, R4, R5, the machine's five registers, and a and b are
positive integers.

The comparison instructions are of the form

CMP x, y ; CPU.Z := (x = y)
CMP x, [b] ; CPU.Z := (x = Mem[b])
CMP [b], y ; CPU.Z := (Mem[b] = y)

where x and y can be any of R1, R2, R3, R4, R5 or a simple positive integer, and b is a positive
integer.

The absolute branch instructions are of the form

BRN x ; CPU.PC := x
BZE x ; if CPU.Z then CPU.PC := x
BNZ x ; if not CPU.Z then CPU.PC := x

where x is a positive integer.

In the high-level language, variable names can be freely chosen, and no restriction is imposed against
accidentally using a register name or opcode mnemonic as a variable name.

Just to make things interesting, the company has requested that the compiler not be case sensitive,
and that variables can be tied, at the point of declaration to a specific machine register. Variables that are not tied
in this way are sequentially assigned addresses in memory, decreasing from location 255.

Within the inline assembler code, however, while the opcode names are "reserved", other variable names may be
used as operands.

All this has rather perplexed the host of firms who are competing for the lucrative contract, so the company
has released a few sample programs, showing all these features in programs otherwise devoid of any real semantic
interest! One of these is as follows (others will be found in the exam kit):

November 1998 - Computer Science 301 - Paper 2 6

program example;
(* simple example of mixed language program *)

int
x, r4, r5, (* some with register names *)

bool
CMP, MOV, c, d; (* some with opcode names *)

int
r3 = r3, (* r3 is attached to to register R3 *)
register1 = r1, (* register1 is attached to to register R3 *)

begin
x := r4;
if x = r4

then
begin CMP := MOV; x := c; r3 := c; c := 203 end

else
if x = r5

then MOV := c
else MOV := r3;

r3 := register1;
if c = d

then begin
d := CMP;
asm

mov r1, r2;
mov r4, 34;
mov [34], 34;
mov x, r3;
mov r3, register1;
cmp r5, CMP;
bne 34;

end
end
else (* nothing *)

end.

And here is the sort of output its compiler must produce (there is no need for the compiler to provide the
comments; these are simply to help the reader. Labels can be used as indicated.

MOV [255], [254] ; x := r4
CMP [255], [254] ; if (x = r4)
BNE L0 ; then begin
MOV [252], [251] ; CMP := MOV
MOV [255], [250] ; x := c
MOV R3, [250] ; R3 := c
MOV [250], 203 ; c := 203
BRN L1 ; end

L0 ; else
CMP [255], [253] ; if x = r5
BNE L2 ; then
MOV [251], [250] ; MOV := c
BRN L3 ;

L2 ; else
MOV [251], R3 ; MOV := r3

L3 ;
L1 ;

MOV R3, R1 ; r3 := register1
CMP [250], [249] ; if c = d
BNE L4 ; then begin
MOV [249], [252] ; d := cmp

; asm
MOV R1, R2 ; mov r1, r2
MOV R4, 34 ; mov r4, 34
MOV [34], 34 ; mov [34], 34
MOV [255], [1234] ; mov x, base
MOV [255], R3 ; mov x, r3
MOV R3, R1 ; mov r3, register1
CMP R5, [252] ; cmp r5, CMP
BNE 34 ; bne 34
BRN L5 ; end

L4 ; else nothing
L5 ;

Naturally, the compiler must be able to recognise semantic errors; here is the sort of listing that should
accompany a (deliberately) wrong submission:

November 1998 - Computer Science 301 - Paper 2 7

1 program example;
2 (* simple example of wrong mixed language program *)
3 int
4 x, r4, r5; (* some with register names etc *)
5 bool
6 CMP, MOV, c2, d; (* some with operator names *)
7 int
8 r3 = r43, (* attach to register *)

***** � Error: No such register
9 register1 = r1,

11
12 begin
13 x := r4;
14 if x = r4
15 then
16 begin CMP := MOV; x := c; r3 := c; c := 203 end

***** � Error: Undeclared identifier
17 else
18 if x = r5
19 then MOV := c

***** � Error: Undeclared identifier
20 else MOV := r3;

22 base := x;
23 r4 := base;
24 if c = d

***** � Error: Undeclared identifier
25 then begin
26 d := CMP;
27 asm
28 mov r1, r2;
29 mov r4, 34;
30 mov 34, 34;
31 mov x;

***** � Error: Too few operands
32 move x, r3;

***** � Error: Invalid opcode
33 mov r3, register1;
34 cmp r5, CMP;
35 bne 34, xx;

***** � Error: Too many operands
***** � Error: Undeclared identifier

36 end
37 end
38 else (* nothing *)
39 end.

Of course, as a programmer trained at the top educational institution in the land you should have learned to use
compiler generating tools such as Coco/R, and in spite of incredible time constraints (the deadline for submissions
of a prototype compiler is only 24 hours away) you should have little trouble in submitting a working system. So
take up the challenge. Being open minded, the firm is prepared to accept implementations written in either Pascal
or C++. They are also prepared to accept a fairly simple-minded approach to generating the assembler code - it
will suffice to have a system where this is simply directed to the standard output file. And, since they have a
licensed copy of Coco/R, they are prepared to accept submissions in the form of a Cocol attribute grammar plus
any support modules needed, either on diskette or simply written on paper.

Hint: a complete attribute grammar may turn out to be rather long. For examination purposes it is recommended
that you (a) develop a Cocol grammar describing the source language (b) add sufficient of the attributes for an
intelligent examiner to be convinced that you understand the form that these would take and how code generation
would take place (c) describe at least the interface to support routines that deal with symbol tables (function
headings with adequate commentary will suffice). The examners will be looking for evidence of quality and
semantic correctness in your solutions, rather than 100% syntactically correct Cocol.

Confine yourself to simple assignment statements and comparisons like those in
the example program - that is, where the right hand side of an assignment
consists of a single constant or variable, and where comparisons are made for
equality only, between operands that are single constants or variables - and
consider only if-then-else statements where both the then and else clauses are
present.

There is also no need to describe the support routines as full classes or units - simply assume that the routines can
be coded up within a single #include file in the manner familiar from practicals done during the course, or
included directly at the head of the grammar itself.

