Simple interpreters (1)
An interpreter or emulator is simply a program that models the fetch-execute cycle of a real or virtual machine.

At its heart is a loop that:

· “fetches” an opcode;
· “executes” this, by using it as a case/switch dispatcher;
· monitors disasters, should these occur;
· finally terminates when the “program” has run to completion.

 // initialize state of machine

 // ...

 boolean running = true;

 while (running) {

 // fetch next operation

 switch (operation) {

 case Quit :

 running = false; break;

 case One:

 // emulate operation One

 break;

 case Two :

 // emulate operation Two

 break;

 case Three :

 // emulate operation Three

 break;

 // more like this
 // ...

 } // switch (operation)

 } // while (running)

 if (disaster)

 report(disaster);

 return;

Simple interpreters (2) – A turtle

A “turtle” is a machine that knows how to turn sharply, how to move forward, how to return to the origin, and how to report its position.
An interpreter or emulator is simply a program that models the fetch-execute cycle of this sort of simple machine.
At its heart is a loop that:

· “fetches” an opcode;
· “executes” this by using it as a case/switch dispatcher;
· monitors disasters, should these occur;
· finally terminates when the “program” has run to completion.

 import library.*;

 public class Turtle {

 // Simple turtle interpreter

 public static void main(String[] args) {

 final int

 East = 0, North = 1, West = 2, South = 3

 Bad = 0, Left = 1, Right = 2, Move = 3,

 Home = 4, Where = 5, Quit = 6; // operations

 boolean running = true;

 String[] code =

 { "", "left", "right", "move", "home", “where", "quit" };

 int direction = East;

 double x = 0.0, y = 0.0, step = 0.0;

 while (running) {

 code[0] = IO.readWord().toLowerCase().trim();

 int operation = Quit;

 while (!code[0].equals(code[operation])) operation--;

 if (operation == Move) step = IO.readDouble();

 switch (operation) {

 case Quit :

 running = false; break;

 case Where:

 IO.write("Now at (x, y) = (");

 IO.writeFixed(x, 1, 2);

 IO.write(" , ");

 IO.writeFixed(y, 1, 2);

 IO.writeLine();

 break;

 case Left :

 break;

 case Right :

 break;

 case Move :

 break;

 case Home:

 x = 0.0; y = 0.0; direction = East; break;

 } // switch (operation)

 } // while (running)

 } // main

 } // Turtle
