Programming the PVM (8)

Accessing an element of an array

· We perform "address arithmetic" with an LDXA instruction

· The value of the reference variable is pushed onto the stack

· The value of the subscript is computed and left on the stack.

· LDXA pops these two values off the stack and adds them together.

· The sum represents the address in the heap area where the element is to be found and is pushed back onto the stack

· An address value computed by LDXA may be dereferenced with an LDV instruction (to find the value of an array element)

· An address value computed by LDXA may be used as the target of a STO instruction (to store a value at that address).

 14 LDA 0 ; push adr of list reference onto stack

 16 LDV ; dereference - adr of list[0] on top of stack

 17 LDC 2 ; push value of subscript (2)

 19 LDXA ; calculate adr of list[2] as new value of TOS

 20 LDC 12 ; push constant 12 onto stack

 22 STO ; list[2] = 12
 23 LDA 1 ; push adr of sieve reference onto stack

 25 LDV ; dereference - adr of sieve[0] on top of stack

 26 LDC 5 ; push value of subscript (5)

 28 LDXA ; calculate adr of sieve[5] as new value of TOS

 29 LDV ; dereference - value of sieve[5] on top of stack

 30 PRNB ; print(sieve[5])

