Emulating the PVM (7)

 Errors in array handling (2)
Array bound checking is essential:

List[i] = someValue;

LDA 0

; ref to list is var 0

LDV

; address of list[0] on stack

LDA 1
; i is var 1

LDV

; dereference – value of i on stack
LDXA ; address of list[i] on stack
LDA 2

; someValue is var 2
LDV

; dereference – value of someValue on stack
STO

; assign
The LDXA instruction expects to find the value of the subscript i on the top of the stack, and the heap address of the storage allocated to list immediately above that.

Indexing should check that the heap address is valid, and that the subscript lies within range.
The heap address might be invalid because storage for the array had never been claimed.
 In the best situation this would show up as a “null pointer reference”
 case PVM.ldxa: // heap array indexing

 int heapPtr = mem[cpu.sp + 1];

 if (heapPtr == 0) ps = nullRef;

 else if (heapPtr < heapBase || heapPtr >= cpu.hp)
 ps = badMem;

 else if (mem[cpu.sp] < 0 || mem[cpu.sp] >= mem[heapPtr])
 ps = badInd;

 else {

 cpu.sp++; mem[cpu.sp] += 1 + mem[cpu.sp - 1];

 }

 break;

