Ambiguous Grammars (4)

Faced with ambiguity, a language designer or compiler writer must try to resolve it.

One approach is to introduce an ad hoc disambiguating rule outside of the grammar itself.
For example, one might disallow certain statement forms from following the THEN of an IfStatement, as was done in Algol.

In Pascal, C#, Java and C++ an ELSE is deemed to be attached to the most recent IF, and the problem is solved that way.

If one has the freedom to choose the syntax of the language (at the design stage), a clean solution is simply to introduce closing symbols like ENDIF and ELSIF, as was done in Ada and Modula-2:
 Statement = Assignment | IfStatement .

 Assignment = Variable ":=" Expression .

 Expression = Variable .

 Variable = "i" | "j" | "k" | "a" | "b" | "c" .

 IfStatement = "IF" Condition "THEN" Statement

 { "ELSIF" Statement }

 ["ELSE" Statement]

 "END" .

 Condition = Expression "=" Expression

 | Expression "!=" Expression .

Unfortunately, no algorithm exists (or can exist) that can take an arbitrary grammar and determine with certainty and in a finite amount of time whether it is ambiguous or not.

