Parva = "void" "main" "(" ")" Block .

Block = "{"
 { Statement }
 "}" .

Statement = (Block

 | WhileStatement

 | IfStatement

 | RepeatStatement

 | ReadStatement

 | WriteStatement

 | Assignment

 | ReturnStatement

 | EmptyStatement

 | ConstDeclaration

 | VarDeclarations

).

IfStatement = "if" "(" Condition ")"

 Statement

 { "elsif" "(" Condition ")"

 Statement

 }

 ["else"

 Statement

] .

WhileStatement = "while" "(" Condition ")"

 Statement .

RepeatStatement = "repeat"

 { Statement }

 "until" "(" Condition ")" ";" .

Parva = "void" "main" "(" ")" Block .

Block = "{"
 { Declaration | Statement }
 "}" .

Declaration = ConstDeclaration

 | VarDeclarations .

Statement = (WhileStatement

 | IfStatement

 | RepeatStatement

 | ReadStatement

 | WriteStatement

 | Assignment

 | ReturnStatement

 | EmptyStatement

).

IfStatement = "if" "(" Condition ")"

 Block

 { "elsif" "(" Condition ")"

 Block

 }

 ["else"

 Block

] .

WhileStatement = "while" "(" Condition ")"

 Block .

RepeatStatement = "repeat"

 Block

 "until" "(" Condition ")" ";" .

PRODUCTIONS /* Attempt 1 */

 BNF = { Production } EOF .

 Production = nonterminal "::=" Expression EOL .

 Expression = Term { "|" Term } .

 Term = Factor { Factor } .

 Factor = nonterminal | terminal | "eps" .
END BNF.

PRODUCTIONS /* Attempt 2 */

 BNF = { Production } EOF .

 Production = nonterminal "::=" Expression EOL .

 Expression = Term { "|" Term } .

 Term = Factor { Factor } | "eps" .

 Factor = nonterminal | terminal .

END BNF.

PRODUCTIONS /* Attempt 2 modified */

 BNF = Productions EOF .

 Productions = Production Productions | ε .

 Production = nonterminal "::=" Expression EOL .

 Expression = Term OtherTerms .

 OtherTerms = "|" Term OtherTerms | ε .

 Term = Factor OtherFactors | "eps" .

 OtherFactors = Factor OtherFactors | ε .

 Factor = nonterminal | terminal .

END BNF.

PRODUCTIONS

 Spoornet
 = { Train } EOF.

 Train

 = "loco" ["loco"]

 (GoodsPart | PassengerPart) .

 GoodsPart

 = { "open" | "closed" }

 { "petrol" }

 "brake" .

 PassengerPart

 = "coach" "coach"
 { "coach" }

 "guardCoach" .

END SpoorNet.
