LL(1) parsing for non ‑free grammars (1)
Consider the language defined by the grammar

 G = { N , T , S , P }

 N = { A , B , C , D , E }

 T = { a , b , c , d , e }

 S = A
 P = A C B | B D (1, 2)

 B b B d | c | E (3, 4, 5)

 C a | d (6, 7)

 D b | d (8, 9)

 E e | (10, 11)

All four non-terminals admit to alternatives, and B and E are capable of generating the empty string .
Rule 1 is clearly satisfied for the alternative productions for B, C, D and E, since these alternatives all produce sentential forms that start with distinctive terminals.

To check Rule 1 for the alternatives for A we examine the intersection of FIRST(CB) and FIRST(BD).

FIRST(CB) is simply FIRST(C) = { a } { d } = { a , d }.

FIRST(BD) is not simply FIRST(B), since B is nullable.
FIRST(BD)
= FIRST(B) FIRST(D)

= { b , c , e } { b, d }

= { b , c , d , e }.

Since FIRST(CB) FIRST(BD) = { d }, Rule 1 is broken.

