Construction of simple recursive descent parsers (2)
The parser routine corresponding to a non‑terminal S:

· may assume that it has been called after some (globally accessible) variable sym has been found to contain one of the terminals in FIRST(S);
· will then parse a complete sequence of terminals which can be derived from S, reporting an error if no such sequence is found;

· may have to call on similar routines to handle sub‑goals;
· will relinquish parsing after leaving sym with the first terminal that it finds which cannot be derived from S, that is to say, a member of the set FOLLOW(S).

sym is an object of a Token class

 class Token {

 public int kind; // abstract representation

 public string val; // actual representation
 }

The shell of each parsing routine is simply

 PROCEDURE S;

 (* S (string *)

 BEGIN

 (* assert sym.kind (FIRST(S) *)

 Parse(string)

 (* assert sym.kind (FOLLOW(S) *)

 END S;

