A Scanner for Boolean Expressions (6)
A table-driven scanner can be developed as follows:

To the set of states suggested by the diagram we add one more, denoted by finished, to allow the postcondition to be easily realized.
 TOKENKINDS FUNCTION GetSym;

 (* Preconditions: ch is already available,

 NextState, Token kind mappings defined

 Postcondition: ch is left as the character following
 token *)

 BEGIN

 state := 0;

 WHILE state  finished DO

 lastState := state;

 state := NextState[state, ch];

 Get(ch)

 END;

 RETURN Token[lastState]

 END

We have made use of various mapping functions, expressed in the form of arrays:

 Token[s] is defined to be the token recognized when the
 machine has reached state s
 NextState[s, x] indicates the transition that must be taken
 when the machine is currently in state s,

 and has just recognized character x.

