A Scanner for Boolean Expressions (4)
In the FSA approach the algorithm is inverted to be governed by a single loop.

We write the token grammar in a slightly different way.

The comments have been placed to reflect the state that a scanner can be thought to possess at the point where a character has just been read.
 kind = (* noSym *) EOF (* EOFSym *)
 | (* noSym *) "<" (* lssSym *)
 ["=" (* leqSym *)]
 | (* noSym *) ">" (* gtrSym *)
 ["=" (* geqSym *)]
 | (* noSym *) "=" (* assignSym *)
 ["=" (* eqlSym *)]
 | (* noSym *) "!" (* notSym *)
 ["=" (* neqSym *)]
 | (* noSym *) "&" (* noSym *) "&" (* andSym *)
 | (* noSym *) "|" (* noSym *) "|" (* orSym *)
 | (* noSym *) "(" (* lParenSym *)
 | (* noSym *) ")" (* rParenSym *)
 | (* noSym *) digit (* numSym *)
 { digit (* numSym *) }
 | (* noSym *) letter (* identSym *)
 { (letter | digit) (* identSym *) }
