Case study – a recursive descent parser (0)
We need a parser to recognize a sequence of assignments:

 Mark[Top] = 100;

 CanSleepLate = (Saturday || Sunday) && EssayCompleted;

 PassedAll = Passed[Test1] && Passed[Test2] && Passed[Exam].
 The language could be described in Cocol as follows
 COMPILER Sequence

 /* Grammar for sequence of Boolean assignment statements */

 CHARACTERS

 letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
 + "abcdefghijklmnopqrstuvwxyz" .

 digit = "0123456789" .

 TOKENS

 identifier = letter { letter | digit } .

 number = digit { digit } .

 IGNORE CHR(0) .. CHR(31)

 PRODUCTIONS
 Sequence = Assignment { ";" Assignment } "." .
 Assignment = Variable "=" Expression .
 Variable = identifier ["[" Expression "]"] .
 Expression = Term { "||" Term } .
 Term = Factor { "&&" Factor } .
 Factor = Variable | number | "(" Expression ")" .

 END Sequence.

