Attribute Grammars (12)
We need a notation for the specification and construction of parsers that do not necessarily construct explicit trees of decorated nodes.

We have already seen that the construction of parsers can be based on the idea that expansion of each non-terminal is handled by an associated routine. These routines can be parameterized, and the parameters can transmit the attributes to where they are needed.

Using this idea we might express our expression grammar as follows using more meta-brackets, denoted by < and >):

 Goal < Value >

 = Expression < Value > .

 Expression < Value >

 = Term < Value >

 { "+" Term < TermValue >

 (. Value := Value + TermValue .)

 | "-" Term < TermValue >

 (. Value := Value - TermValue .) } .

 Term < Value >

 = Factor < Value >

 { "*" Factor < FactorValue >

 (. Value := Value * FactorValue .)

 | "/" Factor < FactorValue >

 (. Value := Value / FactorValue .) } .

 Factor < Value >

 = identifier < Value >

 | number < Value >

 | "(" Expression < Value > ")" .

