Cocol description of Parva (1)
 COMPILER Parva $CN

 /* Parva level 1 grammar - Coco/R for C# (EBNF)

 P.D. Terry, Rhodes University, 2003

 Grammar only */

 CHARACTERS

 lf = CHR(10) .

 backslash = CHR(92) .

 control = CHR(0) .. CHR(31) .

 letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" .

 digit = "0123456789" .

 stringCh = ANY - '"' - control - backslash .

 charCh = ANY - "'" - control - backslash .

 printable = ANY - control .

 TOKENS

 identifier = letter { letter | digit | "_" } .

 number = digit { digit } .

 stringLit = '"' { stringCh | backslash printable } '"' .

 charLit = "'" (charCh | backslash printable) "'" .

 IGNORE CHR(9) .. CHR(13)

 COMMENTS FROM "//" TO lf

 COMMENTS FROM "/*" TO "*/"

 PRODUCTIONS

 Parva = "void" identifier "(" ")" Block .

 Block = "{" { Statement } "}" .

 Statement = Block | ConstDeclarations | VarDeclarations | Assignment

 | IfStatement | WhileStatement | ReturnStatement | HaltStatement

 | ReadStatement | WriteStatement

 | ";" .

 OneConst = identifier "=" Constant .

 Constant = number | charLit | "true" | "false" | "null" .

 VarDeclarations = Type OneVar { "," OneVar } ";" .

 OneVar = identifier ["=" Expression] .

 Assignment = Designator "=" Expression ";" .

 Designator = identifier ["[" Expression "]"] .

 IfStatement = "if" "(" Condition ")" Statement .

 WhileStatement = "while" "(" Condition ")" Statement .

 ReturnStatement = "return" ";" .

 HaltStatement = "halt" ";" .

 ReadStatement = "read" "(" ReadElement { "," ReadElement } ")" ";" .

 ReadElement = stringLit | Designator .

 WriteStatement = "write" "(" WriteElement { "," WriteElement } ")" ";" .

 WriteElement = stringLit | Expression .

 Condition = Expression .

 Expression = AddExp [RelOp AddExp] .

 AddExp = ["+" | "-"] Term { AddOp Term } .

 Term = Factor { MulOp Factor } .

 Factor = Designator | Constant

 | "new" BasicType "[" Expression "]"

 | "!" Factor | "(" Expression ")" .

 Type = BasicType ["[]"] .

 BasicType = "int" | "bool" .

 AddOp = "+" | "-" | "||" .

 MulOp = "*" | "/" | "&&" .

 RelOp = "==" | "!=" | "<" | "<=" | ">" | ">=" .

 END Parva.
