Parva – The need for a Symbol Table
The advantages of simple one-pass compilation are most easily gained by demanding that the declaration parts of a program come before the statement parts.

This is easily enforced by a context-free grammar.
Even if declarations precede statements, a context-free grammar is still unable to specify that those identifiers which have been declared may be used only in other statements which are within the scope of those declarations.

A context-free grammar is not powerful enough to insist that only a variable identifier can be used to denote the target of an assignment statement, or that an integer constant cannot be assigned to a Boolean variable.

We might try to write productions to capture some of these ideas:

 OneConst = ConstIdentifier "=" Constant .
 Constant = number | charLit | "true" | "false" | "null" .
 OneVar = VarIdentifier ["=" Expression] .
 Assignment = Variable "=" Expression ";" .
 Variable = VarIdentifier ["[" Expression "]"] .
 Expression = AddExp [RelOp AddExp] .
 Factor = Variable | ConstIdentifier | Constant

 | "new" BasicType "[" Expression "]" .

 | "!" Factor | "(" Expression ")" .
But in the final analysis all identifiers are lexically equivalent.
