Parva – Implementing Scope Rules (5)
Single-pass incremental compilation is difficult unless we impose a declare before use rule.

For a single function program this normally causes no real hardship.

If we were to allow an identifier declared in one block to be redeclared in a nested block we could get into trouble:

Code like the following is not easily handled in a one-pass system:

 void main () {

 int i = 10;

 while (i > 0) {

 write(i);

 int i = i - 1;

 }

 }

At the point where the write statement is encountered the first i is in scope, and code should presumably be generated to print the value of this variable.

However, if the scope of an identifier is to extend over the whole of the block in which it is declared, one could argue that the second i should be the one that is in scope.

In a one-pass incremental compiler the second declaration would not have been encountered by the time that the code for the write(i) statement might have been generated.

We shall follow the example of Java and forbid such redeclaration.

This also reduces the possibility of hard-to-find bugs if an identifier is redeclared by mistake rather than by design.

