Nested functions and methods (4)
Up-level addressing (1)
 int global = 50;

 void main () {

 int final;

 void start () {

 int local1, local2;

 void reverse() {

 int number;

 read(number);

 if (final != number) start();

 10: write(number);

 } // reverse

 reverse();

 20: ;

 } // start

 final := 9;

 start();

 30: ;

 } // main

At run-time the address of a variable is still found by subtracting a predictable offset from the base address of an activation record.
Previously the only variables that could be accessed at run-time were the global variables and the instances of the variables local to the currently active function.

An active function might wish to access other variables.
Function reverse compares a local variable (number) with a local variable (final) of the function main() from which it was indirectly called. The code generated at compile-time must contain enough information for the run-time system to be able to find the base of the appropriate activation record and perform up-level addressing when it is needed.
