Simplified extensions to Parva (3)
Fudged Factorization for an LL(1) Grammar
PRODUCTIONS /* some omitted to save space */

 Parva = { FuncDeclaration } .
 FuncDeclaration = "void" identifier
 "(" FormalParameters ")" Body .
 FormalParameters = [OneParam { "," OneParam }] .
 OneParam = Type identifier .
 Type = "void" | BasicType ["[" "]"] .
 Body = Block .
 Statement = AssignmentOrCall
 | ...
 AssignmentOrCall = Designator
 ("=" Expression
 | "(" Arguments ")"
) ";" .
 Arguments = [OneArg { "," OneArg }] .
 OneArg = Expression .
 ReturnStatement = "return" ";" .
 Factor = Designator | ...
This no longer has an LL(1) conflict, but is not a nice solution, because it permits syntactically incorrect function calls. However it does retain the advantages of confining the symbol table searches for identifiers to one place in the grammar, and it is easy enough to put in semantic constraints (which have to be there anyway) to guard against incorrect function calls like function[i+5](4, x, x*y);
