Simplified extensions to Parva (2)
PRODUCTIONS /* some omitted to save space */

 Parva = { FuncDeclaration } .

 Statement = Assignment

 | VoidFunctionCall ...

 Assignment = Designator "=" Expression .

 VoidFunctionCall = identifier "(" Arguments ")" .

The LL(1) conflict can be resolved “semantically”. At the point where

the identifier is encountered at the start of a Statement it can be located in the symbol table and then the parsing can be driven one way or the other depending on the value of entry.kind.

This is quite easy if one is writing the parser by hand.
In the early versions of Coco/R one had to resort to awkward factoring of the grammar as in the case study in the book, but in the latest versions one can use a so-called “resolver” to tweak the parser in situations like this. This will be illustrated in the current practical exercises, and is briefly described in the book in section 10.6.4.
