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iAbstra
tPopular �
tion books des
ribe ri
h visual environments that 
ontain 
hara
ters, obje
ts, and be-haviour. This resear
h develops automated pro
esses for 
onverting text sour
ed from �
tion booksinto animated virtual environments and multi-modal �lms. This involves the analysis of unre-stri
ted natural language �
tion to identify appropriate visual des
riptions, and the interpretationof the identi�ed des
riptions for 
onstru
ting animated 3D virtual environments.The goal of the text analysis stage is the 
reation of annotated �
tion text, whi
h identi�esvisual des
riptions in a stru
tured manner. A hierar
hi
al rule-based learning system is 
reated thatindu
es patterns from example annotations provided by a human, and uses these for the 
reationof additional annotations. Patterns are expressed as tree stru
tures that abstra
t the input text ondi�erent levels a

ording to stru
tural (token, senten
e) and synta
ti
 (parts-of-spee
h, synta
ti
fun
tion) 
ategories. Patterns are generalized using pair-wise merging, where dissimilar sub-treesare repla
ed with wild-
ards. The result is a small set of generalized patterns that are able to
reate 
orre
t annotations. A set of generalized patterns represents a model of an annotator'smental pro
ess regarding a parti
ular annotation 
ategory.Annotated text is interpreted automati
ally for 
onstru
ting detailed s
ene des
riptions. Thisin
ludes identifying whi
h s
enes to visualize, and identifying the 
ontents and behaviour in ea
hs
ene. Entity behaviour in a 3D virtual environment is formulated using time-based 
onstraintsthat are automati
ally derived from annotations. Constraints are expressed as non-linear sym-boli
 fun
tions that restri
t the traje
tories of a pair of entities over a 
ontinuous interval of time.Solutions to these 
onstraints spe
ify pre
ise behaviour. We 
reate an innovative quanti�ed 
on-straint optimizer for lo
ating sound solutions, whi
h uses interval arithmeti
 for treating time andspa
e as 
ontiguous quantities. This optimization method uses a te
hnique of 
onstraint relaxationand tightening that allows solution approximations to be lo
ated where 
onstraint systems arein
onsistent (an ability not previously explored in interval-based quanti�ed 
onstraint solving).3D virtual environments are populated by automati
ally sele
ting geometri
 models or pro
e-dural geometry-
reation methods from a library. 3D models are animated a

ording to traje
toriesderived from 
onstraint solutions. The �nal animated �lm is sequen
ed using a range of modalitiesin
luding animated 3D graphi
s, textual subtitles, audio narrations, and foleys.Hierar
hi
al rule-based learning is evaluated over a range of annotation 
ategories. Modelsare indu
ed for di�erent 
ategories of annotation without modifying the 
ore learning algorithms,and these models are shown to be appli
able to di�erent types of books. Models are indu
edautomati
ally with a

ura
ies ranging between 51.4% and 90.4%, depending on the 
ategory. Weshow that models are re�ned if further examples are provided, and this supports a boot-strappingpro
ess for training the learning me
hanism.The task of interpreting annotated �
tion text and populating 3D virtual environments is su
-
essfully automated using our des
ribed te
hniques. Detailed s
ene des
riptions are 
reated a

u-rately, where between 83% and 96% of the automati
ally generated des
riptions require no manualmodi�
ation (depending on the type of des
ription). The interval-based quanti�ed 
onstraint opti-mizer fully automates the behaviour spe
i�
ation pro
ess. Sample animated multi-modal 3D �lmsare 
reated using extra
ts from �
tion books that are unrestri
ted in terms of 
omplexity or subje
tmatter (unlike existing text-to-graphi
s systems). These examples demonstrate that: behaviour



iiis visualized that 
orresponds to the des
riptions in the original text; appropriate geometry issele
ted (or 
reated) for visualizing entities in ea
h s
ene; sequen
es of s
enes are 
reated for a�lm-like presentation of the story; and that multiple modalities are 
ombined to 
reate a 
oherentmulti-modal representation of the �
tion text.This resear
h demonstrates that visual des
riptions in �
tion text 
an be automati
ally iden-ti�ed, and that these des
riptions 
an be 
onverted into 
orresponding animated virtual envi-ronments. Unlike existing text-to-graphi
s systems, we des
ribe te
hniques that fun
tion overunrestri
ted natural language text and perform the 
onversion pro
ess without the need for man-ually 
onstru
ted repositories of world knowledge. This enables the rapid produ
tion of animated3D virtual environments, allowing the human designer to fo
us on 
reative aspe
ts.
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Chapter 1Introdu
tionCreating an animated �lm from a �
tion book is a task that requires a number of repetitive a
tivi-ties. These in
lude reading and 
omprehending the original text for 
reating detailed des
riptions ofthe �lm, planning the arrangement and behaviour of entities in ea
h s
ene, 
onstru
ting geometryfor representing entities visually, and quantifying behaviour for models in the virtual environment.This resear
h redu
es the manual e�ort required for the �lm-
reation task by repla
ing repetitivea
tivities with automated pro
esses.Fi
tion books are popular sour
es of inspiration for the 
reation of �lms be
ause they 
ontainri
h visual des
riptions regarding ba
kground s
enery, the layout of people and obje
ts in a s
ene,and their intera
tions. A well known example is J.R.R. Tolkien's The Lord of the Rings that wasadapted to a series of live-a
tion �lms1. This �lm series is notable in the use of 
omputer graphi
s,making possible the visualization of fantasti
al s
enes that would have required large quantities ofe�ort and expense to reprodu
e in reality. In spite of this, the 
reation of this �lm series requiredextensive human e�ort in adapting the original book to a suitable s
reen-play, in 
onstru
ting thegeometri
 models, and in editing and sequen
ing the �nal �lms (as evident by the list of 
reditsfollowing any �lm in the series).Many tasks in the pro
ess of transforming a �
tion book into an animated �lm have the potentialto be automated using 
omputer te
hnology. Te
hnologies already exist that redu
e the e�ort inthe 
reation of animated graphi
s, in
luding key-frame animation, inverse-kinemati
s, motion-
apture, and �uid and 
loth simulations. We spe
ulate that additional tasks stand to bene�tfrom automation, in
luding the analysis and interpretation of language and the population of
orresponding virtual environments.We use the term �
tion-to-animation to 
olle
tively des
ribe the task of 
onverting �
tion textto 
orresponding virtual environments. The term �
tion refers spe
i�
ally to text sour
ed froma �
tion book. The term animation refers to the 
reation of moving three-dimensional graphi
sin a virtual environment, and the 
reation of other modalities in
luding audio. We use the termvisualize to des
ribe the 
reation of graphi
s that 
orrespond to the original text, but this termalso refers to the 
reation of 
ontent in other modalities.1Written between 1937 and 1945, �lm premiers between 2001 and 2003.
1
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Figure 1.1: Generalization of the �lm-
reation a
tivities when using �
tion text as a sour
e.1.1 Ba
kgroundThe pro
ess of 
reating an animated �lm is guided by a human dire
tor's dis
retion and 
reativity,but this pro
ess often in
ludes two generi
 stages, namely the development of a s
reen-play andthe development of story-boards. The s
reen-play is a do
ument that expli
itly des
ribes (in astru
tured format) the s
enes that 
omprise a �lm and the 
hara
ter intera
tions within ea
hs
ene (Hauge, 1988). Story-boards are 
onstru
ted from an original s
reen-play, serving as a planfor ba
kground s
enery, positioning of a
tors and obje
ts in ea
h s
ene, as well as spe
ifying hows
enes are sequen
ed to make up a �lm (Cantor and Valen
ia, 2004). The subsequent 
onstru
tionand �lming of s
enes follows from the story-boards.In the 
ontext of the �
tion-to-animation task, the 
reation of a s
reen-play and story-boardsrequires repetitive manual e�ort. The 
onstru
tion of a s
reen-play involves a detailed analysis ofthe original text to derive a stru
tured intermediate representation of the story. This pro
ess 
allsfor frequent re-examination and multiple readings of the original text. The task of 
reating story-boards from the s
reen-play involves 
reative interpretation of the des
ribed s
enes, with regardsto spe
ifying layout and behaviour of obje
ts and 
hara
ters in a setting. If the �nal presentationis an animated 3D �lm, then the produ
tion in
ludes extensive repetitive e�ort in 
onstru
ting 3Dmodels for ea
h 
hara
ter, setting up 3D virtual environments, and expli
itly de�ning motion andarti
ulation in ea
h s
ene.We generalize the �
tion-to-animation task in terms of two major a
tivities, the text-analysisa
tivity and the interpretation a
tivity, illustrated in Figure 1.1. The task of 
reating a s
reen-playis an example of a text-analysis a
tivity, while the tasks of 
reating story-boards and 
onstru
tingthe 3D environments represent interpretation a
tivities. The s
reen-play forms the link betweenthese two a
tivities, and is an example of an intermediate representation of the original story. We
hoose an intermediate representation that is expressed in a format more suitable for 
omputer-based representation (as opposed to a s
reen-play), and automate the text analysis task usingnatural language pro
essing te
hnology. This intermediate representation also allows for automatedplanning of virtual environments, from whi
h multi-modal animated 3D �lms are produ
ed.The methods we sele
t for automating ea
h task are 
hara
terized by a 
entral theme, namelythe use of knowledge-poor te
hniques for performing the 
onversion pro
ess. Knowledge-poorte
hniques are 
hara
terized by the absen
e of 
omputer en
oded world-knowledge in the form of aspe
ial purpose, manually 
onstru
ted knowledge-database. The use of a knowledge-base limits the
apability of an automated system to the detail provided by the en
oded information. Populatingsu
h a database requires extensive human e�ort, and we believe that no existing knowledge-base
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aters for the range of 
on
epts potentially posed by �
tion text. We believe that the small amountof knowledge required 
an be provided by a human without losing the bene�t of automation.1.2 Problem statementWe investigate the automati
 
onversion of text sour
ed from a �
tion book into a 
orrespond-ing multi-modal, animated 3D presentation. We rephrase this problem in terms of the followinghypothesis:The pro
ess of 
onverting a �
tion book into an animated 3D �lm 
an be automated.To show that automation is supported in the �
tion-to-animation pro
ess, eviden
e of automa-tion is required in the text analysis and interpretation a
tivities illustrated in Figure 1.1. Therefore,the problems to be investigated in this resear
h are as follows:Problem 1 (text analysis): Can a suitable intermediate representation be generated from a �
-tion book?This problem requires the identi�
ation and 
ategorization of visual des
riptions in �
tiontext and their representation in a stru
tured manner.Problem 2 (interpretation): Can we 
reate virtual environments that 
orrespond to the inter-mediate representation?This problem is 
on
erned with interpreting the intermediate representation for produ
ing
orresponding multi-modal presentations that re�e
t the 
ontent of the original �
tion text.The worst-
ase s
enario is that the human manually 
reates an intermediate representation froman original �
tion book, and manually transforms this representation into an animated �lm. This
orresponds to the 
urrent �lm-
reation pro
ess des
ribed in Se
tion 1.1. We remove the need formanual repetitive tasks by automating majority of the text-analysis and interpretation pro
esses.The above problems are de�ned only in the presen
e of an intermediate representation that isstru
tured enough for automati
 
reation and interpretation by a 
omputer.Intermediate representationWe use annotated �
tion text as an intermediate representation for the �
tion-to-animation task.Des
riptions of visual information in the �
tion text are marked up in di�erent 
ategories. We referto marked up des
riptions as semanti
 annotations, be
ause they identify semanti
 informationregarding the visual s
enes in the story. Figure 1.2 presents an example of original �
tion text thatis annotated with semanti
 annotations (using XML2), and we highlight the following advantagesof this 
hoi
e of intermediate representation with referen
e to this example:
• Annotated �
tion text identi�es visual properties des
ribed in text, as required by problem1. For example, the avatars that appear in the s
ene, the nature of the setting, as well asspatial relations between entities are marked up in the example in Figure 1.2.2Extensible Markup Language



CHAPTER 1. INTRODUCTION 4<avatar>Anne</avatar> didn't very mu
h like a big brown <obje
t>
ow</obje
t> who <transi-tion type=�INSIDE� subje
t=�
ow�>
ame</transition> up <relation type=�near� subje
t=�
ow�obje
t=�her�>
lose<relation> and stared at her, but it <transition type=�OUTSIDE� sub-je
t=�it�>went</transition> away when <avatar>Daddy</avatar> told it to.Figure 1.2: Example annotated �
tion text, from the Famous Five 1: Five on a Treasure Islandby Enid Blyton (1942).
• Annotations identify di�erent 
ategories of interpretation a
tivities to be performed, in
lud-ing spe
ifying the appearan
e of the setting, what avatars require visual depi
tion, and howthey are to be pla
ed or moved in a s
ene. This satis�es the requirement posed by problem2 above.
• The stru
tured format of the annotations is 
ondu
ive to automati
 
reation and interpreta-tion while remaining 
losely asso
iated with the original �
tion text.We re�ne the two �
tion-to-animation problems in the following se
tions, where re�nements arebased on our 
hoi
e of annotated text as an intermediate representation.1.2.1 Text analysisThe text analysis problem is 
on
erned with 
reating semanti
 annotations over original �
tiontext.Manually 
reating annotations requires de
isions to be made by a human annotator that arebased on experien
e with natural language and personal dis
retion. As a result, we do not expe
tidenti
al annotations to be 
reated by two di�erent humans. We believe that two fa
tors in�uen
ethe manual 
reation of annotations, namely linguisti
 indi
ators and world-knowledge. Linguisti
indi
ators, in
luding the stru
ture of the text and the fun
tion of individual words, are used to
onvey linguisti
 
on
epts to the human. Meaning is derived by 
ombining these 
on
epts withinternal world-knowledge to formulate de
isions about how to 
reate annotations. Exa
tly hownatural language is interpreted and 
ombined with world knowledge is as yet un
ertain, and many
on�i
ting theories exist regarding this pro
ess (S
hank, 1972; Minsky, 1975; Mandler and Johnson,1977; Eysen
k and Keane, 2000).Linguisti
 indi
ators within natural language are des
ribed by 
ommonly a

epted theoriesof language stru
ture (su
h as the senten
e or the phrase) and syntax (su
h as verb or noun).World-knowledge 
annot be de�ned in su
h 
on
rete terms, parti
ularly be
ause ea
h human'sworld-knowledge and de
ision pro
ess is determined by individual experien
es. We do not attemptto 
reate a generi
 world-knowledge representation, but phrase the problem to allow individualhuman experien
e to be 
aptured in the automated pro
ess.We phrase the text analysis problem in terms of the following two sub-problems:1. Automati
ally deriving linguisti
 indi
ators that identify stru
tural and synta
ti
 propertiesof �
tion text.2. Creating semanti
 annotations using a pro
ess that 
onforms to rules derived from human
reated examples (where rules are phrased in terms of stru
tural and synta
ti
 properties oftext).



CHAPTER 1. INTRODUCTION 51.2.2 InterpretationThe interpretation problem en
ompasses all a
tivities required to translate the intermediate rep-resentation into an animated 3D environment. We identify three a
tivities in this pro
ess.The �rst a
tivity requires a review of the intermediate representation, and the formulation of ahigh-level plan regarding the 
ontents and layout of ea
h s
ene. This 
orresponds to the 
reationof an initial draft of a story-board, whi
h uses artisti
 and 
reative dis
retion on the part of ahuman dire
tor.As the story-boards are progressively re�ned, human experien
e and 
reativity are used to planthe layout of ea
h s
ene, and to ensure that various entities are pla
ed 
orre
tly a

ording to eitherexpli
it textual des
riptions or 
ommon-sense 
onstraints (su
h as gravity).The �nal detailed plan is subsequently implemented in a 3D virtual environment, involving anumber of repetitive tasks, su
h as 3D obje
t modeling, pla
ing and posing models, and key-framede�nition (tasks vary a

ording to the modeling fa
ilities used). These tasks are 
ompli
ated by
urrent te
hnology that is restri
ted to two-dimensional interfa
es for designing 3D virtual worlds.This requires multiple views to pla
e obje
ts 
orre
tly, as well as a number of interfa
es for de�ningmotion, a
tions, and poses.The interpretation problem is therefore phrased in terms of three sub-problems:1. Interpreting semanti
 annotations to identify whi
h s
enes to visualize, the 
ontents of ea
hs
ene, and the behaviour of entities in ea
h s
ene.2. Planning the exa
t behaviour in a s
ene in an automati
 manner. This problem is 
hara
-terized by the in
lusion of a temporal dimension be
ause the 
on
ept of behaviour impliestime-based a
tivity.3. Automating the population of a 3D virtual environment with appropriate visual i
ons, vi-sualizing the des
ribed behaviour, and 
onstru
ting 
oherent multi-modal representations ofthe �
tion text.1.3 StrategyWe use a 
olle
tion of automated knowledge-poor te
hniques for automating the �
tion-to-animationpro
ess. The following se
tions des
ribe our strategies for performing text analysis and interpre-tation.1.3.1 Automation of text-analysisAutomating text analysis requires a pro
ess that is able to learn about how to 
reate annotations ina similar manner that would be used by one spe
i�
 human annotator. We automate text analysisusing ma
hine-learning, whi
h models a human's thought pro
esses regarding the annotation taskusing examples 
reated by that human. An automati
ally generated model is used to produ
efurther annotations.



CHAPTER 1. INTRODUCTION 6{They/PRP had/VBD it/PRP on/IN the/DT top/NN of/IN a/DT hill/NN ,/�COPY in/IN a/DT sloping/JJ�eld/NN that/WDT looked/VBD down/RP into/IN a/DT sunny/JJ valley/NN ./�COPY} {Anne/NNP did/VBDn't/RB very/RB mu
h/JJ like/IN a/DT big/JJ brown/JJ 
ow/NN who/WP 
ame/VBD up/RP 
lose/VB and/CCstared/VBD at/IN her/PRP ,/�COPY but/CC it/PRP went/VBD away/RB when/WRB Daddy/NNP told/VBDit/PRP to/TO ./�COPY}Figure 1.3: Example �
tion text with surfa
e annotations (tokens, senten
es and parts-of-spee
h),from the Famous Five 1: Five on a Treasure Island by Enid Blyton (1942).We propose the following me
hanisms for a
hieving a ma
hine learning approa
h in automatingthe text-analysis problem:1. Stru
tural and synta
ti
 properties of text are automati
ally identi�ed in the form of surfa
eannotations. Stru
tural properties in
lude tokens, senten
es, and quotes. Synta
ti
 prop-erties in
lude parts-of-spee
h, phrases, and synta
ti
 fun
tion (example surfa
e annotationsare provided in Figure 1.3). Surfa
e annotations are 
reated using general natural languagepro
essing tools ranging from automati
 tokenizers and senten
e splitters to parts-of-spee
htaggers and synta
ti
 parsers.2. We develop a hierar
hi
al rule-based learning me
hanism for automating the 
reation ofsemanti
 annotations. This me
hanism indu
es patterns from manually annotated �
tiontext (supplemented with surfa
e annotations) and uses these patterns for the 
reation of newannotations.1.3.2 Automation of interpretationWe automate the interpretation of annotated �
tion text in three stages: by interpreting theannotations to formalize whi
h s
enes to portray and identify the 
ontents and behaviour in ea
hs
ene; by 
al
ulating values that visually re�e
t this behaviour in a virtual environment; and bypopulating 3D environments with visual geometry.1. Annotations are interpreted automati
ally to spe
ify s
ene detail in a stru
tured mannerusing knowledge-poor te
hniques. The set of s
enes to visualize is derived by segmenting thetext into fragments that des
ribe a single physi
al lo
ation (using annotations that identifyphysi
al settings in �
tion text). The entities that o

ur in ea
h s
ene are identi�ed usingannotations that indi
ate referen
es to avatars and obje
ts, and are instantiated visually bysele
ting geometri
 models from a library. Behaviour of entities in ea
h s
ene is expressedusing stru
tured time-quanti�ed 
onstraints (derived from annotations) that des
ribe thespatial relationships between entities in a s
ene over intervals of time.2. We plan behaviour through the 
reation of symboli
 analyti
al 
onstraints that des
ribe thebehaviour of entities in a virtual environment (examples of whi
h are provided in Figure 1.4).The solutions to these 
onstraints 
onsist of pre
ise numeri
al values that represent behaviourin a virtual environment. We represent the time aspe
t using interval arithmeti
, allowingbehaviour to be spe
i�ed over 
ontiguous intervals of time. We �nd solutions to 
onstraintsusing an interval based quanti�ed 
onstraint optimizer. This approa
h is bene�
ial be
ause
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• Entity M has a traje
tory de�ned as rM (t) = (1− t)pM

0 + tpM
1

• Entity N has a traje
tory de�ned as rN (t) = pN
0Example system of 
onstraints over the two traje
tories:

M near N : ||rM (t)− rN (t)||2 − (aM + aN + α)2 < 0∀t ∈ [tstart, tend]
M noCollide N : ||rM (t)− rN (t)||2 − (aM + aN )2 > 0∀t ∈ [tstart, tend]...Figure 1.4: Example set of symboli
 analyti
al 
onstraints that spe
ify behaviour in a virtualenvironment.

Figure 1.5: Example behaviour visualized in a virtual environment.it is 
apable of �nding approximate solutions even where automati
ally generated 
onstraintsare in
onsistent.3. We populate a 3D virtual environment by automati
ally instantiating models for ea
h entityin a 3D environment, and generating geometry for ba
kground s
enery. Position and motionare automati
ally assigned to a model in a s
ene using the quanti�ed traje
tories produ
edfrom the 
onstraint optimization pro
ess (illustrated in Figure 1.5).The result of these pro
esses are multi-modal animated 3D virtual environments, from whi
h�lms are rendered. Example snap-shots from the �lms 
reated using our automated pro
esses areillustrated in Figure 1.6.1.4 OverviewThis dissertation des
ribes the methods we use for automating �
tion-to-animation in terms ofthe 
orresponding problems de�ned in Se
tion 1.2. These problems and the manner in whi
h theyare related are illustrated in Figure 1.7. The strategies we use for solving ea
h problem are alsoillustrated, as are points for human intervention in the pro
ess.
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Figure 1.6: Multi-modal presentations produ
ed using our strategy for interpreting annotated�
tion text.
Fiction book

Problem 1: Text Analysis

  1.1) Linguistic indicators

  1.2) Annotation creation

Problem 2: Interpretation

   2.1) Interpretation of annotations

    2.2) Specification of behaviour

           in a virtual environment

    2.3) Populating 3D environments

Intermediate 

representation

Animated 3D environment

Animated f i lm

Annotated f ict ion text

Automatic creation
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Machine-learning for

automating creat ion

of semantic 

annotat ions

Create structured 

scene descriptions

Automatic constraint

solving/optimization
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Human knowledge:

- Manual examples

Human knowledge:

- Clarify l inguistic ambiguity

- Implied scene layout

- Creative ideas

Human knowledge:

- Creative enhancements

Figure 1.7: Illustration of the �
tion-to-animation problems with proposed solution strategies.This exposition is stru
tured a

ording to the identi�ed sub-problems as follows:
• Chapter 2 reviews related text-to-graphi
s resear
h, highlighting the unique 
hara
teristi
sof the �
tion-to-animation problem. It also motivates the strategies shown in Figure 1.7 forautomating the �
tion-to-animation pro
ess.
• Chapter 3 des
ribes our strategies for automating the 
reation of surfa
e annotations over�
tion text (relating to problem 1.1 in Figure 1.7).
• Chapter 4 develops the hierar
hi
al rule-based learning approa
h for 
reating semanti
 anno-tations in �
tion text. This system uses surfa
e annotations resulting from methods developedin Chapter 3, and automates the 
reation of the intermediate representation (illustrated asproblem 1.2 in Figure 1.7).
• Chapter 5 develops the method for �nding solutions to systems of time-based symboli
 
on-straints. This me
hanism is used in the derivation of pre
ise values that represent behaviourin virtual environments, 
orresponding to problem 2.2 in Figure 1.7. The 
apabilities ofthis me
hanism in�uen
e the manner in whi
h 
onstraint systems are derived from anno-tated text, explaining why we present this me
hanism before the automated derivation of
onstraint systems (problem 2.1).
• Chapter 6 des
ribes te
hniques for deriving s
ene detail from annotations, 
orresponding toproblem 2.1 in Figure 1.7. This in
ludes our strategy for 
reating stru
tured des
riptions



CHAPTER 1. INTRODUCTION 9of behaviour from annotated text, their 
onversion into time-based analyti
al 
onstraints,and the manner in whi
h the solution-�nding pro
ess (des
ribed in Chapter 5) is used forquantifying behaviour. Chapter 6 also develops strategies for instantiating 3D virtual envi-ronments 
ontaining geometri
 models and ba
kground s
enery (
orresponding to problem2.3 in Figure 1.7). The 
reation of multi-modal animated �lms is also 
overed in this 
hapter.
• Chapter 7 summarizes the overall strategy for automating the �
tion-to-animation task, andpresents the 
on
lusions and 
ontributions resulting from this resear
h.



Chapter 2Te
hniques for 
onverting text tographi
s
2.1 Introdu
tionThe problem of automati
ally 
onverting natural language to graphi
al representations has beenexamined from a number of di�erent perspe
tives in related resear
h. Te
hniques vary a

ording tothe style and 
omplexity of language used as input, and a

ording to the type of output required.This 
hapter positions the �
tion-to-animation problem in relation to existing text-to-graphi
sresear
h in these respe
ts.2.1.1 Categorization of text-to-graphi
s systemsA text-to-graphi
s system is an automated 
omputer program that takes a sequen
e of textualsymbols as input and produ
es 
orresponding graphi
al representations. Text-to-graphi
s systemsare 
ategorized a

ording to the level of 
omplexity of the input text in relation to its resemblan
eto natural language. At the lowest level are systems for whi
h input text is stru
tured formallya

ording to well de�ned grammars (an example of whi
h is VRML1) allowing unambiguous inter-pretation by a 
omputer. At the highest level are systems that interpret a
tual natural language to
reate 
orresponding graphi
s, but require 
omplex te
hniques for resolving ambiguities inherentin natural language. Between these levels of input are systems that take input that is language-similar, where input bears resemblan
e to natural language but is stru
tured for interpretation bya 
omputer.Low level text-to-graphi
s systems are of little interest in this resear
h be
ause the inputla
ks resemblan
e to �
tion text. Instead, we examine two 
ategories of text-to-graphi
s sys-tems: language-similar methods, be
ause these are pre
ursors to high-level systems; and high-levellanguage-to-graphi
s systems that su

essfully transform natural language input into graphi
al rep-resentations.Systems within ea
h 
ategory are further distinguished a

ording to the type of output theyprodu
e. A range of di�erent options exists for visualizing text, in
luding modi�
ations to existing1Virtual Reality Modeling Language: http://www.w3.org/MarkUp/VRML/10
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Figure 2.2: Overview of related text-to-graphi
s systems.graphi
al environments in response to 
ommands, the 
reation of line drawings and 3D images,and the 
reation of multi-modal 3D animated graphi
s.This review highlights the fa
t that all text-to-graphi
s systems exhibit similarities with re-gards to the stru
ture of the pro
ess used for 
onversion. This generi
 text-to-graphi
s pro
ess issummarized in Figure 2.1. A text-to-graphi
s system requires a text-analysis pro
ess that 
onvertsthe input text into some 
omputer-readable intermediate representation. This representation isthen interpreted to 
onstru
t or modify a graphi
al environment, requiring a reasoning pro
essregarding the layout of a graphi
al environment. Stati
 images or animated graphi
s are renderedfrom the �nal graphi
al environment. The design of our �
tion-to-animation system 
onforms tothis generi
 pro
ess, while di�ering in the te
hniques used to a

omplish ea
h task.2.1.2 OverviewThis review 
ategorizes existing text-to-graphi
s systems a

ording to the level of the input requiredby ea
h system, as summarized in Figure 2.2. Se
tion 2.2 des
ribes language-similar systems, whileSe
tion 2.3 des
ribes systems that take natural language as input. Systems are further 
ategorizeda

ording to the type of graphi
al output produ
ed. Thereafter, the �
tion-to-animation systemis dis
ussed in relation to the previously des
ribed text-to-graphi
s systems (Se
tion 2.4).2.2 Language-similar graphi
s-generation systemsSystems that produ
e graphi
s automati
ally from language-similar instru
tions bene�t from theability to parse input text in a reliable manner. Various 
onstituents of the input text are re
og-
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ommands that resemble natural languageintrodu
e ambiguity even though the stru
ture of the input is stri
tly de�ned. Language-similarinput text is used primarily in early te
hniques for text-based graphi
s produ
tion. Due to limita-tions in hardware, graphi
s in the form of line drawings were produ
ed at the time of developmentof many of these systems. Even with this restri
tion in output quality, systems exist that 
reateboth stati
 images as well as animated graphi
s from the language-similar input.2.2.1 Output as a stati
 imageEarly language-similar graphi
s-generation systems produ
e stati
 line drawings in response to
ommands issued by a human user. Examples of su
h systems in
lude the following:
• The Env I system (Boberg, 1972) a

epts input su
h as:(CREATE A BRICK); (PUT PHOBJ1 ON PHOBJ2); (MAKE PHOBJ1 LONGER)
• The Clowns mi
roworld (Simmons, 1975) a

epts instru
tions su
h as:(BOAT ABOVE WATER); (ATTACH BOAT WATER); (DOCK ABOVE WATER)
• The Nalig system (Adorni et al., 1984) requires input nearer to genuine natural languagein the form of:<subje
t> <preposition> <obje
t>
• The Put system (Clay and Wilhelms, 1996) a

epts 
ommands of the form:put {�table� on �floor�}In ea
h of the above 
ases the system provides a �nite vo
abulary and grammar for spe
ifying
ommands in the task of 
ontrolling the positioning of obje
ts in a s
ene. The restri
tion of thegrammar redu
es a large amount of ambiguity in the interpretation of the 
ommands be
ause thefun
tion of ea
h token in the input is expli
itly de�ned for the 
omputer. However, the use ofnatural language terms still presents 
ases of ambiguity. For example, ambiguous terms su
h as�LONGER� in the Env I example (Boberg, 1972), or �on� in the Put system (Clay and Wilhelms,1996), are interpreted di�erently depending on the obje
ts involved.All the above systems have the 
ommon me
hanism of mapping units of input dire
tly tomodules in whi
h hand-
oded de
ision making pro
esses are exe
uted for resolving ambiguity. Forexample, Put (Clay and Wilhelms, 1996) interprets 
ommands using image s
hemas, whi
h aredo
uments that de�ne how relations are realized in a 3D environment with respe
t to properties ofthe involved entities. For ea
h preposition su
h as �on� or �at�, a s
hema en
odes world-knowledgeregarding how to handle di�erent 
ases, for example in pla
ing an item �on the wall� as opposed to�on the table�. Equivalent reasoning modules are used in Nalig in the form of hand 
oded rules(Adorni et al., 1984), or theorems in Env I (Boberg, 1972).Ea
h of the above systems has the obje
tive of providing an alternative interfa
e for arranginga graphi
al environment. In parti
ular, Env I (Boberg, 1972) is 
on
erned with 
reating andarranging 
ubes and wedges in a 3D environment, while Nalig (Adorni et al., 1984) and Put(Clay and Wilhelms, 1996) are 
on
erned with arranging more general 3D obje
ts annotated withspatial properties (su
h as whi
h surfa
e of a geometri
 obje
t represents the �top�). In 
ontrast, the
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- Suggestions (ANI)Figure 2.3: Language-similar input for the generi
 text-to-graphi
s pro
ess.Clowns mi
roworld (Simmons, 1975) is only 
on
erned with arranging a graphi
al environment
ontaining a �nite set of pre-de�ned obje
ts.In all 
ases, the input is a 
ommand that expli
itly des
ribes how a s
ene must be modi�ed.This is di�erent to a narrative, whi
h is a 
olle
tion of des
riptions (only some of whi
h refer tovisual aspe
ts), and whi
h is potentially 
hara
terized by a temporal aspe
t.2.2.2 Output as animated graphi
sEarly systems exist that 
onvert sequen
es of language-similar instru
tions to animated graph-i
s, in
luding the Ani system (Kahn, 1979) and the primitives-based story visualization system(Narayanan et al., 1995). Sequen
es of language-similar instru
tions are provided that spe
ify howthe graphi
al environments 
hange:
• The Ani system (Kahn, 1979) takes 
ommands as follows:(CONVEY (wants 
inderella (meets 
inderella prin
e)))(CONVEY (prevents stepmother (meets 
inderella prin
e)))(�
inderella� and �stepmother� are entities de
lared previously, and keywords su
h as �meets�and �prevents� are asso
iated with spe
i�
 routines)
• The primitives-based story visualization system (Narayanan et al., 1995) takes input in whi
hverbs are manually repla
ed with one of S
hank's fourteen primitive a
tions (S
hank, 1973).The senten
e �John entered the restaurant� is expressed as:John PTRANS restaurantGraphi
al models are animated by invoking ea
h primitive a
tion in sequential order, althoughreasoning is used in the Ani system regarding how to order the visualizations. For instan
e, the twoCONVEY 
ommands in the above example are exe
uted simultaneously rather than sequentially.As with language systems that produ
e stati
 graphi
s, the restri
tion on the input languageallows for expli
it mapping of natural language keywords to modules that interpret the instru
tionsgraphi
ally. Simple animated graphi
s are the result in both systems, for example 
onsisting ofapplying motion to two-dimensional symbols in Ani.All language-similar graphi
s generation systems map units of input to modules in whi
h hand-
oded de
ision making pro
esses are exe
uted for resolving ambiguity. Be
ause of the stru
turedform of the input, text analysis is not required. World-knowledge is en
oded in various forms forthe interpretation of the intermediate representation, as indi
ated in Figure 2.3. The mappingfrom input symbols to interpretation modules is done dire
tly, a luxury not available when truenatural language is used as input.
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ene modi�
ation using natural language input illustrated with respe
t to the text-to-graphi
s pro
ess.2.3 Natural language graphi
s-generation systemsNatural language poses a di�
ult problem in terms of the text-to-graphi
s problem be
ause 
om-mands or narratives are expressed in a variety of ways, with varying degrees of ambiguity. Insome systems 
ommands are provided as input in order to modify a pre-
onstru
ted graphi
al en-vironment or assign behaviours to entities within the environment. Alternatively, natural languagenarrative des
ribing a �
titious environment is used as input, from whi
h a graphi
al representationmust be 
reated and possibly animated if the input narrative des
ribes a
tions and events.2.3.1 Output as a modi�
ation on a pre-existing environmentOne of the �rst examples of language-based manipulation of a 3D environment is the Shrdlusystem (Winograd, 1972), in whi
h English 
ommands are used to 
ontrol a virtual robot-arm in a3D environment. Shrdlu is signi�
ant in that it is one of the earliest systems to use grammati
ally
orre
t English as input to a graphi
s-based system, requiring 
omplex synta
ti
 analysis of theinput text. Part of the su

ess of the ambiguity resolution is the restri
tion to a limited domain,whi
h 
ontains only a �nite number of entities and permissible a
tions.Natural language is often used as the modality for 
ommuni
ation between a human operatorand entities within a pre-built virtual environment. In parti
ular, te
hniques exist that allow fornatural language 
ommands to be issued to agents in a virtual environment (Webber et al., 1995;Badler et al., 2000; Bindiganavale et al., 2000; Shinyama et al., 2000). Example 
ommands handledby these systems in
lude:Walk around the room. (Badler et al., 2000)Chi
ken, push the sphere from the left. (Shinyama et al., 2000)Agents are designed to perform a 
ertain range of a
tions, and the task of the system is todetermine whi
h a
tion is being des
ribed in the input 
ommand, and to determine whi
h entities inthe s
ene are to take part in the a
tion. This pro
ess is simpli�ed by the fa
t that the environmentsare pre-
onstru
ted, and so data is available regarding every entity in the s
ene for resolvingambiguity.Most systems make use of an intermediate template representation that en
odes both knowledgeon how to extra
t relevant details from the input text, as well as interpret the information forvisualizing a
tions in the graphi
al environment, illustrated in Figure 2.4. Information derived
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ti
 parsing is used to determine whi
h template (s
hema (Webber et al., 1995), PAR(Badler et al., 2000) or 
ase frame (Shinyama et al., 2000)) is appli
able to a 
ertain input word orphrase. The 
hosen template 
ontains instru
tions regarding how to derive additional informationfrom the text to parametrize the des
ribed a
tion, as well as how to visualize the a
tion graphi
ally(for instan
e, by sending the appropriate 
ommand to an agent).Natural language is also used as an interfa
e for navigation in virtual environments, spe
i�-
ally 
ontrolling the 
amera providing the view (Bersot et al., 1998). More distantly related isvirtual-storytelling, in whi
h input text is interpreted in terms of emotional 
ontent, using thisinformation to automati
ally assign the 
orre
t fa
ial expressions to a story-telling avatar (Pieskand Trogemann, 1997).Input to systems in this 
ategory is provided in the form of 
ommands that are exe
utedimmediately in order to update the graphi
al environment. The aspe
t of time is handled byimpli
ation, in that no reasoning is performed regarding when an a
tion should o

ur or how longit should take to exe
ute. Animation o

urs in response to an input 
ommand, after whi
h theissuer of the 
ommand must wait until the a
tion is 
ompleted. Ambiguity is avoided be
ause
ommands are dire
ted to entities that already exist in a s
ene. This is indi
ated in Figure 2.4 bythe feedba
k loop between the graphi
al environment and the intermediate representation. Thisallows the interpretation to be guided based on the 
urrent state of the environment. A more
omplex formulation of the text-to-graphi
s problem is the 
ase in whi
h both the environmentand the entities must be 
reated.2.3.2 Output as instantiated graphi
sA number of alternatives exist for 
reating graphi
al representations from natural language input,in
luding produ
ing output as a sequen
e of photographs, 
onstru
ting a stati
 3D environment,or 
onstru
ting an animated 3D environment from whi
h animated �lms are rendered.2.3.2.1 Output as sequen
es of photographsAn alternative to visualizing natural language text using 3D environments is the use of photographs
orre
tly mat
hed to 
on
epts in input text (Joshi et al., 2004; Zhu et al., 2007). These approa
hesextra
t keywords from input text that are used as queries into a database of annotated images or anInternet-based image sear
h engine. One advantage of the text-to-pi
ture approa
h is that semanti
interpretation of the input text is avoided, rather making use of keywords to visualize the text.This allows for large portions of unrestri
ted text to be visualized as sequen
es of 
orrespondingimages. The problem with this approa
h is that images (espe
ially returned from an image sear
hengine) tend to be poorly annotated, and the la
k of synta
ti
 reasoning potentially results ininappropriate images for a parti
ular keyword (Glass et al., 2007).2.3.2.2 Output as instantiated 3D environmentsUnlike systems that respond to individual natural language 
ommands, some systems 
reate en-tirely new graphi
al environments from a narrative des
ribing a s
ene. This requires both re
ogni-tion and 
reation of new entities, as well as interpretation of the entire dis
ourse to determine the
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ene instantiation from natural language narrative illustrated in terms of the generi
text-to-graphi
s pro
ess.global layout of the environment (rather than implement instru
tions one at a time). Examples ofsu
h narratives in
lude:John uses the 
rossbow. He rides the horse by the store. The store is under thelarge willow. (Coyne and Sproat, 2001)A bri
k wall is right of a room. A red rug is in the room. A wooden table is onthe rug. (Zeng et al., 2005)As illustrated in Figure 2.5, a 
omputer-readable intermediate representation must be 
reatedfrom the input text. This is done using a database of interpretation modules, whi
h are do
u-ments that 
ontain instru
tions regarding how to interpret the text in 
ertain s
enarios. Surfa
eannotations of the input text are used to perform a look-up in a database that 
ontains di�erent
ategories of interpretation modules. For instan
e, words annotated as nouns result in a look-upin the database for a module 
ontaining instru
tions that instantiate an entity in the 3D s
ene(Yamada et al., 1992; Zeng et al., 2003, 2005; Seversky and Yin, 2006). Di�erent 
ategories of in-terpretation modules exist for di�erent types of semanti
s, in
luding 
ategories for handling nouns,spatial prepositions, and verbs (Coyne and Sproat, 2001). Ea
h 
ategory has a number of de�nedmodules, handling instan
es that potentially o

ur within that 
ategory. For example, the token�on� is re
ognised as a preposition by the parser, and 
onsequently a preposition module is invokedthat determines how to lo
ate the subje
t entity and the referen
e entity of the relation from thetext.The intermediate representation 
reated by the text analysis modules is a translation of theinput language into 
omputer-readable format. For example, WordsEye (Coyne and Sproat,2001) 
reates a representation in the following format (ellipsis indi
ates unquoted portions):(...(�node5� (:ENTITY:3D-OBJECTS (�
at-vp2842�)))(�node6� (:STATIVE-RELATION �on�:FIGURE �node5�:GROUND �node7�))(�node7� (:ENTITY:3D-OBJECTS (�pool_table-vp8359�...)))...)The above representation instantiates two entities, and spe
i�es an �ON� relation between them.This representation must be interpreted in the visual 
ontext, whi
h is done using world knowledgeasso
iated with geometri
 models and using a number of hand-
oded spatial reasoning modules.
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 models are annotated with detailed spatial tags, information that des
ribes thevarious regions semanti
ally asso
iated with an obje
t. For instan
e, tags su
h as �front� and�behind� are des
ribed for ea
h model, as well as more semanti
ally relevant terms su
h as �at� and�in�. For instan
e, the spatial tag �in� would be de�ned to indi
ate the top surfa
e of a geometri
model of a �bed�, while it would be interpreted as full 
ontainment for an model representinga �bedroom�. Other data is also asso
iated with models in
luding parts, skeletons and fun
tionproperties (Coyne and Sproat, 2001).Spatial tags are used to position obje
ts in the s
ene. The �ON� example quoted above isrealized by aligning the �top� surfa
e of the �pool_table� obje
t with the �bottom� surfa
e of the�
at� obje
t (Coyne and Sproat, 2001; Zeng et al., 2005; Seversky and Yin, 2006). Some s
enelayout instru
tions require further world knowledge with regards to spatial representation, su
h asthe �He rides the horse� example mentioned previously. Additional world knowledge is requiredto determine that �rides� must be translated into an �on� relation when referring to a �horse�, butmust be interpreted as an �in� relation if the entity were riding a �
ar�. WordsEye makes use ofreasoning modules 
alled depi
tion-rules to perform su
h reasoning (Coyne and Sproat, 2001).Alternatives to knowledge-guided interpretation exist for the task of performing s
ene layout.The Spatial Representation Interpreter (Sprint) system (Yamada et al., 1992) formulates thelayout problem as a set of 
onstraints, the solutions to whi
h spe
ify the layout of a s
ene. Analternative to expli
itly annotated obje
t models is presented by Seversky and Yin (2006), in whi
h3D obje
ts are automati
ally assigned spatial tags using an automati
 pro
ess that 
reates voxelrepresentations of the geometri
 models, and then de
ides whi
h voxels represent the 
anoni
alspatial 
ategories (for example �top� or �bottom�).The de�ning feature of the above-mentioned systems is the requirement for three 
ategoriesof world knowledge. World knowledge must be en
oded into the linguisti
 interpretation modulesso that the intermediate representation is parametrized to the required level. In addition, worldknowledge must be en
oded with ea
h geometri
 model in the database, so that various relationsare realized 
orre
tly. World knowledge is also required for reasoning about di�erent types ofspatial relationship. The su

ess of these systems depends on a su�
ient quantity of en
odedworld knowledge, whi
h requires a large amount of manual e�ort to 
reate.2.3.2.3 Output as animated graphi
sThe 
reation of animated graphi
s from natural language is the most 
omplex language-to-graphi
sappli
ation in terms of the requirement to derive temporal information from text. Not only mustambiguities in text be resolved, but 
on
epts su
h as events or a
tions must be re
ognised withinthe text and translated into time-based graphi
al visualizations. Example story narratives providedas input to su
h systems in
lude:
• CarSim (Johansson et al., 2005) (equivalent Swedish text):The bus was on its way from Kandahar towards the 
apital Kabul when it left theroad while overtaking and overturned, said general Salim Kahn ...
• Confu
ius (Ma, 2006) (ea
h entered separately):John put a 
up on the table.John left the gym.
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s from natural language narrative illustrated in terms ofthe generi
 text-to-graphi
s pro
ess.
• Swan (Lu and Zhang, 2002) (equivalent Chinese text):The new queen killed the beautiful prin
ess Snow White with a poisonous apple.A prin
e made Snow White alive again. The prin
e married prin
ess Snow Whitein a 
hur
h.Ea
h of the above examples are 
onverted into 
orresponding animated 3D environments. TheCarSim system (Johansson et al., 2005) 
reates animations spe
i�
 to the �
ar a

ident� domain,and so the variety of obje
ts and a
tions are limited a

ordingly. Confu
ius (Ma, 2006) animatesan a
tion des
ribed in a single senten
e, while Swan (Lu and Zhang, 2002) animates a storyexpressed as simpli�ed Chinese. Other systems not listed above in
lude the Story Driven AnimationSystem (SDAS) (Takashima et al., 1987) that 
onverts simple 
hildren's stories written in Japaneseinto animated graphi
s (in whi
h the primary fo
us is sele
ting the 
orre
t a
tion with whi
h toanimate a model), and the Virtual Dire
tor system (Mukerjee et al., 2000) that makes use ofagents that are programmed to perform 
ertain a
tions and intera
tions des
ribed in a limited�urban parks� domain.We divide methods for the 
onstru
tion of 3D animations from story narratives into two distin
tgroups with respe
t to the text-analysis task, as indi
ated in Figure 2.6. Knowledge-based textanalysis for 
reating animations is similar to WordsEye (Coyne and Sproat, 2001) in that adatabase of interpretation modules is used to 
onvert input text into a semanti
 representation.This database is extended to 
ontain 
ategories for a
tions or events. Systems that make use ofhand-
oded interpretation modules in
lude Confu
ius (Ma, 2006), Swan (Lu and Zhang, 2002),SDAS (Takashima et al., 1987) and the Virtual Dire
tor (Mukerjee et al., 2000). An alternative tothe knowledge-based method is the use of information extra
tion te
hniques to extra
t fragmentsof text that des
ribe visual aspe
ts of a s
ene, an example of whi
h is the CarSim system (Nugueset al., 2003; Johansson et al., 2005). The result in both 
ases is an intermediate representation thatexpresses the 
ontents of the input text in a 
omputer-readable format, with the added ability tospe
ify time-based events (su
h as the LVSR representation proposed by Ma and M
Kevitt (2003)).Spatial layout reasoning is performed using one of two methods in the 
reation of animationsfrom the intermediate representation, namely knowledge-based reasoning, and 
onstraint-based



CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 19planning. As with WordsEye (Coyne and Sproat, 2001), knowledge-based reasoning requiresgeometri
 models that are annotated with spatial tags and other types of semanti
 information(Takashima et al., 1987; Lu and Zhang, 2002; Ma, 2006), as well as modules for interpretingdi�erent kinds of relations and a
tions (Ma and M
Kevitt, 2004b). The alternative is the use of
onstraints to spe
ify the layout and motion of entities, the solutions to whi
h are used to 
onstru
tthe graphi
al environment. Example systems that use this method in
lude CarSim (Egges et al.,2001) and the Virtual Dire
tor (Mukerjee et al., 2000).The above-mentioned te
hniques result in animated graphi
s, whi
h implies that the aspe
t oftime is relevant in all 
ases. The Story Driven Animation System (SDAS) (Takashima et al., 1987)and the Virtual Dire
tor (Mukerjee et al., 2000) arrange the visualization of a
tions a

ording tothe order in whi
h the token (from whi
h a
tions are derived) appears in the text, and ea
h a
tionis manually asso
iated a �nite portion of time for exe
ution. Alternatively, spe
i�
 tokens are usedto determine the order of events (for example, �before�, �after� or �during�) using reasoning thatrequires data from an external knowledge-base (Lu and Zhang, 2002; Johansson et al., 2005; Ma,2006).Of the existing text-to-animation systems des
ribed in this se
tion, Confu
ius, Swan andCarSim produ
e results most similar to those required by a �
tion-to-animation system, in thatea
h produ
es animated 3D graphi
s from natural language input. We believe that Confu
ius andSwan are impressive in their ability to 
reate animated graphi
s with highly arti
ulated models,while CarSim is impressive in its ability to pro
ess large quantities of unsimpli�ed text withminimal use of a manually 
reated knowledge-base.2.4 Fi
tion-to-animation in 
ontextRelated text-to-graphi
s systems are summarized in Table 2.1 a

ording to the type of inputand output. Language 
omplexity refers to the level of restri
tion of the input text (in termsof senten
e length, senten
e 
omplexity, or subje
t domain). Output type distinguishes betweensystems that modify pre-existing environments, or 
reate new graphi
al environments. We in
ludeour �
tion-to-animation system in this table for 
omparison. Few systems 
reate 3D animations(rather than modify) from natural language, and of these only two systems 
reate multi-modalanimated graphi
s. The �
tion-to-animation system is the only example in whi
h unrestri
tednatural language is 
onverted to multi-modal animated graphi
s.2.4.1 Trends in text-to-graphi
s 
onversionCommon trends exist in text-to-graphi
s resear
h, 
hara
terized a

ording to the method used fortext analysis and layout interpretation.A 
ommon trend for text analysis is the use of a semanti
s based approa
h, whi
h is 
on
ernedwith the task of �understanding� the text to the maximum extent possible. This requires synta
ti
parsing as well as en
oded world-knowledge (Coyne and Sproat, 2001; Lu and Zhang, 2002; Ma,2006). A 
ontrasting approa
h is to avoid semanti
 understanding and rather extra
t only itemsfrom the input text that are required for 
reating graphi
al representations (Johansson et al., 2005).
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Input OutputContent Complexity Type Mode

Commands Narrative Language-sim
ilar

Restri
tednat
urallanguage

Unrestri
tedn
aturallanguag
e

S
enemodi�
a
tion

S
ene
reation Linedrawings Photographs 3Dgraphi
als

enes

Animated3D
graphi
s

Multi-modala
nimatedgraph
i
s

Env I (Boberg, 1972) 3 3 3 3Shrdlu (Winograd, 1972) 3 3 3 3 3Clowns (Simmons, 1975) 3 3 3 3Ani (Kahn, 1979) 3 3 3 3Nalig (Adorni et al., 1984) 3 3 3 3SDAS (Takashima et al., 1987) 3 3 3 3 3Sprint (Yamada et al., 1992) 3 3 3 3Primitives-based (Narayanan et al., 1995) 3 3 3 3AnimNL (Webber et al., 1995) 3 3 3 3Put (Clay and Wilhelms, 1996) 3 3 3 3PAR (Badler et al., 2000) 3 3 3 3Karai (Shinyama et al., 2000) 3 3 3 3Virtual Dire
tor (Mukerjee et al., 2000) 3 3 3 3WordsEye (Coyne and Sproat, 2001) 3 3 3 3Swan (Lu and Zhang, 2002) 3 3 3 33DSV (Zeng et al., 2003) 3 3 3 3Story Pi
turing Engine (Joshi et al., 2004) 3 3 3CarSim (Johansson et al., 2005) 3 3 3 3Voxel-based (Seversky and Yin, 2006) 3 3 3 3Confu
ius (Ma, 2006) 3 3 3 3Text-to-Pi
ture (Zhu et al., 2007) 3 3 3Fi
tion-to-animation 3 3 3 3Table 2.1: Categorization of related text-to-graphi
s systems a

ording to input and output.
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h have less stringent restri
tions regarding the
omplexity of the input text.Spatial reasoning is performed using either one of two methods. The most popular methodfor positioning obje
ts in a s
ene is the use of detailed world knowledge in the form of geometri
models annotated with spatial and fun
tional 
hara
teristi
s (Coyne and Sproat, 2001; Zeng et al.,2003; Ma, 2006). This in
ludes knowledge in the form of interpretation me
hanisms for applyingspe
i�
 types of relations or a
tions to models. An alternative to this approa
h is the formulationof 
onstraints that restri
t the layout of a s
ene or traje
tory of an obje
t. Solutions to these 
on-straints, obtained either as a result of numeri
al methods (Yamada et al., 1992) or dis
rete solvingte
hniques (Johansson et al., 2005), are then transformed into a
tual graphi
al representations.Text-to-graphi
s systems that require the use of a knowledge-base tend to use 
ustom-builtversions that provide the required data spe
i�
 to the purpose of the individual system (Coyneand Sproat, 2001; Lu and Zhang, 2002; Ma, 2006). No single formulation exists for the stru
tureor 
ontent of a generalized knowledge base for the text-to-graphi
s problem.Existing text-to-graphi
s te
hniques aim to automate the entire 
onversion pro
ess, and thereis a strong requirement for external knowledge be
ause natural language is inherently ambiguous.Rather than in
lude a human element in the 
onversion pro
ess to resolve ambiguity, 
omplexreasoning systems are implemented to retain full automation. Be
ause of the labour required inthe 
onstru
tion of a knowledge-base, existing systems generally limit the input in some respe
t.For instan
e, WordsEye is limited to short senten
es, Confu
ius allows only a single senten
eto be used as input at a time, while Swan limits the grammar 
omplexity. CarSim does not limitthe 
omplexity of the input text, but does restri
t the subje
t of the text to a single domain. Onlytext-to-pi
ture systems do not limit the text 
omplexity be
ause no knowledge-based reasoning isrequired.2.4.2 Motivation for the design of the �
tion-to-animation systemEnhan
ed representations for �
tion books range from digital visualizations of physi
al books(Chu et al., 2003) and providing ambient sounds e�e
ts (Ba
k et al., 1999), to virtual intera
tiverepresentations (Billinghurst et al., 2001). In all of these approa
hes the non-textual representationsare generated manually, while intera
tion with the book is the primary fo
us. Alternatively, weaddress the problem of 
onverting text as it is found in popular �
tion books into 
orrespondinganimated graphi
s, a problem that is an extension to the many text-to-graphi
s systems presentedin previous se
tions. Text sour
ed from popular �
tion is an example of a natural language narrativewithout any restri
tions on 
omplexity or domain.We design the �
tion-to-animation system to in
lude the same generi
 stages that exist inother text-to-graphi
s systems. The automated pro
ess 
onsists of a text analysis 
omponent andan interpretation 
omponent, both illustrated in Figure 2.7. Ea
h 
omponent is 
onstru
ted usinga set of sub-
omponents that 
olle
tively solve the text analysis and interpretation problems.Text analysisThe text analysis 
omponent is designed to automate the 
reation of semanti
 annotations in amanner that adapts to individual human thought pro
esses. We adopt a ma
hine learning approa
h
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Fiction book

Problem 1: Text Analysis

  1.1) Linguistic indicators

  1.2) Annotation creation

Problem 2: Interpretation

   2.1) Interpretation of annotations
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- Manual examples
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- Clarify l inguistic ambiguity

- Implied scene layout

- Creative ideas

Human knowledge:

- Creative enhancements

Information Extraction:

Hierarchical rule-based learning
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language processing

tools

Knowledge-poor

methods for 

interpret ing annotat ions

Interval-based quantif ied

constraint optimizerFigure 2.7: Fi
tion-to-animation pro
ess in terms of the generi
 text-to-graphi
s pro
ess.to a

omplish this, motivated by the use of similar te
hnology in the CarSim system (Johanssonet al., 2005). This approa
h indu
es models (from human 
reated examples) regarding how toidentify portions of text as belonging in a parti
ular 
ategory. This is in 
ontrast to the majorityof text-to-graphi
s systems that attempt deep �understanding� of the text through the use of
omplex knowledge-bases. The bene�t of the ma
hine-learning approa
h is that the 
omplexity ofinput text is not limited to the ability of any one synta
ti
 parser, nor is there a dependen
e ona 
ustom-built knowledge base. This bene�t is demonstrated by the CarSim system in its abilityto handle large quantities of non-simpli�ed language.We believe that models indu
ed by a ma
hine learning me
hanism are more des
riptive if theyare supplemented with linguisti
 information that des
ribes the stru
ture and synta
ti
 featuresof the input text. We use the term surfa
e annotations to des
ribe this type of information, andobtain it using a suite of general purpose natural language pro
essing tools. Existing text-to-graphi
s systems generally derive similar information in this manner (Coyne and Sproat, 2001; Luand Zhang, 2002; Ma, 2006).Intermediate representationThe �
tion-to-animation system uses annotated �
tion text as an intermediate representation.This is motivated by the ma
hine-learning approa
h to text analysis, be
ause text 
an be manuallyannotated by humans and used as example data for training. Intermediate representations used byrelated systems do not exhibit this property (Coyne and Sproat, 2001; Lu and Zhang, 2002; Ma,2006).InterpretationThe interpretation 
omponent is responsible for 
onverting the annotated text into 
orrespondinganimated 3D virtual environments. We divide the interpretation 
omponent into three modules,ea
h of whi
h is guided by a 
onstraint-based formulation of behaviour in the virtual environment.The �rst module is 
on
erned with interpreting annotations to form spatial 
onstraints that de-s
ribe behaviour. The se
ond module is 
on
erned with �nding solutions to these 
onstraints. Thethird module uses these solutions to instantiate and populate the virtual environment.
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onstraint-based formulations of behaviour is motivated by existing systems su
has Sprint (Yamada et al., 1992) and CarSim (Johansson et al., 2005). Both these systemsuse 
onstraints to spe
ify behaviour without requiring detailed knowledge to be asso
iated withindividual obje
t models (as opposed to systems like Confu
ius (Ma, 2006) and Swan (Lu andZhang, 2002)).The manner in whi
h 
onstraints are formed from annotations is dependent on the 
apabilitiesof the 
onstraint solving me
hanism used to lo
ate solutions. Behaviour implies a relation withtime, and solving 
onstraints with respe
t to time is a 
hallenging task. One method is demon-strated by CarSim (Johansson et al., 2005), whi
h dis
retizes time into a sequen
e of instan
es,solving 
onstraint systems at ea
h dis
rete point. We use interval-arithmeti
 to represent time as
ontiguous intervals (preventing dis
retization), and develop a interval-based 
onstraint optimiza-tion strategy that is able to �nd solutions to time-based 
onstraints. The interval-based 
onstraintoptimizer represents the se
ond module of the interpretation 
omponent.The �rst module of the interpretation 
omponent is 
on
erned with formulating stru
tureddes
riptions of the s
enes to be visualized. This in
ludes identifying whi
h s
enes to portray,whi
h entities to visualize in ea
h s
ene, and de
iding how to portray these entities visually. Thismodules also derives time-based 
onstraints that des
ribe entity behaviour from the annotated textthat 
an be solved using the interval-based 
onstraint optimizer. We use a suite of knowledge-poormethods for deriving s
ene des
riptions and formulating 
onstraints.The third module of the interpretation 
omponent involves instantiating and populating virtualenvironments that 
orrespond to the annotated �
tion text. This involves methods for pla
inggeometry in a virtual environment (where we prefer 3D geometry for 
omparability with stateof the art text-to-graphi
s systems like Swan (Lu and Zhang, 2002), Confu
ius (Ma, 2006)and WordsEye (Coyne and Sproat, 2001)), for 
onstru
ting geometry the represents ba
kgrounds
enery, and animating entities so that they perform the spe
i�ed behaviour.2.4.3 Fi
tion-to-animation in relation to other systemsFour existing text-to-graphi
s systems are notable with respe
t to their ability to 
reate 3D graphi
sfrom natural language input, namely WordsEye (Coyne and Sproat, 2001), Confu
ius (Ma,2006), CarSim (Johansson et al., 2005) and Swan (Lu and Zhang, 2002). Ea
h of these systemsexhibit strengths and weaknesses with respe
t to their 
apabilities in terms of input and output.We rate these systems a

ording to the quantity, 
omplexity, and domain freedom of the allowedinput, and also a

ording to the output quality.Some systems restri
t the quantity of input severely, su
h as Confu
ius, whi
h handles onlya single input senten
e at a time. Systems su
h as WordsEye and Swan do not pla
e an upperlimit on the number of senten
es, but neither of these present examples that extend beyond 20senten
es. CarSim displays the ability to handle unlimited senten
e length in its use of a 
orpusof 200 newspaper reports. The �
tion-to-animation system is most 
omparable to CarSim in itsability to handle extra
ts of in
reased length.Senten
e 
omplexity is expli
itly restri
ted for the Swan system. We observe that input exam-ples provided forWordsEye and Confu
ius are 
ontrived for illustration purposes. In 
ontrast,CarSim system uses examples sour
ed from publi
-domain literature. The �
tion-to-animation
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Number of Sentences (1 = single, 2 = less than 20, 3 = greater than 20)
Sentence Complexity (1 = simplified, 2 = contrived, 3 = unrestricted)
Domain Freedom (1 = domain restricted, 2 = knowledge restricted, 3 = no restriction)
Modalities (1 = static graphics, 2 = animated graphics, 3 = animated graphics + other)
Model Articulation (1 = none, 2 = some, 3 = detailed)
Scenes (1 = single unchangeable, 2 = single changeable, 3 = many changeable)
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Figure 2.8: Summary of 
apabilities of related text-to-graphi
s systems.system does not use 
ontrived examples, but rather uses text sour
ed dire
tly from popular �
tionbooks.CarSim is the only system that expressly restri
ts the subje
t domain of the input text (tothat of �
ar a

idents�), however, all other systems are limited in their ability to handle a generaldomain by the extent of the knowledge available to the system. WordsEye, Confu
ius andSwan are limited by the level of detail of the knowledge-base, a limitation that is redu
ed if theknowledge-bases are improved. The �
tion-to-animation system is also limited in this respe
t.Only Swan and Confu
ius have the ability to 
reate multi-modal presentations of the inputtext. The �
tion-to-animation system also exhibits this 
apability.The level of arti
ulation of models (that is, in animating poses and a
tions) is impressive inWordsEye, Confu
ius and Swan. This feature is not exhibited in CarSim, whi
h is only
on
erned with translating models of 
ars or tru
ks, without model-level arti
ulation. The �
tion-to-animation system arti
ulates models to a 
ertain extent, but not the the level of detail exhibitedin other systems.The output produ
ed by the CarSim system is always depi
ted in the same visual s
ene.WordsEye and Confu
ius have the ability to visualize only a single s
ene at a time, generallyusing a textured plane in whi
h obje
ts are pla
ed. Swan has the ability to produ
e multiples
enes of this stru
ture. The �
tion-to-animation system, however, is able to produ
e a number ofs
enes from a single fragment of input text, where ba
kground geometry is pro
edurally generateda

ording to the type of s
ene.We rate the 
apabilities of ea
h text-to-graphi
s system based on the above dis
ussions (ea
h
apability is rated on a s
ale between 1 and 3). A 
omparative plot su
h as the one presented inFigure 2.8 indi
ates that the �
tion-to-animation system is superior to existing systems, parti
u-larly in its ability to simultaneously handle large quantities of input text of unrestri
ted 
omplexity,and produ
e multi-modal animations that o

ur in a number of s
enes.
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lusionThis 
hapter indi
ates that a variety of methods exist for 
onverting text to graphi
s, ea
h of whi
h
onforms to a 
ommon stru
ture. We show that, espe
ially in the 
ase of natural language input,knowledge-bases are generally used to assist in interpreting the input text to aid in the 
onstru
tionof intermediate representations from whi
h graphi
al outputs are produ
ed. Alternative 
onversionpro
esses exist, in
luding the use of information extra
tion and 
onstraint-based methods thatredu
e the relian
e on knowledge-bases. The �
tion-to-annotation pro
ess is based on the latterte
hniques, avoiding the requirement for a 
omplex knowledge base.The �
tion-to-animation system is unique in the 
ontext of existing text-to-graphi
s resear
h.It is the �rst to 
onvert unrestri
ted text sour
ed from popular �
tion books into multi-modal3D animations. In addition, the 
ombination of the various 
omponents, in
luding an informationextra
tion module for 
reating annotations and the interval-based quanti�ed 
onstraint optimizer,represent new methods in solving the text-to-graphi
s 
onversion problem.This 
hapter 
ontributes to the text-to-graphi
s domain in the following respe
ts:
• The 
ommon stru
ture that we derive from related te
hniques 
ontributes to the understand-ing of the general text-to-graphi
s problem, and 
onsists of two primary tasks: text analysisand interpretation. We use this stru
ture for solving the �
tion-to-animation problem.
• We identify a gap in text-to-graphi
s resear
h regarding the 
onversion of �
tion text tomulti-modal animated 3D environments and �lms.
• We provide an innovative 
lassi�
ation s
heme for related text-to-graphi
s resear
h, basedon the input and output of ea
h system (Table 2.1 on page 20). This 
ontributes to the �eldby providing a su

in
t summary of existing te
hnology in a domain where the approa
hesare signi�
antly varied.



Chapter 3Surfa
e annotations for �
tion textThis 
hapter des
ribes automati
 te
hniques for identifying the stru
tural and synta
ti
 propertiesof digitized natural language text (
olle
tively named surfa
e annotations). Stru
tural propertiesindi
ate whi
h portions of the input text are tokens, senten
es and quotes. Te
hniques for derivingthese properties are presented in Se
tion 3.2. Synta
ti
 properties indi
ate the fun
tion of stru
turalunits in 
onveying the meaning of the text, and in
lude parts-of-spee
h, syntax and phrasing.Te
hniques for deriving synta
ti
 properties are presented in Se
tion 3.3. We demonstrate the useof stru
tural and synta
ti
 properties in the 
reation of semanti
 annotations over �
tion text inSe
tion 3.4. Con
lusions regarding the automated te
hniques are presented in Se
tion 3.5.3.1 Introdu
tion3.1.1 Problem statementWe believe that human 
ognition of natural language is assisted by stru
tural and synta
ti
 proper-ties of the text. We investigate the identi�
ation of these properties in �
tion text in the followingrespe
ts:1. Digital �
tion text is represented on a 
omputer as a stream of 
hara
ters, from whi
hstru
ture must be derived. Stru
tural elements in
lude tokens, senten
es, and quotes.2. Stru
tures in digital �
tion text 
an be 
lassi�ed a

ording to their fun
tion or use. Weinvestigate the derivation of these fun
tional 
lassi�
ations, in
luding the identi�
ation ofparts-of-spee
h, syntax, and phrasing.3. Tasks in the �
tion-to-animation pro
ess use stru
tural and synta
ti
 properties to aid in
reating semanti
 annotations. We investigate the levels of a

ura
y expe
ted in the identi-�
ation of these properties, so that any error produ
ed is quanti�ed for future experimentsthat use these properties.We demonstrate the use of stru
tural and synta
ti
 properties in 
reating semanti
 annotationsover �
tion text, as a motivation for our belief that these properties assist in the 
ognition ofnatural language. 26
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es Range of ContentSUSANNE 130 000 64 sour
es from 4 genre
ategories(extra
ts from Brown Corpus). Press reportage, letters,biographies, memoirs, te
hni
alwriting, adventure and Western�
tion (Sampson, 2007).WSJ 1 288 623 2499 stories from the 1989 WallStreet Journal. Press reportage(Mar
us et al., 1994).Brown 1 170 775 500 sour
es, approx. 2000 wordsea
h, from 15 genre 
ategories. Informative and imaginativeprose (Ameri
an English)(Fran
is and Ku
era, 1979).LOB 1 157 220 500 sour
es, approx. 2000 wordsea
h, from 15 genre 
ategories. Informative and imaginativeprose (British English)(Johansson et al., 1978).Table 3.1: Size and 
ontent of the four annotated 
orpora.3.1.2 Problem formulationStru
tural and synta
ti
 properties of natural language assist in identifying portions of text thatdes
ribe visual 
hara
teristi
s of a s
ene. For instan
e, tokens (stru
tural property) in the inputtext that are 
lassi�ed as nouns (synta
ti
 property) potentially identify tangible obje
ts in as
ene. This 
hapter identi�es methods for identifying stru
tural and synta
ti
 properties of naturallanguage, in the 
reation of what we term surfa
e annotations.Stru
tural properties re�e
t the stru
ture of the written language, and in this 
ategory weinvestigate automati
 methods for tokenizing �
tion text, identifying senten
e boundaries andidentifying quoted spee
h. Synta
ti
 properties re�e
t the fun
tion of units of text in writtenlanguage, and in this 
ategory we investigate methods for identifying the parts-of-spee
h of tokens,the synta
ti
 fun
tion of tokens, and the identi�
ation and 
lassi�
ation of phrases in the text.Chapter 4 des
ribes a ma
hine learning approa
h for 
reating semanti
 annotations in �
tiontext. This ma
hine learning approa
h 
ombines human 
reated example annotations with surfa
eannotations to derive a model of the human's mental pro
esses. This means that the surfa
eannotations must be provided in an a

urate manner so that 
onsistent models are 
reated bythe learning system. We investigate the a

ura
y with whi
h surfa
e annotations are 
reated overnatural language text using automated pro
esses.The evaluation of surfa
e annotations requires test data against whi
h the automati
ally derivedproperties 
an be 
ompared, des
ribed in the following se
tion.Evaluation dataEvaluation data for verifying the 
orre
tness of stru
tural and synta
ti
 properties of text is foundin a resour
e known as an annotated 
orpus. This is a 
olle
tion of natural language texts that aremanually labeled to indi
ate stru
tural or synta
ti
 properties. We use four 
orpora in this 
hapter,namely the Wall Street Journal (WSJ) se
tion of the Penn Treebank (Mar
us et al., 1994), theBrown 
orpus se
tion of the Penn Treebank (Fran
is and Ku
era, 1979; Mar
us et al., 1994), theLan
aster-Oslo/Bergen (LOB) 
orpus (Johansson et al., 1978, 1986), and the SUSANNE 
orpus(Sampson, 2007). These 
orpora are widely used in the �eld of natural language pro
essing forevaluation purposes, and their size and 
ontents are listed in Table 3.1.
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 Label
e1 A A
e2 B A
e3 A A
e4 C A
e5 A DTable 3.2: Example of manual and automati
 labeling.The following se
tion provides a brief explanation of popular metri
s for performing evaluationof natural language pro
essing tasks.Su

ess metri
sGeneral natural language pro
essing is 
on
erned with assigning labels of a 
ertain 
ategory to theoriginal text, as is the 
ase with the 
reation of surfa
e annotations. The a

ura
y of an automatedlabel-
reation pro
ess is evaluated by 
he
king the 
orre
tness of the automati
ally produ
ed labels.Example labeling is illustrated in Table 3.2, where ea
h element ei is labeled as either A, B, Cor D. The gold standard refers to the 
orre
t labeling of these elements, veri�ed by hand. Theautomati
 label is assigned to ea
h element using an automati
 pro
ess.There are two metri
s 
ommonly used for evaluating automati
 labeling me
hanisms, namelypre
ision and re
all. Pre
ision, as it relates to the example in Table 3.2, measures the a

ura
y ofthe labeler's output:

precision =
number of labels correct

number of labels automatically assignedThe pre
ision for labeling an element as �A� in the automated output in Table 3.2 is 2
4 , be
ause 2of the 4 assigned �A� labels 
orrespond to the gold standard. Re
all is a metri
 that measures theability of the automati
 pro
ess to 
orre
tly label ea
h element:

recall =
number of labels correct

number of labels in gold standardThe re
all for labeling an element as �A� in the automated output in Table 3.2 is 2
3 be
ause twoof the three elements labeled �A� in the gold standard are labeled �A� automati
ally.In some 
ases, there is no di�eren
e between pre
ision and re
all. If only the overall su

ess ofthe automated pro
ess is required (that is, not for any spe
i�
 label type), then pre
ision equalsre
all be
ause the number of labels assigned is equal to the number of labels in the gold standard.In this 
ase, both metri
s measure the a

ura
y of the automated pro
ess. A

ura
y is 2

5 for theexample in Table 3.2.All the above metri
s are presented as per
entages in subsequent se
tions. The remainderof this 
hapter des
ribes automated methods for identifying stru
tural and synta
ti
 propertiesof natural language text, and evaluates these methods over large natural language 
orpora usingpre
ision, re
all and a

ura
y.
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Figure 3.1: Context of the surfa
e annotation 
reation pro
ess with respe
t to the �
tion-to-animation problem.3.1.3 ContextThe resear
h presented in this 
hapter examines the automation of the �rst part of the text-analysisproblem in �
tion-to-animation 
onversion (Figure 3.1). We des
ribe a method for automati
allyidentifying surfa
e annotations over �
tion text. The input to this pro
ess is unaltered digitized�
tion text. Surfa
e annotations that are 
reated using automated te
hniques are used in thema
hine learning pro
ess for identifying semanti
 annotations des
ribed in Chapter 4.3.2 Stru
tural propertiesThe following se
tions present and evaluate te
hniques for identifying stru
tural 
omponents ofnatural language text, in
luding tokens, senten
es, and quotes. We assume 
ertain 
onventions areused in formatting the digitized input text, whi
h are des
ribed in Appendix A.3.2.1 TokensTokenization is the pro
ess of separating sequen
es of 
hara
ters into units that resemble words.The stru
ture of English requires a white spa
e between words, but white-spa
e does not alwaysseparate words and pun
tuation marks. Examples in
lude senten
e-terminating full-stops (Grefen-stette and Tapanainen, 1994; Mikheev, 2002), abbreviations, and a
ronyms. Pun
tuation su
h as
ommas, bra
kets, and semi-
olons also exhibit this feature, as do possessive su�xes and 
ontra
-tions su
h as 's, n't and 'll.Our tokenization strategy is based on the assumption that English words are separated usingwhite-spa
e. The input stream of 
hara
ters is tokenized using white-spa
e as a delimiter. Ea
htoken is 
ompared against a lexi
on 
ontaining 87 309 English words, sour
ed from the 12di
ts
olle
tion (Atkinson, 2003). If a token is a member of this lexi
on, then it is re
ognized as anEnglish word and is not tokenized any further. Tokens that do not o

ur in the 12di
ts lexi
onare potentially a
ronyms or abbreviations. The token is 
he
ked for membership within a lexi
onof abbreviations and a
ronyms, sour
ed from the ANNIE 
omponent of the GATE ar
hite
ture(GATE, 2005). If a mat
h is found, no further tokenization o

urs. If a token is neither anEnglish word nor an abbreviation, then the token has one or more pun
tuation marks atta
hed.



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 30Tokens in Brown Tokens found Tokens 
orre
t Pre
ision Re
allBrown Corpus 1170775 1180170 1165852 98.79% 99.58%Table 3.3: Pre
ision and re
all of our tokenization te
hnique over the Brown 
orpus.The token is split into sub-tokens using pun
tuation marks, and apostrophe su�xes as delimiters(identi�ed using manually 
onstru
ted lists shown in Appendix A). The resulting sub-tokens arethen repro
essed using the above methods until all tokens are 
lassi�ed.We evaluate our approa
h using the Brown 
orpus 
omponent of the Penn Treebank (Mar
uset al., 1994). A plain-text version of the 
orpus is 
reated by re-binding pun
tuation to words. Theplain-text version is tokenized and the result is 
ompared with the original Brown 
orpus. Ea
htoken in the Brown 
orpus is mat
hed with the automati
ally generated output.In total, 99.58% of the automati
ally generated tokens mat
h the original, as listed in Table3.3. This means that less than 0.5% of the original tokens are in
orre
tly tokenized.Our method is an alternative to existing tokenization te
hnology that uses ma
hine learningmethods (Grover et al., 2000; Clark, 2003). The minimal gains in a

ura
y a
hieved using thesemethods are made at the 
ost of dramati
ally in
reasing the 
omplexity of the tokenization pro
ess.3.2.2 Senten
esDete
ting how tokens group together to form senten
es is known as senten
e boundary disam-biguation and is dependent on an a

urate tokenization pro
ess (Mikheev, 2002). This is be
auseperiods used to indi
ate abbreviations must be 
orre
tly di�erentiated from periods used as sen-ten
e terminators (full-stops).We use a 
ustom built senten
e boundary disambiguator based on the tokenization approa
hdes
ribed in Se
tion 3.2.1. The pro
ess identi�es senten
e boundaries based on three senten
eterminating symbols, namely the full-stop, the ex
lamation mark, and the question mark, ea
hof whi
h is presumed to be 
orre
tly tokenized. If 
losing quotation marks fall after a senten
eterminator then the last su
h token en
ountered be
omes the senten
e terminating token.We evaluate this senten
e boundary dete
tion algorithm by measuring the a

ura
y with whi
hsenten
e terminators are identi�ed (Mikheev, 2002). We perform this evaluation using the Brown
orpus be
ause it 
ontains senten
e termination labels. A plain-text version is 
reated by removingall senten
e boundary information, and this version is passed through our senten
e boundarydisambiguator. Two plain-text versions are 
reated: one using 
orre
t tokenization as found in theBrown 
orpus, and the other tokenized using the method des
ribed in Se
tion 3.2.1. The formerevaluates a

ura
y where no errors o

ur in the tokenization, while the latter tests the e�e
t thattokenization errors have on the identi�
ation of senten
e terminators.The resulting a

ura
ies of the implemented senten
e boundary disambiguator are listed inTable 3.4, showing that the use of this method for identifying senten
es produ
es a small degreeof error. We explain the error in these results by the in
orre
t tokenization of the portion of theBrown 
orpus 
ontaining s
ienti�
 do
uments, where a
ronyms and spe
ial symbols 
onfound ourtokenization method. We do not believe that �
tion text exhibits this type of prose. Errors intokenization negatively a�e
t the identi�
ation of senten
e boundaries, but re
all is redu
ed byless than 1%.
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es Automati
 Corre
t Pre
ision Re
allCorre
t Tokens 52108 53560 50166 93.66% 96.27%Automati
 Tokens 52108 56709 49947 88.08% 95.85%Table 3.4: A

ura
y of our senten
e boundary dete
tion pro
ess.As with tokenization, more 
omplex te
hniques based on ma
hine learning produ
e more a

u-rate results, at the 
ost of in
reased algorithmi
 
omplexity (Palmer and Hearst, 1994).3.2.3 QuotesOne feature de�ning �
tion text is the presen
e of quoted text, the fun
tion of whi
h is to indi
atethe spee
h of 
hara
ters in the s
ene. Quoted spee
h begins and ends with quotation marks, andwe annotate portions of text between double inverted 
ommas as quotes. We do not investigatethe a

ura
y with whi
h quoted text is identi�ed be
ause of the straight-forward nature of thiste
hnique.3.3 Synta
ti
 propertiesThis se
tion des
ribes methods for deriving synta
ti
 properties of natural language text. Weinvestigate three di�erent 
ategories: the parts-of-spee
h of a token; the synta
ti
 fun
tion of atoken; and the 
lassi�
ation of phrases.3.3.1 Parts-of-spee
hA parts-of-spee
h tagger automati
ally assigns labels (tags) to tokens that indi
ate the word-
lass(in
luding noun, verb, adje
tive). This se
tion investigates a number of publi
ly available parts-of-spee
h taggers. The part-of-spee
h of a word is dependent on the 
ontext in whi
h it is used. Forinstan
e, the word �man� 
an be pla
ed into two word-
lasses: noun, in the senten
e, �The manwas walking�; and verb in, �He will man the lifeboat�. Autonomous parts-of-spee
h taggers employa ma
hine learning me
hanism that formulates a model regarding how to 
lassify a word given its
ontext. Publi
ly available parts-of-spee
h taggers are distributed with 
ustomized, pre-trainedmodels.This investigation determines the levels of a

ura
y to be expe
ted from taggers in their pre-trained form, over di�erent types and genres of text. This work di�ers from previous evaluationsin whi
h ea
h tagger is provided with the same training data before testing (Teufel et al., 1996).Given the availability of many di�erent types of tagging systems, this se
tion also investigates theresult of 
ombining these taggers into voting ensembles (Glass and Bangay, 2005, 2007b).3.3.1.1 Parts-of-spee
h tagging te
hniquesWe identify di�erent 
lasses of freely available parts-of-spee
h taggers. These are listed in Table3.5, along with the reported a

ura
y of ea
h1. The reported a

ura
ies listed in Table 3.5 
annot1At time of writing, the Asso
iation of Computational Linguisti
s list the POS Tagger, Stanford Tagger andSVMTool as the top three parts-of-spee
h taggers available. Sour
e: http://a
lweb.org/a
lwiki/ [a

essed on 26September 2007℄.
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ura
yQTag Probabilisti
 Romanian 
orpus 98.39%TreeTagger De
ision Tree WSJ 96.36%Brill Tagger Rule-based WSJ 97.20%Stanford Tagger Maximum Entropy WSJ 97.24%SVMTool Support Ve
tor Ma
hine WSJ 97.20%POS Tagger Bidire
tional Per
eptron WSJ 97.33%Table 3.5: Freely available parts-of-spee
h taggers, and the a

ura
y reported for ea
h.be fairly 
ompared be
ause taggers are evaluated using di�erent 
orpora. The following se
tionsprovide an overview of ea
h tagging me
hanism.Probabilisti
 taggerConventional parts-of-spee
h taggers, otherwise known as n-gram taggers, are probabilisti
 taggersthat examine the previous n − 1 words of the 
urrent word to establish its word-
lass. TheQTag tool2 (Tu�s and Mason, 1998) implements a window of three words (trigram), where theprobability of ea
h possible tag for a 
urrent word is 
ombined with the likelihood that the tag ispre
eded by the two previously assigned tags. The tag with the highest probability is sele
ted. Theinitial probabilities are 
al
ulated from a training 
orpus. QTag has only undergone one de�nitiveevaluation over a Romanian 
orpus 
onsisting of approximately 250 000 words. A

ura
ies ofbetween 95.63% and 98.39% are reported (Tu�s and Mason, 1998). The version used in our testingis trained for English.De
ision tree-based taggerThe TreeTagger3 (S
hmid, 1994) is a probabilisti
 tagger that uses a binary de
ision tree to estimatethe probability of a tag being appropriate for a spe
i�
 word. The TreeTagger was tested on
100 000 words from the Wall Street Journal 
orpus (sour
ed from di�erent portions to those usedfor training), a
hieving an a

ura
y of 96.36%.Rule-based taggerThe Brill tagger4 uses a rule-based approa
h (Brill, 1994), where a set of rules for determining wordtags is 
reated as follows (during training): tags are randomly assigned to the 
orpus of words,after whi
h transition rules are learned by 
orre
ting the falsely identi�ed word-tags. During thetagging pro
ess, these rules are applied to identify the 
orre
t word tag. The Brill tagger wastrained on 600 000 words from the Wall Street Journal 
orpus, and tested using a separate portionof the same 
orpus (
ontaining 150 000 words), a
hieving an a

ura
y of 97.2%. The rule-basedtagger is the only non-statisti
ally based tagger in this 
olle
tion.2QTag: http://www.english.bham.a
.uk/staff/omason/software/qtag.html [a

essed on 25 September 2007℄3TreeTagger: http://www.ims.uni-stuttgart.de/projekte/
orplex/TreeTagger/ [a

essed on 25 September 2007℄4Brill Tagger: http://www.
s.jhu.edu/~brill/RBT1_14.tar.Z [a

essed on 25 September 2007℄



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 33Maximum entropy taggerA maximum entropy approa
h (Toutanova and Manning, 2000; Toutanova et al., 2003) is used forthe tagging tool developed at Stanford University5. For a given word and its 
ontext, every tagin the tag-set is assigned a probability based on data derived during training. The probability ofa tag sequen
e is 
al
ulated for a sequen
e of words, resulting in a probability distribution. Thetag asso
iated with the distribution exhibiting the highest entropy, or information gain (S
hwartz,1963), is 
hosen. This tagger was tested on the Wall Street Journal 
orpus with reported a

ura
yrates of up to 97.24%.Support ve
tor ma
hine taggerA learning te
hnique based on support ve
tor ma
hines6 (SVM) is also used for parts-of-spee
htagging (Giménez and Marquez, 2003). A di
tionary is extra
ted from a training 
orpus with allpossible tags for ea
h word. Ea
h word tagged as τ in the training 
orpus provides a positiveexample for tag τ and a negative example for all other tags. A binary SVM is trained for a spe
i�
tag τ using these positive and negative examples. When de
iding whi
h tag to assign to a word,the most 
on�dent tag a

ording to the predi
tions of all the binary SVMs is sele
ted. A 
enteredwindow of seven tokens is used, whi
h is larger than the 
ommon window of three tokens in atrigram tagger. The a

ura
y of this tagger is reported to be 97.2% over the Wall Street Journal
orpus.Bidire
tional sequen
e 
lassi�
ation taggerShen et al. (2007) propose a learning and inferen
e te
hnique 
alled guided learning to 
ater forproblems inherent in left-to-right 
lassi�
ation s
hemes (su
h as the maximum entropy and proba-bilisti
 approa
hes). A bidire
tional approa
h is used but this introdu
es a new problem of sele
tingthe order in whi
h to 
ondu
t the inferen
e pro
ess. Guided learning integrates 
lassi�
ation oftokens and inferen
e dire
tion into a single learning task. This tagger7 is tested on the Wall StreetJournal 
orpus yielding a

ura
y rates of up to 97.33%.Combination of parts-of-spee
h taggersEnsembles of parts-of-spee
h tagging systems are 
onstru
ted based on the premise that, althoughea
h tagger uses the same 
ontextual information regarding the 
urrent word to de�ne its tag,ea
h one makes use of it in a di�erent manner. The 
ombination of parts-of-spee
h taggers isdemonstrated by van Halteren et al. (1998) where 
ombination te
hniques range from simple voting,to the use of se
ond level learners (ma
hine learning te
hniques that learn whi
h tag to sele
t fromthe options presented by the ensemble) (Brill and Wu, 1998; Màrquez et al., 1999; van Halterenet al., 2001).Related work in 
ombining taggers ensures that the 
omponent taggers are all trained usingidenti
al training data (Teufel et al., 1996; van Halteren et al., 2001). While providing 
omparableresults, this does not provide a useful indi
ation of �o�-the-shelf� value of ea
h parts-of-spee
h5Stanford tagger: http://nlp.stanford.edu/software/tagger.shtml [a

essed on 25 September 2007℄6SVMTool: http://www.lsi.up
.edu/~nlp/SVMTool/ [a

essed on 25 September 2007℄7POS Tagger: http://www.
is.upenn.edu/~xtag/spinal/ [a

essed on 25 September 2007℄
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luding pun
tuation) FullTag-set Tag-set(ex
luding pun
tuation)SUSANNE 50 325 42 889 353 -WSJ 1 288 623 1 114 957 48 36Brown 1 170 775 1 015 425 48 36LOB 1 157 220 997 906 153 141Table 3.6: Number of tokens and tag-set size of the four test 
orpora.tagger within the ensemble. This study di�ers from existing resear
h by avoiding the pre-trainingof ea
h tagger, under the assumption that the trained tagger provided with ea
h tool is the besttrained model for that tool.3.3.1.2 Tagger a

ura
yWe evaluate publi
ly available parts-of-spee
h taggers with the aim of answering the followingquestions:
• Whi
h parts-of-spee
h tagger produ
es the most a

urate tags over varied natural languagesour
es?Majority of parts-of-spee
h tagging te
hniques are trained using the Wall Street Journal
orpus. We believe that this 
orpus is not representative of the style of language used in�
tion. This validation is performed over other 
orpora in
luding the Brown, LOB andSUSANNE 
orpora, all of whi
h 
ontain extra
ts from �
tion books.
• Is a higher a

ura
y a
hieved by 
ombining parts-of-spee
h taggers into a voting s
heme?The use of a voting system potentially improves the a

ura
y of the produ
ed tags, and weinvestigate whi
h 
ombinations of tagging tools, as well as whi
h types of voting methodsprodu
e the best a

ura
y.We use the 
orpora listed in Table 3.6 to answer the above questions. Ea
h 
orpus uses a di�erentset of tags to indi
ate parts-of-spee
h. For example, the Penn tag-set used for the WSJ 
orpusindi
ates a preposition using the symbol PRP while the tag-set used by the LOB 
orpus indi
ates apreposition using the tag PP. The WSJ uses 48 di�erent tag 
ategories (36 ex
luding pun
tuation),while the LOB 
orpus uses a set of 153 tags, and the SUSANNE 353. All of the tagging toolsdes
ribed in Se
tion 3.3.1.1 use the Penn tag-set, making dire
t 
omparison over 
orpora like theLOB or SUSANNE impossible.We use an independent 
oarse tag-set for evaluation to whi
h other tag-sets are mapped. Thistag-set is a simpli�ed version of the Penn tag-set (Mar
us et al., 1994). Mapping between tag-sets is not always dire
t (Atwell et al., 1994; Teufel, 1995; Atwell et al., 2000; Déjean, 2000). Forinstan
e, mappings of type 1:n o

ur, where a single tag type in one s
heme maps to n tag types inthe 
oarse tag-set. Avoiding these 
ases is impossible be
ause of the de�nitions of the tag-sets, andwhere su
h mappings are identi�ed, any senten
e in the 
orpus 
ontaining su
h a tag is removedfrom the test 
orpus (whi
h explains why the SUSANNE 
orpus is reported as having 50 325 tokensin Table 3.6, as against its a
tual 130 000 tokens). The 
oarse tag-set and the mappings we usefrom tag-sets of di�erent 
orpora are listed in Appendix B.



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 35Reported WSJ LOB Brown SUSANNEStatisti
al (QTag) 98.39 70.40 72.87 72.51 76.077Tree (TreeTagger) 96.36 96.94 91.67 94.45 91.15Rule-based (Brill Tagger) 97.20 93.10 88.67 92.55 88.45Maximum Entropy (Stanford) 97.24 91.53 80.21 89.89 85.92Support Ve
tor Ma
hine (SVMTool) 97.20 98.17 92.17 95.10 90.19Bidire
tional (POS) 97.33 83.36 82.59 84.74 83.02Table 3.7: A

ura
y results of various taggers over the di�erent 
orpora.ValidationThis experiment validates the a

ura
y of ea
h of the parts-of-spee
h taggers listed in Se
tion 3.3.1.1over the di�erent annotated 
orpora, with the purpose of answering the following questions:
• Whi
h parts-of-spee
h tagger produ
es the highest a

ura
y over majority of the 
orpora?
• What is the nature of the errors produ
ed by the parts-of-spee
h taggers?We use the pre-trained models distributed with ea
h tagger in this evaluation. Ea
h 
orpus isstripped of tags, and the stripped 
orpus is tagged by ea
h parts-of-spee
h tagger. A gold standardis 
reated by mapping the original tags in ea
h 
orpus to the 
oarse tag-set. The output of ea
htagger is also mapped to the 
oarse tag-set. Ea
h tag in the automati
ally tagged 
orpus is
ompared to the 
orresponding tag in the gold standard, and we measure the per
entage of 
orre
ttags with regard to the total number of tokens in the 
orpus (to 
al
ulate a

ura
y). We do notin
lude pun
tuation in this evaluation.The a

ura
y of ea
h parts-of-spee
h tagger over ea
h 
orpus is listed in Table 3.7. The a

u-ra
ies observed do not 
orrespond to those reported for ea
h tagger in related work, and this isexplained as follows:
• Di�erent test data: majority of the taggers are trained and tested over the WSJ se
tionof the Penn Treebank, spe
i�
ally tested over only one �fth of this 
orpus. Results areexpe
ted to de
rease as a result of larger test-beds, di�eren
es in style, genre, and origin ofthe language (British versus Ameri
an).
• Di�erent tag-sets: we expe
t that a redu
ed tag-set makes the tagging task simpler. Inthe 
ase of the SVM tagger, a higher a

ura
y than reported in related work is observedbe
ause the 
oarse tag-set is a dire
t simpli�
ation of the Penn Tag-set. However, mappingfrom other tag-sets su
h as LOB and SUSANNE introdu
es error, whi
h explains why alltaggers produ
e lower a

ura
y s
ores over these 
orpora.The �gures in Table 3.7 re�e
t very high a

ura
ies in spite of the above problems. The redu
eda

ura
ies over the LOB 
orpus are explained by the di�eren
es between the Ameri
an and Britishlexi
ons. The SVM tagger produ
es the most a

urate results over the greatest number of 
orpora.The top three 
ontributors of error for ea
h tagger are listed in Table 3.8. Ea
h tagger hasdi�
ulties with 
ertain tags a
ross the di�erent 
orpora. For example, 15.79% of the total erroren
ountered by QTag over the WSJ 
orpus is 
aused by the in
orre
t assignment of NN insteadof NNP. Many of the errors o

urring 
onfuse similar 
lasses of tag. For example, NNP and NN



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 36WSJ LOB Brown SUSANNEQTag NNP/NN 15.79% IN/CD 7.71% NNP/NN 9.21% IN/CD 8.71%IN/CD 6.96% PRP/NN 7.67% IN/CD 7.54% VBN/JJ 6.68%VBD/JJ 5.07% NNP/NN 6.59% PRP/NN 5.99% PRP/NN 6.31%Tree NN/JJ 8.31% IN/TO 13.56% NNP/NN 8.12% NN/NNP 23.67%JJ/NN 7.23% VB/VBG 7.25% NN/JJ 4.84% MD/JJ 4.93%IN/RB 5.90% NNP/JJ 3.95% NN/NNP 4.82% JJ/NNP 4.80%Brill IN/DT 8.69% IN/TO 10.00% IN/DT 8.92% NN/NNP 21.28%VBD/VBN 7.83% IN/DT 6.85% VBD/VBN 7.67% VBD/VBN 7.35%VB/NN 7.50% RP/IN 5.90% VB/NN 6.57% RP/IN 6.74%Stanford VBD/VBN 14.98% NN/�COPY� 9.88% VBD/VBN 14.02% VBD/VBN 16.23%VB/NN 10.56% IN/�COPY� 6.39% VB/NN 8.86% NN/NNP 14.81%JJ/RB 6.29% VBD/VBN 6.21% JJ/RB 5.44% VB/NN 6.92%SVM NN/JJ 9.71% IN/TO 14.43% NN/NNP 8.34% NN/NNP 26.40%NN/NNP 6.78% VB/VBG 7.49% NN/JJ 7.66% JJ/NNP 5.51%JJ/NN 5.60% NN/JJ 4.58% JJ/NN 4.64% VB/VBG 4.61%POS NNP/NN 38.67% NNP/NN 21.14% NNP/NN 27.02% NNP/NN 23.14%VBD/VBN 7.24% VBD/VBN 7.50% VBD/VBN 9.05% VBD/VBN 13.02%VB/NN 5.96% VB/NN 6.67% VB/NN 6.48% VB/NN 6.41%Table 3.8: Top three 
ontributors to error for ea
h tagger.both represent nouns, but the former indi
ates proper nouns as opposed to 
ommon nouns. Thesame is true for VBD and VBN whi
h both signify di�erent types of verb. This demonstratesthat the type of error en
ountered is on a very �ne level of detail. If subsequent pro
esses areonly 
on
erned with 
oarse parts-of-spee
h detail (for instan
e, di�erentiating between nouns andverbs, regardless of �ner 
lassi�
ation) then these errors are of no 
onsequen
e.In 
on
lusion the SVM tagger most 
onsistently produ
es the highest a

ura
y. The majorityof the errors produ
ed are the result of the inability of ea
h tagger to di�erentiate between similartag 
ategories, and are of no 
onsequen
e if only broad tag 
ategories are used.Ensembles of tagging te
hniquesThe purpose of this experiment is to determine if more a

urate tagging 
an be a
hieved by
ombining the di�erent parts-of-spee
h taggers. This experiment is designed to answer the followingquestions:
• Whi
h voting s
heme produ
es the highest a

ura
y and redu
tion in error?
• Whi
h ensemble of taggers produ
es the highest a

ura
y and redu
tion in error?
• What is the nature of the erroneous tags produ
ed by the ensemble of taggers that produ
e thehighest a

ura
y?We investigate di�erent types of voting when 
ombining parts-of-spee
h taggers:1. Simple Vote: the tag that is sele
ted by majority of the taggers is 
hosen. In the 
ase of atie, a random tag between the tied parties is 
hosen.



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 372. Weighted Vote: ea
h tagger 
ontributes a spe
i�ed weighting for a parti
ular tag. The tagwith the highest 
umulative s
ore is the tag 
hosen. The following weighting s
hemes aretested:(a) TotA

ura
y: ea
h tagger has a weighting equivalent to its overall a

ura
y, a

ordingto the results listed in Table 3.7.(b) TagPre
ision: a

ording to the weighting s
heme de�ned by van Halteren et al. (2001),a tag-spe
i�
 weighting s
heme is employed that uses the pre
ision of the spe
i�
 taggerwith regards to any parti
ular tag. Pre
ision for any tag χ is the per
entage of tokenstagged χ by the tagger that are also tagged thus in the gold standard:
precision =

number χ tags correct

number χ tags assigned by tagger(
) Pre
ision-Re
all: a

ording to the weighting s
heme de�ned by van Halteren et al.(2001), a tag-spe
i�
 weighting s
heme is used that not only takes into a

ount howsu

essful a parti
ular tagger is at tagging a 
ertain tag of type χ, but also the errorthat the other taggers in the ensemble experien
e when assigned a tag of type χ. Erroris derived from a tagger's re
all rate, where re
all for any tag χ is the per
entage oftokens tagged χ in the gold standard that are also tagged χ by the tagger:
recall =

number χ tags correct

number χ tags in gold standardError is 
al
ulated as (1− recall), and measures how often a tagger fails to re
ognize aspe
i�
 tag. The weighting assigned by tagger τ for tag χ in this s
heme is therefore
al
ulated as follows (where S is the set of taggers in the ensemble):
weightτχ = precisionτ

χ +
∑

∀λ∈S/τ

errorλ
χwhere the set S/τ is the set of taggers, ex
luding tagger τ .3. Ranked Vote: ea
h of the taggers is given a rank (between 1 and 5) based on the a

ura
yresults listed in Table 3.7, with the best s
oring tagger assigned a rank of 5. Tag s
ores are
al
ulated by adding the ranks of the taggers that voted for ea
h spe
i�
 tag. The tag withthe highest s
ore is 
hosen.An alternative to voting is the use of a se
ond level learner for de
iding on whi
h tag to 
hoose fora spe
i�
 word. However, van Halteren et al. (2001) show that these te
hniques do not performwell when there is a la
k of training data. We do not train the taggers, whi
h means that a se
ondlevel learner 
annot be trained for this experiment.We tag ea
h 
orpus individually using ea
h parts-of-spee
h tagger. The tag assigned to aspe
i�
 token by ea
h tagger is used in the voting s
hemes des
ribed above to determine the mostsuitable tag for the token. We expe
t that some ensembles of taggers perform better than others,and we test every possible 
ombination of taggers. We measure the a

ura
y of ea
h tagged 
orpus
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al
ulate the redu
tion in error experien
ed when using a 
ombination of taggers (based onthe metri
 de�ned by van Halteren et al. (2001)):
error reduction =

correctensemble − correctbest

total − correctbest
∗ 100This metri
 indi
ates the redu
tion in error (as a per
entage) a
hieved using an ensemble fromthe error produ
ed using the best performing tagger in the ensemble (using the a

ura
ies listedin Table 3.7). For instan
e, if an ensemble 
ontains two taggers where the best a

ura
y of thetwo is 99.0%, then assuming the ensemble results in an a

ura
y of 99.5%, the per
entage errorredu
tion is 50%.The ensembles resulting in the highest a

ura
y and largest redu
tion in error over ea
h 
orpusare listed in Table 3.9. In the 
ase of the Brown 
orpus, the same ensemble a
hieves the highesta

ura
y and the largest redu
tion in error, and we also show the srpt ensemble as the se
ondbest ensemble over this 
orpus.Not all ensembles produ
e an improvement. Many results listed in Table 3.9 are redu
edfrom the highest individual a

ura
y of the 
omponent taggers. This is always the 
ase for thesimple voting s
heme. The Pre
ision-Re
all voting s
heme suggested by van Halteren et al. (2001)produ
es the most redu
tion in error, and an in
rease in a

ura
y over all the 
omponent taggers.The ensemble 
ontaining the SVMTool, the Rule-based tagger, the Probabilisti
 tagger, andthe Tree tagger (srpt) provide the largest redu
tion in error over more 
orpora than any otherensemble.We examine the pre
ision and re
all results obtained for ea
h tag using the Pre
ision-Re
allvoting s
heme with the srpt ensemble. The mean pre
ision and re
all value for ea
h tag in the
oarse tag-set is graphed in Figure 3.2. The maximum and minimum values (over the set of 
orpora)are also indi
ated using error-bars. High levels of pre
ision and re
all are observed over majorityof the tags. However, the ensemble produ
es poor results over foreign words (FW), parti
les (RP),and interje
tions (UH). However, these 
lasses are unlikely to indi
ate s
ene-related informationand are therefore unlikely to 
ontribute to experimental error in subsequent tasks.This se
tion demonstrates that the error produ
ed by individual parts-of-spee
h taggers isredu
ed using the srpt ensemble with the Pre
ision-Re
all voting s
heme de�ned by van Halterenet al. (2001). The majority of the errors produ
ed by this ensemble in
lude tags that are unlikelyto 
ontribute to future s
ene related, annotation tasks.3.3.1.3 Summary of �ndingsPubli
ly available parts-of-spee
h taggers produ
e high levels of a

ura
y without requiring furthertraining beyond what is provided with ea
h tool. We 
on
lude the following with regards to thequestions posed at the beginning of this se
tion:

• The SVMTool produ
es the most a

urate parts-of-spee
h tags over di�erent types and stylesof text.
• An ensemble of taggers produ
es higher a

ura
ies than individual taggers, and the ensemble
onsisting of the pre-trained SVMTool, Brill Tagger, QTag, and TreeTagger produ
es thelargest redu
tion in error using the Pre
ision-Re
all voting s
heme.
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orpus.
Small birds sing loud songs(a) Dependen
y Grammar phrase

phrasephrase

Small birds sing loud songs

phrase(b) Phrase Stru
ture GrammarFigure 3.3: Dependen
y Grammar versus Phrase Stru
ture Grammar (as illustrated by Hudson(2005)).3.3.2 SyntaxSynta
ti
 information indi
ates the fun
tion of tokens in a senten
e. This information is also usefulfor identifying s
ene-related des
riptions in �
tion text. For example, a token identi�ed as a main-verb potentially identi�es the primary a
tion des
ribed in the senten
e, while the token identi�edas the subje
t of the main-verb refers to the entity that performs this a
tion.Information regarding the fun
tion of tokens in a senten
e is provided by a synta
ti
 parser.Two theories exist for automati
 parsing, namely phrase stru
ture grammar (PSG) and dependen
ygrammar (DG) (Hudson, 2005). The two are di�erentiated based on whether the basi
 unit ofsenten
e stru
ture is the phrase (PSG), or whether the basi
 unit of stru
ture is the dependen
ybetween two words (DG). This di�eren
e is illustrated in Figure 3.3, where dependen
y grammaris 
on
erned with �nding the dependen
ies between words in the senten
e and the nature of thedependen
y (su
h as subje
t or obje
t). In 
ontrast, phrase-stru
ture grammar is 
on
erned withforming groups of words ea
h with a spe
i�
 fun
tion, su
h as noun-phrase or verb-phrase.We re
ognize the validity of both synta
ti
 parsing paradigms. However, we 
hoose dependen
ygrammar as the parsing me
hanism for 
reating surfa
e annotations, implemented as the Fun
tional
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y Grammar (FDG) parser from Connexor8 (Järvinen and Tapanainen, 1998). Thereasons for the 
hoi
e of the FDG parser are summarized as follows:
• The FDG parser indi
ates fun
tion on a token level (for example subje
t and obje
t), whi
h
orresponds to the stru
tural properties identi�ed in this se
tion.
• The parsing tool is designed for running text (Tapanainen and Järvinen, 1997), and is notintended to maintain the grammati
ality of the input senten
e (Tapanainen, 1999). Thismeans that ungrammati
al senten
es are also parsed, whi
h is 
onvenient for �
tion booksin whi
h text is not guaranteed to adhere to a formal grammar.
• Dependen
y stru
tures are su

essfully used in other text-to-s
ene 
onversion systems (Coyneand Sproat, 2001) in addition to other natural language pro
essing tasks in
luding anaphora-resolution (Kennedy and Boguraev, 1996; Mitkov et al., 2002).We do not perform a quantitative evaluation of Connexor parser be
ause of the absen
e of stan-dardized 
orpora 
ontaining information indi
ating fun
tional dependen
y.3.3.3 PhrasingIn addition to parts-of-spee
h and syntax, tokens are grouped into phrases of a spe
i�
 type,in
luding noun-phrases or verb-phrases. As dis
ussed in Se
tion 3.3.2, phrase stru
ture grammarso�er the ability to 
reate these groupings, but we use tools that rely on a simpler method 
alledphrase 
hunking (Kudo and Matsumoto, 2001).Phrase 
hunking is a

omplished using similar methods to parts-of-spee
h tagging, employingma
hine learning methods su
h as statisti
al methods (Xun et al., 2000), support ve
tor ma
hines(Kudo and Matsumoto, 2001), or rule-based learning (Ramshaw and Mar
us, 1995) to indu
emodels that identify and annotate phrases in natural language text. We use the LTChunk9 tool,
reated by the Language Te
hnology Group in Edinburgh, be
ause of its ability to make useof already 
omputed parts-of-spee
h annotations. This tool takes text tagged using the srptensemble as input, and produ
es text annotated with noun-phrases and verb-phrases.We do not perform a quantitative evaluation of the phrase 
hunker due to the la
k of standard-ized test data for this task.3.4 Case study: the use of surfa
e annotations in identifyingAvatarsThis se
tion illustrates the use of surfa
e annotations in the 
reation of semanti
 annotations.One 
ategory of semanti
 annotation identi�es avatars that take part in the des
ribed story. Anexample of an avatar annotation is presented in Figure 3.4.The identi�
ation of avatars in �
tion text is a spe
ialization of the more general naturallanguage pro
essing problem of identifying named-entities (M
Donald, 1996; Bennett et al., 1997;8Connexor Ma
hinese Syntax: http://www.
onexor.fi/ [a

essed on 25 September 2007℄9Language Te
hnology Group, Edinburgh: http://www.ltg.ed.a
.uk/software/posdemo.html [a

essed on 10August 2005℄



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 42"Hurrah!" thought <avatar>Julian</avatar>. "He's o� again!" Quietly he stood up, holdingthe box.Figure 3.4: Example text annotated in the Avatar 
ategory, from the Famous Five 1: Five on aTreasure Island by Enid Blyton (1942).Total Automati
 Corre
t Pre
ision Re
all GenderBook 1 17 25 11 44.0% 64.71% 100.0%Book 2 25 55 15 27.27% 60.0% 60.0%Book 3 18 53 15 28.30% 83.33% 80.0%Table 3.10: Su

ess metri
s for the automati
 identi�
ation of avatars in �
tion text.Borthwi
k et al., 1998; Cohen and Sarawagi, 2004). This task is 
on
erned with lo
ating fragmentsof text that refer to avatars, and determining the gender of ea
h identi�ed avatar.We make use of surfa
e annotations to identify avatars and determine gender. We traverse everytoken in the text (identi�ed using methods in Se
tion 3.2.1), and 
onsider ea
h token annotatedas a proper noun (using the ensemble of parts-of-spee
h taggers des
ribed in Se
tion 3.3.1) as a
andidate avatar. We maintain a list of unique 
andidates, and maintain a 
ount of the number oftimes ea
h 
andidate is mentioned. Every 
andidate with a 
ount higher than a 
ertain thresholdis sele
ted as an avatar. All tokens 
orresponding to a sele
ted avatar are annotated.We make further use of token and parts-of-spee
h information to determine the gender of anavatar. Personal pronouns indi
ate gender (�he� indi
ates a mas
uline referen
e, �she� indi
ates afeminine referen
e), and we 
ount the number of mas
uline and feminine personal pronouns withinthe immediate vi
inity of an avatar annotation (30 tokens to either side of the referen
e). Thegender with the greatest per
entage of personal pronouns in the vi
inity of ea
h referen
e is 
hosenas the gender for the spe
i�
 avatar.We evaluate the su

ess of the avatar and gender identi�
ation pro
esses by evaluating thelist of unique avatars identi�ed by the automati
 pro
ess with respe
t to a manually 
reated list.The su

ess with whi
h a set of avatars is automati
ally derived is listed in Table 3.10 for threedi�erent �
tion books. The per
entage of 
orre
tly identi�ed avatars ex
eeds 60% in all 
ases(re
all). The lower pre
ision values indi
ate that additional avatars are identi�ed erroneously, andthese 
andidates must be manually deleted from the list by a human. The a

ura
y with whi
hgender information is identi�ed is also listed in Table 3.10 for ea
h book, and indi
ates a high levelof su

ess for the pronoun-based approa
h.The avatar identi�
ation pro
ess is su

essful in the 
ontext of �
tion-to-animation 
onversion,and demonstrates the use of surfa
e annotations in the identi�
ation of s
ene-related des
riptions.3.5 Con
lusionStru
tural and synta
ti
 indi
ators are identi�ed in digitized natural language text using automatedte
hniques. We 
on
lude the following with respe
t to the problems identi�ed in Se
tion 3.1:1. Stru
tural properties of digitized text are identi�ed with a high level of a

ura
y using
ustom-built, knowledge-poor methods.
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ti
 properties are identi�ed automati
ally with high levels of a

ura
y:(a) Parts-of-spee
h are identi�ed a

urately using publi
ly available taggers, even over textthat is di�erent in style and genre to the original training data. A

ura
y is improvedusing an ensemble 
ontaining the SVMTool, Brill tagger, QTag and TreeTagger. ThePre
ision-Re
all voting s
heme (van Halteren et al., 2001) produ
es the largest redu
tionin error.(b) Synta
ti
 fun
tion of tokens in the input text are identi�ed automati
ally using theConnexor FDG parser.(
) Phrases are identi�ed in the input text using the LTChunk tool.3. High levels of a

ura
y (greater than 95% in all quanti�ed results) are expe
ted in the 
reationof surfa
e annotations over �
tion text.We believe that the errors produ
ed by these automated pro
esses have minimal impa
t on futuretext-analysis tasks. This belief is motivated by the fa
t that visual des
riptions in �
tion text areintermittent (that is, s
attered throughout the text), and the few in
onsisten
ies in the surfa
eannotations potentially have no relation to these des
riptions.This 
hapter 
ontributes to the text-to-graphi
s domain and the automated parts-of-spee
htagging domain in the following respe
ts:
• Text-to-graphi
s resear
h often regards the 
reation of surfa
e annotations as a �bla
k-box�pro
ess, and does not examine methods for improving the results of these methods. The workpresented in this 
hapter studies these problems in detail, allowing future enhan
ements tothese 
omponents to be quanti�ed if required.
• The work we present is the �rst study of automated te
hniques that evaluate the �o�-the-shelf� usefulness of parts-of-spee
h taggers over large 
orpora. This resear
h also 
ontributesa redu
ed tag-set and 
orresponding maps to permit tagging and validation over a numberof 
orpora using di�erent tag s
hemes.Future work in
ludes the identi�
ation of further 
ategories of surfa
e annotation that aid insubsequent 
reation of semanti
 annotations. Categories in
lude the re
ognition and 
lassi�
ationof named-entities in text, the automati
 resolution of ambiguity in the form of pronominal anaphoraand 
o-referen
e (a task brie�y examined in Chapter 6).



Chapter 4Creation of annotated �
tion textThis 
hapter presents hierar
hi
al rule-based learning for automating the 
reation of annotated�
tion text. We de�ne the 
on
ept of an annotation as a me
hanism for marking up portions oftext in a parti
ular semanti
 
ategory (Se
tion 4.1). Related strategies for automati
ally 
reatingannotations are investigated in Se
tion 4.2, where we motivate the use of a pattern-based ma
hinelearning te
hnique. This ma
hine learning te
hnique 
onstru
ts generalized patterns from manually
reated example annotations in a parti
ular 
ategory, and these patterns are used for produ
ingannotations (des
ribed in Se
tions 4.3 and 4.4). A range of semanti
 annotation 
ategories forthe �
tion-to-animation task are developed in Se
tion 4.5, and we investigate the properties ofhierar
hi
al rule-based learning in terms of these 
ategories in Se
tion 4.6 using a suite of exper-iments. Con
lusions and 
ontributions of the resear
h presented in this 
hapter are presented inSe
tion 4.7.4.1 Introdu
tion4.1.1 Problem statementPopular �
tion books 
onsist of natural language des
riptions of ri
h visual environments thatdes
ribe 
hara
ters, obje
ts, and behaviour. We investigate the identi�
ation and 
ategorizationof visual des
riptions using annotations. This problem is 
hara
terized as follows:1. Fi
tion text is interpreted di�erently based on an individual human's knowledge and expe-rien
e. We investigate the modeling of individual human knowledge and experien
e in orderto 
reate annotations.2. Fi
tion text 
ontains di�erent 
ategories of visual information, a number of whi
h must beidenti�ed for 
reating an intermediate representation (de�ned in Chapter 1 as the stru
-tured, visual representation of the �
tion book). We investigate the indu
tion of models thatautomate the 
reation of di�erent 
ategories of annotation.3. Categories of visual information are parametrized in �
tion text using other portions of textor by asso
iating semanti
 information during human interpretation. We investigate methodsfor automati
ally identifying these additional parameters for an annotation.44
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ho
olate, and she and the boys mun
hed happily, wat
hing thehills, woods and �elds as the 
ar sped by.The pi
ni
 was lovely. They had it on the top of a hill, in a sloping �eld that looked down into asunny valley. Anne didn't very mu
h like a big brown 
ow who 
ame up 
lose and stared at her,but it went away when Daddy told it to.Figure 4.1: Fi
tion text from the Famous Five 1: Five on a Treasure Island by Enid Blyton (1942).The automati
 
reation of annotations is a problem de�ned in the 
ontext of �
tion-to-animation.A solutions to the above problems should be veri�ed a

ording to its ability to handle di�erent typesof �
tion text (for example di�erent authors, genres and target audien
es). A solution should alsobe 
apable of redu
ing the amount of e�ort required in 
reating the intermediate representation.4.1.2 Problem formulationFi
tion books 
ontain many types of visual des
riptions, examples of whi
h o

ur in the extra
tin Figure 4.1. The setting is established using words su
h as �hill� and �valley�, while the 
ontentsof the s
ene are established using referen
es to avatars (for example �Anne�, �Daddy�) and theobje
ts (�
ho
olate�, �
ar�, and �
ow�). Spatial relations are indi
ated between entities (�the 
owwho 
ame up 
lose�), and transitions are des
ribed that spe
ify an entity's arrival or departure(�but it went away�). Visual attributes are spe
i�ed (�big brown 
ow�) for entities, emotionalexpressions (�happily�), and individual a
tions (�handed her some 
ho
olate�).We annotate des
riptions in �
tion text to identify a parti
ular fragment of text as a visualdes
ription, and also to spe
ify the 
ategory to whi
h the des
ription belongs. Identifying the
ategory assists in future interpretation of a des
ription. For example, if the token �
ow� is identi�edas belonging to the obje
t 
ategory, then an automated pro
ess 
an be exe
uted for lo
ating a 
ow-shaped geometri
 model and pla
ing it in a 3D environment (des
ribed further in Chapter 6).An annotation in its simplest form is a marker that identi�es a fragment of text (for example, aset of tokens) as belonging to a 
ertain 
ategory. The following example 
ontains two annotationsin the obje
t 
ategory:The <obje
t>box</obje
t> was on the <obje
t>table</obje
t>.The above example also 
ontains a des
ription of a spatial relation, indi
ated by the token �on�.Spatial relations are parametrized in terms of the involved entities, in this 
ase the subje
t of therelation (the entity a�e
ted by the relation: �box�), and the obje
t of the relation (the referen
epoint of the relation: �table�), both of whi
h 
ontribute to the meaning. In this respe
t, multipletext fragments 
an form a single annotation, where ea
h fragment plays a spe
i�
 role. The aboveexample is extended as follows:The <obje
t>box</obje
t> was <relation subje
t=�box� obje
t=�table�>on</relation>the <obje
t>table</obje
t>.
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cowTrigger:

OBJECT:

like a big brown cow who came

...  very much l ike a big brown <object>cow</object> who came up close . . .

Trigger

(a) Obje
t annotation
behindTrigger:

Type:

Subject:

BEHIND

table

RELATION:

Object: chair

the table behind his uncle’s chair

. . .  the table <relat ion type="BEHIND" subject="table" object="chair">behind</relat ion> his uncle’s chair  . . .

Text referencesSemantic concept Trigger(b) Relation annotationFigure 4.2: Illustration of Obje
t and Relation annotations.Annotations also spe
ify semanti
 details regarding the fragment of text they identify. For in-stan
e, the token �on� identi�ed in the above example is linked with the semanti
 
on
ept onTopOf ,providing for subsequent reasoning regarding the layout of these obje
ts in a virtual environment.This is spe
i�ed as another �eld in the annotation:The <obje
t>box</obje
t> was <relation subje
t=�box� obje
t=�table�type=�onTopOf�>on</relation> the <obje
t>table</obje
t>.The above examples represent annotations using XML1 syntax. Regardless of representation,we de�ne an annotation as follows:De�nition 4.1. An annotation is a portion of text marked up in a parti
ular 
ategory. Annotationsde�ne the following type of information:
• Trigger : the fragment of text identi�ed as belonging to the 
ategory. Every annotation
ontains one trigger.
• Text-referen
es: an annotation is quali�ed by zero or more referen
es to other fragments oftext that have a relationship with the trigger.
• Semanti
-
on
epts: an annotation is quali�ed by zero or more semanti
-
on
epts that areasso
iated with the trigger.Ea
h 
ategory of annotation is parametrized using asso
iated text-referen
es and semanti
-
on
epts. We use the term quali�er to 
olle
tively des
ribe these parameters. Categories su
h asobje
t have no asso
iated text-referen
es or semanti
-
on
epts, only identifying a trigger that refersto an obje
t. A relation annotation identi�es a trigger des
ribing a spatial relation, and is quali�edby two text-referen
es (subje
t and obje
t), and a semanti
 type indi
ated by the annotation. Thesetwo 
ategories of annotation are illustrated in Figure 4.2.Annotated text is 
ondu
ive to manual 
reation. We use a graphi
al interfa
e that allows ahuman to sele
t portions of text that belong in a parti
ular 
ategory. Annotated text is alsoe�e
tive for human readability, allowing annotations to be viewed or edited in the 
ontext of thesurrounding text.1Extensible Markup Language



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 47
Fiction book

Problem 1: Text Analysis

  1.1) Linguistic indicators

  1.2) Annotation creation

Problem 2: Interpretation

   2.1) Interpretation of annotations

    2.2) Specification of behaviour

           in a virtual environment

    2.3) Populating 3D environments

Intermediate 

representation

Animated 3D environment

Animated f i lm

Annotated f ict ion text

Automatic creation

of surface annotations

Machine-learning for

automating creat ion

of semantic

annotat ions

Create structured 

scene descriptions

Automatic constraint

solving/optimization

Automatic populat ion

of 3D vir tual environment

Human knowledge:

- Manual examples

Human knowledge:

- Clarify l inguistic ambiguity

- Implied scene layout

- Creative ideas

Human knowledge:

- Creative enhancements

Hierarchical rule-based learning Figure 4.3: Context of the hierar
hi
al rule-based learning me
hanism with respe
t to the �
tion-to-animation problem.The �rst task in 
reating an annotation in �
tion text requires the identi�
ation of what frag-ments of text represent triggers within a parti
ular 
ategory. This involves dis
riminating textfragments that belong in the 
ategory (positive examples) from those that do not (negative exam-ples). On
e a trigger is lo
ated, the fragments of text are then lo
ated for ea
h de�ned text-referen
e(if de�ned for the parti
ular 
ategory of annotation), and semanti
-
on
epts are asso
iated withthe annotation.A human 
reates annotations using experien
e with natural language and personal dis
retion.We 
ondu
ted a preliminary experiment in whi
h a group of humans was instru
ted to 
reate two
ategories of annotation over the same extra
t of �
tion text. No two extra
ts were annotatedin the same way. We spe
ulate that the di�eren
es are 
aused by varying interpretations of theannotation 
ategories and the �
tion text. This implies that annotations 
annot be obje
tivelyveri�ed, as veri�
ation is subje
tive to the human performing the assessment.Fi
tion text should be annotated in a manner that a single human 
onsiders 
orre
t. This
hapter investigates a ma
hine learning me
hanism that uses examples provided by that humanto learn a model for 
reating similar annotations. Annotations o

ur in many di�erent 
ategories,ea
h of whi
h are quali�ed by di�erent 
ombinations of text-referen
es and semanti
 
on
epts. Thema
hine learning system should be 
apable of deriving models in any 
ategory, and for any typeof quali�er.4.1.3 ContextThe resear
h presented in this 
hapter examines the problem of automating the text-analysis taskof the �
tion-to-animation pro
ess. The 
ontext of this problem within the 
onversion pro
ess isillustrated in Figure 4.3. We develop a method that automates the 
reation of annotations over�
tion text, resulting in an intermediate representation. The input to this pro
ess is �
tion textannotated with surfa
e annotations, the pro
esses for whi
h are des
ribed in Chapter 3. Semanti
annotations are 
reated based on example annotations provided by a human in 
onjun
tion withthese surfa
e annotations.
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reation of semanti
 annotations over �
tion text is similar to the task of information extra
-tion. In both 
ases, fragments of text are identi�ed as belonging within a 
ertain 
ategory.Information extra
tion is 
on
erned with �lling a stru
tured template rather than marking uprelevant portions of the text. A template 
onsists of a number of slots that are labeled to indi
atethe kind of information that 
an �ll them (Chin
hor and Marsh, 1998). For example, a typi
alinformation extra
tion task is 
on
erned with automati
ally obtaining details about a �seminar�from an unstru
tured text announ
ement. A template 
onsists of slots that in
lude �title�, �venue�,and �speaker�; while an information extra
tion pro
ess �lls these slots for ea
h text-based do
umentthat announ
es a seminar (Cali� and Mooney, 2003).Subsequent interpretation of the text fragments, in
luding anaphora resolution and 
o-referen
eresolution, are performed as a post-pro
essing phase of the information extra
tion task (nameddis
ourse pro
essing (Soderland, 1997)). This interpretation is analogous to providing data forsemanti
-
on
epts de�ned in an annotation.Information extra
tion methods are developed for a spe
i�
 subje
t domain, and it is possiblefor domain-experts to hand-
raft sets of extra
tion patterns for lo
ating important fragments oftext from do
uments within that domain. We experimented with this approa
h in identifying thespee
h-verb, a
tor and speaker of a quote in �
tion text (Glass and Bangay, 2007
). The hand
rafted rules produ
e a

urate annotations, but the 
reation of the rules require many hours ofspe
ialized labour, and 
an not be applied to di�erent 
ategories of annotation.We investigate ma
hine learning te
hniques that perform the information extra
tion task byautomati
ally indu
ing patterns from example data. These methods remove the need for spe
ializedlabour in 
reating extra
tion patterns and are adaptable over di�erent 
ategories of data.4.2.1 Ma
hine learning for information extra
tionA ma
hine learning algorithm generates a model or theory regarding how to identify text fragmentsthat �ll a parti
ular slot in a template. A model is 
reated using training examples (supervisedlearning), whi
h are do
uments 
ontaining marked-up text-fragments that are guaranteed to be
orre
t for the parti
ular slot. Two 
ategories of te
hniques exist for 
reating and representinga model, namely 
lassi�er-based te
hniques and pattern- or rule-based te
hniques (Turmo et al.,2006).Classi�er-based te
hniques use statisti
al models to determine whether a 
ertain fragment oftext should be used to �ll a parti
ular type of slot. These te
hniques determine the probabilitythat a fragment of text is a slot-�ller based on the types of features asso
iated with the fragment.Features 
onsist of meta-data regarding a parti
ular item of text, for example the part-of-spee
h,or the synta
ti
 relation between two words. Numerous 
lassi�er-based learning te
hniques existfor information extra
tion based on alternative statisti
al strategies and feature sets (Freitag, 2000;Freitag and M
Callum, 2000; Chieu and Ng, 2002; Chieu et al., 2003; Bunes
u and Mooney, 2004).The CarSim system (Johansson et al., 2005) makes use of statisti
al ma
hine learning for theinformation extra
tion task within the text-to-animation pro
ess.Pattern-based te
hniques for information extra
tion are 
on
erned with the indu
tion of a set ofpatterns that are able to distinguish fragments of text belonging to a parti
ular 
ategory. Patterns
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ontain 
onstraints that must be satis�ed by a portion of text before a text fragment 
an beextra
ted (Soderland, 1997). An example of a 
onstraint is a sequen
e of tokens that pre
ede orfollow the fragment of text to be extra
ted. Patterns also 
ontain a slot-�ller that, assuming the
onstraints are satis�ed, de�nes what fragment of text should be extra
ted to �ll a spe
i�
 slot. Anexample pattern �<vi
tim> was murdered� (Cali� and Mooney, 2003) 
ontains �was murdered� asa 
onstraint. If a similar string is found in the input do
ument, the 
onstraint is satis�ed and thetoken appearing just before the 
onstraint is extra
ted as the �ller of the �vi
tim� slot.We use a pattern-based method for performing ma
hine learning, but re
ognize that a 
lassi�er-based method also has the potential to perform the task of 
reating annotations. A pattern-basedte
hnique is 
hosen be
ause it provides dire
t 
ontrol over the models indu
ed for 
ategories ofannotation. The link between the 
hosen set of features and the su

ess of a learned model isun
lear when using statisti
al te
hniques (Johansson et al., 2005). Patterns are also 
reated usinga very small set of examples, while statisti
al models require larger 
orpora of training data, aresour
e that is unavailable in the 
ontext of semanti
ally annotated �
tion text.4.2.2 Te
hniques for pattern indu
tion in information extra
tionPattern indu
tion involves the 
onstru
tion of patterns that identify ea
h example in a set oftraining data (Rilo�, 1993, 1996).Patterns 
reated dire
tly from examples are potentially over-spe
i�
, therefore limiting theirappli
ability to only a few examples. Pattern indu
tion algorithms employ generalization so thatthe pattern applies to more than a single example (Chai et al., 1999; Harabagiu and Maiorano,2000). A single pattern 
an be generalized in a number of di�erent ways, and a s
oring te
hniqueis required to sele
t what generalized pattern to use (Basili et al., 2000).Algorithms that perform generalization are 
ategorized into two groups, those performing 
om-pression and those improving 
overage (Cali� and Mooney, 2003). Alternatively, algorithms are
ategorized in terms of the dire
tion of pattern 
reation, namely top-down and bottom-up. An-other distin
tion between information extra
tion algorithms is the type of text over whi
h they aredesigned to fun
tion, 
ategories for whi
h in
lude free, semi-stru
tured and stru
tured text.4.2.2.1 Generalization method: 
ompression versus 
overingAlgorithms that perform 
ompression begin with a set of highly spe
i�
 patterns, usually one forea
h example. A more general pattern is 
onstru
ted that repla
es a number of spe
i�
 patterns,but is still able to 
over all the input examples (where 
over means that a pattern su

essfullyidenti�es the 
orre
t element in an example). This pro
ess 
ontinues until no further 
ompressionis possible (Cali� and Mooney, 2003). General patterns are found by enumerating di�erent gener-alized versions of the pattern, evaluating ea
h on the example set, and sele
ting the generalizationthat 
overs the most examples 
orre
tly. Alternatively, two patterns are merged, 
reating a moregeneralized pattern that 
overs both the original patterns (Freitag, 2000).Covering algorithms begin with a set of examples from whi
h a single pattern is derived at atime. All of the examples 
overed by the newly 
reated pattern are then removed from the startingset. New patterns are 
reated until no more examples remain in the starting set (Soderland, 1997;Freitag, 1998). The new pattern 
reated is either highly spe
i�
 or generalized. If more than
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orre
t generalization is 
reated for a training example, then the pattern providing the best
overage over the start set is 
hosen (Ciravegna, 2001).4.2.2.2 Dire
tion of rule 
reation: top-down versus bottom-upThe set of examples provided for training a model is divided into positive and negative examples(Quinlan, 1986). Positive examples 
ontain fragments of text 
orre
tly marked for a spe
i�
 slot,while negative examples 
ontain no su
h markings. Both are provided to indu
e patterns that
orre
tly 
over all positive examples while 
orre
tly reje
ting all negative examples. This 
ate-gorization of example data di�erentiates between two approa
hes for pattern indu
tion, namelytop-down and bottom-up approa
hes.Top-down te
hniques begin with a general pattern that 
overs all examples (in
luding bothpositive and negative training examples). This pattern is iteratively spe
ialized with the aim of
overing more positive examples, while reje
ting negative examples (Quinlan, 1990; Soderland,1999; Freitag, 2000; Turmo and Rodriguez, 2002; Déjean, 2002).Bottom-up te
hniques begin with a pattern that expli
itly des
ribes one example in the set.Constraints within the pattern are iteratively generalized, with the aim of in
reasing the numberof positive examples des
ribed by the pattern, while minimizing the 
overage over negative ex-amples (Soderland, 1997; Aseltine, 1999; Ciravegna, 2001; Cali� and Mooney, 2003; Català et al.,2003). Generalization o

urs in di�erent forms, su
h as 
omparing two patterns and repla
ing twodissimilar portions of the 
onstraints with an abstra
t 
on
ept that des
ribes both, or by repla
ingthe 
onstraint with a wild-
ard (Cali� and Mooney, 2003).4.2.2.3 Type of input textThe type of input text for information extra
tion tasks is 
ategorized into three 
lasses, namelystru
tured text, semi-stru
tured text, and free text (Muslea, 1999; Turmo et al., 2006).Stru
tured text presents the simplest task for information extra
tion te
hniques, be
ause for-matting markers in the text 
learly indi
ate the fun
tion of a fragment of text. Example datain
ludes weather fore
asts obtained from web-pages, and extra
ts from telephone dire
tories (Soder-land, 1999).Semi-stru
tured text exhibits stru
tural markers, although these do not always 
onform to onesingle pattern. Examples in
lude seminar announ
ements where, for example, the seminar titleand speaker is generally indi
ated in a 
onsistent manner (but are not marked up in any way)(Soderland, 1999; Ciravegna, 2001; Cali� and Mooney, 2003). Other examples in
lude job-va
an
yannoun
ements (Ciravegna, 2001; Cali� and Mooney, 2003) and rental advertisements (Soderland,1999).Free text presents the most 
hallenging task for information extra
tion where no stru
turaldetail exists in the input text, a 
hara
teristi
 that is exhibited by �
tion text. Example test
orpora in
lude terrorist reports sour
ed from newspapers, in whi
h slots to be �lled from ea
hreport in
lude the entity atta
ked and the atta
king entity (Kim and Moldovan, 1995). Otherexamples in
lude reports on management 
hanges of 
ompanies (Hu�man, 1996; Soderland, 1997;Sudo et al., 2003), and reports of disease outbreaks (Patwardhan and Rilo�, 2007; Phillips andRilo�, 2007).
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ision Re
all F-measureTimes(Chai et al., 1999) Job listings(Company name, position,salary, lo
ation,experien
e, 
onta
t, skills,bene�ts) 40.4% -96.8% 53.1% -83.8% 47.5% -84.5%Whisk(Soderland, 1999) Management su

ession(person in, person out,organization, post title) 48.5% -68.9% 46.4% -61.0% -ExDis
o(Yangarber, 2003) Management su

ession(person in, person out,organization, post title) Approx.62% - 89% Approx.10% - 90% -Crystal(Soderland, 1997) Management su

ession(person in, person out,organization, post title) Approx.63% - 76% Approx.50% - 75% -Liep(Hu�man, 1996) Management 
hanges 89.4% 81.6% 85.2%Evius(Turmo andRodriguez, 2002) Colour 98.77% 88.89% 93.57%Essen
e(Català et al., 2003) Air
raft 
rash reports(
rash site, 
rash date,air
raft, airline, departure,destination) 51.2% -100.0% 39.5% -75.4% 48.4% -78.8%Wave(Aseltine, 1999) Latin-Ameri
an terroristreports/hospital dis
hargesummaries - - Approx.49% - 58%Table 4.1: Reported performan
e of related pattern-based information extra
tion te
hniques overfree text.Few implemented pattern-based information extra
tion systems are evaluated using a stan-dardized test 
orpus. This makes 
omparison between systems impossible. Di�erent evaluationmethods are also used in related resear
h, with respe
t to the number of examples used for testingand the number of test 
ases evaluated. Despite these di�eren
es, reported performan
e resultsover a range of information extra
tion systems over free text are listed in Table 4.1. This table indi-
ates that pre
ision levels between 40% and 100% are a
hieved, with re
all levels ranging between10% and 90%. We quote these �gures with 
aution, be
ause the various tasks are not dire
tly
omparable, and neither are the various slot 
ategories within ea
h task. These �gures highlightthat information extra
tion over free text is a 
omplex task for whi
h no single te
hnique 
an beestablished as superior. Turmo et al. (2006) present performan
e results for a range of systemsover semi-stru
tured texts whi
h, as expe
ted, tend to be higher than over free-text.4.2.3 Hierar
hi
al rule-based learning as a pattern indu
tion me
hanismWe present hierar
hi
al rule-based learning for indu
ing and generalizing patterns from exampleannotations. This approa
h uses a bottom-up 
ompression algorithm, where highly spe
i�
 pat-terns are 
reated for ea
h positive and negative example in the training set. Patterns are mergedone pair at a time, until no further merges are possible.
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ture Generalization Dire
tion
Pattern-based te
hniques: Free Semi-Stru
tur

ed
Stru
tured Compression Coverage Other Top-down Bottom-upPalka (Kim and Moldovan, 1995) 3 3 - -AutoSlog (Rilo�, 1993, 1996) 3 3 - -Liep (Hu�man, 1996) 3 3 3 3Crystal (Soderland, 1997) 3 3 3Wave (Aseltine, 1999) 3 3 3Times (Chai et al., 1999) 3 3 - -(Basili et al., 2000) 3 3 - -Snowball (Agi
htein and Gravano, 2000) 3 3 3(Harabagiu and Maiorano, 2000) 3 3 - -Essen
e (Català et al., 2003) 3 3 3ExDis
o (Yangarber, 2003) 3 3 3Hierar
hi
al rule-based learning 3 3 3Whisk (Soderland, 1999) 3 3 3 3 3Rapier (Cali� and Mooney, 2003) 3 3 3Srv (Freitag, 1998, 2000) 3 3 3(LP)2 (Ciravegna, 2001) 3 3 3Evius (Turmo and Rodriguez, 2002) 3 3 3 3Table 4.2: Pattern-based learning systems summarized a

ording to text stru
ture, generalizationstrategy and dire
tion of generalization.Hierar
hi
al rule-based learning is 
ompared with related resear
h in Table 4.2, in whi
hpattern-based ma
hine learning systems are 
ategorized a

ording to the type of text used asinput, the generalization method used, and the dire
tion of the pattern 
reation. Our system isone of the few bottom-up 
ompression algorithms designed for use with free text.The bene�t of the hierar
hi
al rule-based system is the ability to learn many 
ategories ofannotation without modifying the internal learning me
hanism. Rather, the stru
ture and 
ontentsof a pattern are manually 
ustomized for di�erent annotation 
ategories, although future workin
ludes the possibility for automating the 
ustomization of pattern stru
tures (similar to work byShinyama and Sekine (2006)). These patterns provide the ability to in
orporate both stru
turalelements of language (senten
e, phrase, quote, and token) as well as synta
ti
 information (parts-of-spee
h and synta
ti
 fun
tion). Patterns also provide the ability to identify semanti
 data,allowing for the semanti
-
on
epts of annotations to be identi�ed. These 
on
epts are learned ina knowledge-poor fashion, that is in the absen
e of external knowledge-bases (as opposed to someexisting approa
hes (Stevenson and Greenwood, 2005; Li and Bont
heva, 2007)).Existing 
orpora for evaluating information extra
tion te
hniques do not 
ontain marked-upvisual des
riptions. These 
orpora are also 
reated for testing the template-�lling ability of anautomated pro
ess. Annotations are di�erent be
ause they identify every fragment of text in a
ategory as opposed to identifying one term that �lls a slot. This makes existing test data inappro-priate for evaluating hierar
hi
al rule-based learning with respe
t to the �
tion-to-animation task.
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(a) "Not so loud!" said Meg. (b) "I swore not to tell!" gasped Jammes.Figure 4.4: Stru
tural elements of a senten
e arranged as a tree.Instead, we evaluate hierar
hi
al rule-based learning by performing training and evaluation over a
ustom-built 
orpus of �
tion text marked-up with semanti
 annotations in visual 
ategories.4.3 Indu
tion of rules for 
reating annotationsThis se
tion develops the 
on
epts for hierar
hi
al rule-based learning. We motivate the 
on
eptof tree-based patterns, and indi
ate how they are indu
ed, generalized and applied to 
reate an-notations in �
tion text. Detailed algorithms for ea
h step in the pro
ess are deferred to Se
tion4.4, whi
h has the same stru
ture as this se
tion for 
onvenient referen
e.Semanti
 annotations identify visual des
riptions in free text, a sour
e that is 
onsidered to bethe least stru
tured in the �eld of pattern-based information extra
tion. We argue that stru
turalelements exist in free text that 
an be used to 
onstru
t patterns for identifying annotations.Stru
tural elements in
lude units of text su
h as a senten
e, a quote, and a token. Not only dothese elements indi
ate stru
ture, but they are also related in a hierar
hi
al fashion, where 
ertainelements en
apsulate other elements. Consider the following example from The Phantom of theOpera by Gaston LeRoux (1911)2:�Not so loud!� said Meg.This example exhibits the following stru
tural elements (ea
h element is indi
ated using squarebra
kets):Senten
e: [� Not so loud ! � said Meg .℄Quote/Senten
e-part: [� Not so loud ! �℄ [said Meg .℄Token: [�℄ [Not℄ [so℄ [loud℄ [!℄ [�℄ [said℄ [Meg℄ [.℄The above example indi
ates that the senten
e 
ontains two stru
tural elements, namely a quoteand a partial senten
e. The quote in turn 
ontains a number of tokens. This idea of 
ontainmentsuggests that the original senten
e 
an be abstra
ted on di�erent levels using a tree stru
ture toindi
ate the relationship between elements, illustrated in Figure 4.4(a). Abstra
ting text on anumber of levels in this manner presents an opportunity for identifying patterns in text. Thisis illustrated by the similar stru
ture exhibited in Figure 4.4(b) where the trees are abstra
ted(highlighted), but the tokens are entirely di�erent.2All subsequent examples in this se
tion are taken from this sour
e, and are possibly modi�ed for illustrativepurposes.
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(a) "Not so loud!" said Meg. (b) "I swore not to tell!" gasped Jammes.Figure 4.5: Additional synta
ti
 abstra
tions within the tree stru
ture.Patterns need not 
ontain only stru
tural abstra
tions, but 
an also in
lude synta
ti
 abstra
-tions. For example, the part-of-spee
h of a token presents an abstra
tion of the token, while aphrase type abstra
ts a group of tokens. The in
lusion of synta
ti
 stru
tures is illustrated inFigure 4.5. The similar portions of the two trees are highlighted, indi
ating a pattern with �nerdetail to that in Figure 4.4.The above examples show that hierar
hi
al patterns exist in free text. We present a method forautomati
ally indu
ing these patterns with the purpose of learning how to 
reate a given 
ategoryof annotation.This se
tion des
ribes the full pro
ess of 
reating patterns from annotations, 
ombining theseto form a general model regarding a spe
i�
 
ategory of annotation, and applying a set of patternsto text for the 
reation of new annotations. The algorithms for performing these fun
tions areformally presented in Se
tion 4.4.4.3.1 Hierar
hi
al patterns and rulesFree text has the potential to exhibit a variety of patterns. Given a set of manually 
reatedannotations over �
tion text, we are interested in indu
ing patterns that are able to identifyportions of text as belonging to a parti
ular 
ategory of annotation. Consider the following twoannotated examples:<quote spee
h-verb=�said� a
tor=�Meg� speaker=�MEG�>�Not so loud!�</quote> saidMeg.<quote spee
h-verb=�gasped� a
tor=�Jammes� speaker=�JAMMES�>�I swore not totell!�</quote> gasped Jammes.For the sake of demonstration, we 
onsider the task of identifying the spee
h-verb of the abovequote annotations. Hierar
hi
al trees derived from these senten
es are presented in Figure 4.5.Trees be
ome rules when they are able to identify portions of text that belong in a spe
i�
 
ategory.Rules are 
reated from the annotated example above, be
ause the annotation indi
ates whi
h tokenfun
tions as the spee
h-verb of the quote, illustrated in Figure 4.6. In information extra
tion terms,all nodes in the tree that are not highlighted represent the �
onstraint� portion of the rule, whilethe highlighted node indi
ates the lo
ation in whi
h to 
reate the annotation. We name this theanswer of the rule, and annotations 
ontaining answers are positive examples. Rules derived fromthese examples are named positive rules. Answer nodes are the equivalent of the �slot-�ller� ininformation extra
tion, and a
t as a wild-
ard be
ause any data 
an 
orrespond to this node.
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Sentence

sentence-partquote

verb proper noun punctpunct adverb adverb adjective punct punct

<speech-verb> Meg ." Not so loud ! "(a) "Not so loud!" said Meg.
Sentence

sentence-partquote

verb proper noun punctpunct pronoun verb adverb to punctverb punct

<speech-verb> Jammes ." I swore not to "tel l !(b) "I swore not to tell!" gasped Jammes.Figure 4.6: Example of rules indi
ating a the lo
ation of a spee
h-verb in a senten
e.
root

A < a n s w e r > C

root

G < a n s w e r > F

A <answer>B</answer> C

G <answer>H</answer> F

Base rule-set:

Example set  /  t ra in ing set :

root

< a n s w e r >

*

General ized rule-set :

*

A B C

G H F

Unannota ted  examples:

root

A B C

root

G H F

Unmarked t rees:
1. Create rules for base rule-set

2. Generalize using pair-wise merging

3. Create unmarked trees that have no answers

4. Rule matching to identify answers in unmarked trees, 

and create annotat ions over unannotated text

A <answer>B</answer> C

G <answer>H</answer> F

(Can be stripped examples, or unseen text)

Figure 4.7: Di�erent 
omponents of hierar
hi
al rule-based learning.Rules 
an also indi
ate when to avoid 
reating an annotation. In this 
ase, an example isprovided by a human that 
ontains no annotation. A tree is 
onstru
ted 
ontaining no answernode. We name these negative examples, and their 
orresponding trees negative rules. In general,we de�ne a rule as a tree pattern that is 
reated from an example expli
itly provided by a human.We 
onstru
t trees so that the leaf nodes represent individual tokens in the free text, and theroot node represents a single global abstra
tion of the input (usually 
hoosing the arbitrary term�root� as the type for the root node). The levels of abstra
tion between the leaf nodes and theroot are 
ustomized a

ording to a spe
i�
 
ategory of annotation.The di�erent 
omponents of hierar
hi
al rule-based learning are illustrated in Figure 4.7. Theindu
tion of rules from annotated text begins by 
reating a base rule-set that 
ontains one ruleper example in the example-set. The base rule-set is generalized to 
reate a generalized rule-set,whi
h is 
apable of reprodu
ing the original examples and produ
e further annotations. To testthe generalized rule-set we strip the original examples of their annotations to 
reate unannotatedexamples, from whi
h unmarked trees are 
reated (unmarked be
ause they do not 
ontain answers).Rules in the generalized rule-set are mat
hed with ea
h unannotated example, and annotations are
reated where mat
hes o

ur.
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Lorem ipsum dolor sit amet ...

match? No match? Yes

location of answer

Lorem <answer>ipsum</answer> dolor  s i t  amet . . .

annotate

Construct pattern

Rule-set

Unmarked  t ree

Rule Rule

Unmarked  t ree

Figure 4.8: Relationship between text and rules through the appli
ation of a rule-set.4.3.2 Rule-set 
reationThe goal of hierar
hi
al rule-based learning is to 
onstru
t a model regarding the 
reation of aspe
i�
 
ategory of annotation over free text. This model is represented by a rule-set, whi
h is a
olle
tion of rules. The pair of rules presented in Figure 4.6 is 
onsidered a rule-set be
ause it is aset of rules derived from manual examples with the expli
it purpose of identifying the spee
h-verbof a quote.The relationship between annotations and a rule-set is illustrated in Figure 4.8. A new anno-tation is 
reated by 
onstru
ting a tree for an unannotated example (
alled an unmarked tree),and mat
hing this tree with every rule in the rule-set. If all the 
onstraint nodes in a parti
ularrule are identi
al in the unmarked tree, then the node in the unmarked tree in the same lo
ationas the answer node in the rule is marked as the answer. The token in the unannotated example
orresponding to this node in the unmarked tree is then annotated. If no mat
hing rules exist inthe rule-set, then the example is not annotated.Rule-sets are 
onstru
ted by 
reating a tree pattern for every example provided by a human.We expe
t that a human 
reates annotations by manually marking-up 
ontiguous extra
ts of �
tiontext. Ea
h extra
t is automati
ally sub-divided into positive and negative examples, and a treeis 
reated that represents ea
h example. Free text is sub-divided using 
lear stru
tural featuressu
h as tokens, senten
es, and quotes (ea
h of whi
h are automati
ally identi�ed using methodsdes
ribed in Chapter 3). The stru
tural feature to use for sub-division depends on the 
ategory ofannotation.Assume that rules are to be 
reated for obje
t annotations and that for this 
ategory free text issub-divided into tokens. In this 
ase, every token represents an example, and a rule is 
onstru
tedfor every example token in the text. Tokens not annotated as an obje
t 
reate negative rules, whiletokens that are annotated 
reate positive rules.A rule is 
reated for ea
h example in the input extra
t, the result of whi
h is a base or startrule-set.The 
onstraint portions of the rules in Figure 4.6 are highly spe
i�
, the 
onsequen
e of whi
his that they mat
h very few senten
es other than those responsible for their 
onstru
tion. Thetrees illustrated in Figure 4.6 exhibit portions that are identi
al, forming a pattern 
ommon to thetwo rules. This observation implies that a generalized rule 
an be derived by 
omparing trees, andkeeping only those portions that are similar. This idea is dis
ussed further in the following se
tion.
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Indicates that the children of this node

need only match with a sub-sequence

of children in another tree

General wild-card:

Indicates that any node

may occur in this location

*Figure 4.10: Example generalized rule 
ontaining general and spe
ial-purpose wild-
ards.4.3.3 Rule generalizationConsider the example rules presented in Figure 4.9(a) and (b). A large portion of both these treesis identi
al, with the ex
eption of the existen
e of an additional phrase in rule (b). A single rule
an be 
reated that represents both rule (a) and rule (b) by repla
ing the di�erent portions of thetree with a wild-
ard, as shown in Figure 4.9(
). In this example, the highest di�ering node in thetree is repla
ed with a wild-
ard, removing an entire sub-tree. The new tree is generalized, be
auseit has the potential to mat
h many more trees than the two responsible for its 
reation.The rules presented in Figure 4.6 also 
ontain similar patterns, and are di�erent in two portionsof the tree. The nodes indi
ating �Meg� and �Jammes� are di�erent, and these are generalized byrepla
ing the nodes with a wild-
ard. The sub-trees headed by the �quote� nodes are also di�erent.However, we do not wish to repla
e the �quote� nodes with a wild-
ard, be
ause this would removean element that is 
ommon to both trees. The 
hild nodes of �quote� 
annot be repla
ed by wild-
ards be
ause the rule in Figure 4.6(a) has six 
hildren while the rule in Figure 4.6(b) has eight
hildren, and no de
ision 
an be made regarding the number of wild-
ards to insert. To solve thisproblem, spe
ial-purpose wild-
ards are spe
i�ed in nodes when only a sub-sequen
e of the 
hildrenare 
ommon. The rule generalized from the two rules in Figure 4.6 is illustrated in Figure 4.10,and 
ontains the two types of wild-
ard.The spe
ial-purpose wild-
ard has the ability to produ
e a number of generalization options.This is be
ause numerous sub-sequen
es of nodes have the potential to be 
ommon between tworules. This is illustrated in Figure 4.11, in whi
h four di�erent options exist for generalizing the twotrees. In all 
ases the �root� node is 
ommon, but the 
hildren 
ontain numerous sub-sequen
es of
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Figure 4.11: Multiple options for generalization when using a spe
ial-purpose wild-
ard.mat
hing nodes. The 
hoi
e of whi
h generalized rule to a

ept depends on whether the generalizedrule still 
ontains an answer (that is, it has not been removed by generalization).Rule generalization results in the removal of portions of a tree from a rule, but this must bedone with 
are to prevent the removal of answer nodes. Other nodes in a tree might also be 
riti
alto the stru
ture of a rule and should never be removed in the generalization pro
ess. We 
all nodeswith this 
hara
teristi
 preserved nodes. All answer nodes are preserved, but preserved nodes neednot ne
essarily be answers. Preserved nodes must never be removed from a rule and as a result, awild-
ard 
an only be used if it does not result in the removal of a preserved node from the tree.The idea of 
omparing two rules and removing dissimilar portions of the trees is named merging,be
ause we repla
e two individual rules with one general rule that represents both. In some 
ases,a pair of rules 
ontains no similar patterns, in whi
h 
ase a merge is impossible. Merges are alsoimpossible if two rules 
ontain a similar pattern, but this pattern does not 
ontain all the preservednodes in both rules.Example merge s
enarios are presented in Figure 4.12 to illustrate the 
on
ept of su

essfulmerging and merge failure. A merge resulting in the insertion of a general wild-
ard is illustratedin Figure 4.12(a). A merge in whi
h multiple sub-sequen
es of 
hildren are 
ommon resulting intwo merged rules is illustrated in Figure 4.12(b). Additional patterns exist that are 
ommon tothese two rules, but none of these 
ontain the preserved node �D�, and so are dis
arded as viablegeneralization 
andidates. A merge failure is illustrated in Figure 4.12(
), where no 
ommonpattern exists between two rules that does not remove a preserved node.4.3.4 Appli
ation of a generalized ruleA generalized rule has the ability to mat
h 
orre
tly with trees other than those from whi
h it was
reated. Assume the spee
h-verb is to be lo
ated for the following senten
e 
ontaining a quote:�Where are you?� asked Paul.A tree is 
onstru
ted from this unannotated senten
e, illustrated in Figure 4.13. This tree doesnot mat
h with either of the rules in Figure 4.6, be
ause it 
ontains a number of di�erent nodes.However, the generalized rule derived from these two rules (shown in Figure 4.10) mat
hes withthis tree be
ause of the presen
e of wild-
ards. The token �asked� is annotated as a spee
h-verbbe
ause the mat
h is su

essful, and the node 
ontaining �asked� is in the same lo
ation as the�spee
h-verb� node in the rule.
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ommon patterns.Figure 4.12: Example merges between pairs of rules.
Sentence

sentence-partquote

verb proper noun punctpunct wh-advb verb pronoun punct punct

asked Paul ." Where are you ? "

Sentence

sentence-partquote

verb proper noun punctpunct

<speech-verb> ."

ch

*

only one child node is required

to match, because of "ch" 

wild-card in parent

any node in this location wil l  match

Tree  created f rom un-annotated  sentence General ized ru le

Figure 4.13: Mat
hing between a generalized rule and a tree generated from an unannotatedsenten
e.
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Figure 4.14: Example of 
on�i
ting rules in a rule-set.4.3.5 Generalization of a rule-setAn annotator presents a set of examples from whi
h a base rule-set is 
reated. Initially, this rule-setis over-spe
i�
 and applies only to the examples provided. This set of rules must be generalizedso that it has the ability to apply to unseen text, that is, new text for whi
h annotations must be
reated.If two rules 
an be generalized by identifying 
ommon patterns in rules and removing dissimilarportion, then the base rule-set 
an be generalized in a similar manner. However, the more rules
ompared at on
e, the less likely that a 
ommon pattern exists in the trees that also 
ontainsall the preserved nodes in the same lo
ations. Alternatively, we propose an iterative pro
ess inwhi
h pairs of rules are merged at a time until no further merges are possible. Using this method,generalized rules are likely to be merged multiple times before the pro
ess ends.Given that pairs of rules are merged at a time, the question remains as to whi
h pairs of rulesto merge at ea
h iteration. One approa
h is to merge every pair of rules in the set, and 
hoose themerged rule that 
overs the most examples (Glass and Bangay, 2006).The rule-set generalization pro
ess is 
hara
terized by the problem illustrated in Figure 4.14,namely that a newly merged rule has the potential to 
on�i
t with an existing rule in the set.A pair of rules 
on�i
t if both 
an be mat
hed su

essfully to a tree 
reated from an examplesenten
e, but whi
h indi
ate answers in di�erent lo
ations. In Figure 4.14 both rules in the rule-set mat
h the unannotated tree, yet indi
ate di�erent answers. If the in
orre
t rule is 
hosen, thenan in
orre
t annotation is 
reated. A 
on�i
t 
an also o

ur between a positive and a negativerule, where both mat
h an example, but where one rule indi
ates an answer and the other doesnot.Con�i
ting rules are prevented by mat
hing a newly merged rule with every individual rulein the rule-set. Rules are trees, and 
an be mat
hed against one another. If a su

essful mat
ho

urs, but the answers are in di�erent lo
ations in the trees then a 
on�i
t is found, and the newmerged rule is deemed invalid.Mat
hing between two rules is di�erent to regular mat
hing be
ause both rules 
ontain answernodes and wild-
ards. If regular mat
hing is used, the two rules in Figure 4.14 do not mat
h,but they both mat
h the unannotated tree. However, if the answer nodes are interpreted as wild-
ards (as opposed to a literal string �<answer>�) then the two trees mat
h, but point to di�erentanswers and a 
on�i
t is dete
ted. This is a 
onservative method be
ause possible 
on�i
ting rules
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t dete
ted using 
onservative mat
hing between rules.are avoided, even if no 
on�i
t exists within the example data. This point is illustrated by Figure4.15, in whi
h the se
ond rule does not mat
h the unannotated tree, in whi
h 
ase there is no
on�i
t. However, a positive mat
h still exists between the rules when interpreting the answernodes as wild-
ards, and the new merged rule is reje
ted.The rule-set generalization pro
ess 
onsists of sele
ting an arbitrary pair of rules and mergingthem. If the merge does not fail, then a number of merge 
andidates are presented. Merge
andidates that remove preserved nodes are dis
arded. The remaining rules are 
ompared withevery rule in the rule-set to dete
t if a 
on�i
t o

urs, and are dis
arded if this is the 
ase. Amerged rule is sele
ted from the remaining set of merge 
andidates and repla
es the pair of originalrules in the rule-set (sele
tion strategies are des
ribed in Se
tion 4.4.5). This pro
ess 
ontinuesuntil no pair of rules 
an be found that results in a valid merge.4.3.6 Rule-set appli
ation to unseen textUnseen text is sub-divided into stru
tural units in the same manner used for 
reating a rule-set,where a tree is 
onstru
ted for ea
h unit (see Se
tion 4.3.2). Every rule in the generalized rule-setis mat
hed against the new tree, and if a mat
h is found, the answer in the tree is lo
ated andthe appropriate annotation 
reated. If a negative rule mat
hes the tree, or if no mat
hing rule isfound, then no annotation is 
reated for the unseen example.We assume that 
on�i
ting rules do not exist in the rule-set as a result of the dis
ussion inSe
tion 4.3.5. In this respe
t, the �rst mat
hing rule is assumed to point to the same answer asany subsequent mat
hing rule that potentially exists in the rule-set, and therefore the sear
h endswhen any mat
hing rule is lo
ated.A base rule-set is the most 
onstrained set of rules representing the examples provided by ahuman. Assume that the same set of examples is used to 
reate a set of unmarked trees, thenevery rule in the base rule-set should be identi
al to exa
tly one unmarked tree. In this manner,annotations in the example data are reprodu
ed by applying the base rule-set to the exampleextra
t.If an in
orre
t rule from the base rule-set mat
hes with an unmarked tree then the resultis an erroneous annotation. To avoid this s
enario, rules in a base rule-set must be su�
iently
onstrained to mat
h only a single unmarked tree (the degree to whi
h a rule is 
onstrained
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ategory of the rule, as dis
ussed in Se
tion 4.5). However, if su�
ient 
onstraints
annot be de�ned for a parti
ular 
ategory of annotation, we make the following assumption:Assumption 4.2. (Consisten
y Assumption) The base rule-set indu
ed by a set of training ex-amples produ
es a lower bound regarding the number of a

urate mat
hes with the unmarked trees(that represent the training examples).The Consisten
y Assumption (Assumption 4.2) provides for the dete
tion of loss in annotationability as a result of generalization. A generalized rule-set should not redu
e the number of a

uratemat
hes below the lower bound a
hieved by the most spe
i�
 base rule-set. An ideal generalizationprodu
es more a

urate mat
hes than this lower bound.4.4 Algorithms for pattern indu
tion and appli
ationThis se
tion formally de�nes hierar
hi
al rules and presents algorithms for the 
onstru
tion of arule-set, the pairwise generalization of two rules, the generalization of a rule-set, and the appli
ationof a rule-set to unseen text.4.4.1 Hierar
hi
al patterns and rulesThis se
tion de�nes a stru
ture for representing multiple levels of abstra
ted text, and for indi
atingwhere answers are lo
ated.4.4.1.1 Stru
ture of patterns: nodes and treesPatterns derived from free text 
an be abstra
ted on multiple levels, where a 
on
ept on one levelen
apsulates zero or more 
on
epts on a more spe
i�
 level. We represent a single 
on
ept as anode, where en
apsulation is represented by links between nodes. A node is de�ned as follows:De�nition 4.3. A node N represents a single 
on
ept that is an abstra
tion of zero or morespe
ialized 
on
epts. A node has the following properties:
• Type: An identi�er for the 
on
ept that the node represents, or a wild-
ard ω indi
atingthat the node represents any 
on
ept.
• Parent: A link to a single node representing a more abstra
t 
on
ept.
• Children: An ordered set of links to zero or more nodes that represent more spe
ialized
on
epts.
• Answer: Indi
ates whether the 
on
ept represented by the node is manually marked asbelonging to a parti
ular annotation 
ategory.
• Preserved: Indi
ates whether the 
on
ept 
an be removed from the linked node stru
ture.A value of true indi
ates that the node 
annot be removed.
• ChildSubSeq: Indi
ates whether the 
on
ept is represented ex
lusively by its set of 
hildren,or whether the set of 
hildren represents only a sub-sequen
e of possible 
hildren. A value oftrue indi
ates the latter.



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 63Ea
h node 
ontains a single link to an abstra
t 
on
ept, but 
ontains multiple links to morespe
i�
 
on
epts. A 
olle
tion of nodes linked in this manner is 
alled a tree, and 
ontains onenode that has no parent, 
alled the root.We use the following terminology to refer to 
ertain aspe
ts of a tree: the an
estors of a node Nin a tree is the set of linked nodes between N and (in
luding) the root of the tree; the des
endantsof a node N in a tree is a set of all nodes in the tree for whi
h N is an an
estor; the siblings ofa node N are all other nodes in the tree that have the same parent as N ; the depth of a node Nrefers to the number of nodes between N and (in
luding) the root (root is at depth 0); and a nodethat 
ontains no 
hildren is referred to as a leaf node.The indu
tion of patterns 
ommon in a 
olle
tion of trees is performed using a pro
ess of pair-wise merging, des
ribed in Se
tion 4.4.3. This involves a node-by-node 
omparison of two trees,where nodes in the same lo
ation in a tree are 
ompared. We de�ne the 
on
ept of lo
ation in thefollowing se
tion.4.4.1.2 Lo
ation and 
orresponding nodesThe 
omparison of two trees involves examining the properties of 
orresponding nodes. We de�ne
orresponding nodes in terms of the lo
ation of two nodes in their respe
tive trees. Lo
ation isexpressed in terms of a node's relative position to its siblings and an
estors.De�nition 4.4. Let the pair number

siblings
de�ne a node's relative position with respe
t to its siblings,where number is the position of the node in the ordered list of siblings, and siblings is the totalnumber of siblings.Two nodes in two di�erent sequen
es are 
orresponding if their relative positions are identi
al.If the sequen
es 
ontain di�erent numbers of nodes, then the relative position of two nodes 
annotbe the same. However, this is not the 
ase if the parent node NP to one of these sequen
es hasthe property childSubSeq(NP ) = true. Assume NP is a parent to n nodes but has the possibilityof being a parent to additional nodes (childSubSeq(NP ) = true), and NQ is a parent to m nodes(m > n). The relative position of ea
h 
hild node of NP is de�ned in terms of the number of 
hildnodes of NQ. Relative position is expressed by the pair k + number

∗
, given a 
hoi
e of the valueof k in the range 0 ≤ k ≤ m− n.De�nition 4.5. Lo
ation of a node N is an ordered tuple that 
ontains the relative position ofevery node from the root of the tree to the node N (in order of root to N). The number of pairsde�ning a lo
ation for node N is equal to 1 + depth(N). Nodes with identi
al ordered sequen
esof relative position tuples are said to be 
orresponding.Lo
ation is demonstrated in Figure 4.16. The node E in the �rst tree has the lo
ation

〈

1

1
;

2

3
;

1

1

〉, whi
h is identi
al to the node J in the se
ond tree, indi
ating that these are
orresponding nodes. The node E in the �rst tree does not 
orrespond to either leaf node in thethird tree, be
ause the lo
ation tuples are di�erent.Lo
ation a

ommodates instan
es where only a sub-sequen
e of 
hildren are expli
itly de�nedfor that node (where childSubSeq(N) = true). For example, in Figure 4.17 the node E 
orresponds
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if k = 2: Location(E) = Location(L); Location(F) = Location(M)Figure 4.17: Interpretation of lo
ation when only a sub-sequen
e of 
hild nodes are de�ned.to node J if k = 0, but 
orrespond to node K if k = 1. However, node E 
an never 
orrespond tonode M , be
ause the upper limit of k is 2. In 
ases su
h as this, the term 
orresponding appliesfor any value of k in its de�ned range.This de�nition allows nodes from two di�erent trees to be referred to as 
orresponding. Wealso use the 
on
ept of lo
ation to determine whether two trees 
ontain 
orresponding answer andpreserved nodes.4.4.1.3 Rules and unmarked treesWe de�ne two types of trees: those that are 
onstru
ted from examples provided by a human,and those that are 
onstru
ted from text for whi
h an annotation must be 
reated (unseen text).These are de�ned as rules and unmarked trees respe
tively:De�nition 4.6. A rule is a tree representing a positive or negative annotation example providedby a human. A rule has the following properties:
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• If a node N has the property type(N) = ω (node represents a wild-
ard type), then the nodehas zero 
hildren.
• Answer nodes are always preserved, that is any node N with the property answer(N) = truealso has the property preserved(N) = true.Rules have the potential to 
ontain answer nodes and preserved nodes, depending on the anno-tations in the input example. Rules also 
ontain wild-
ards and childSubSeq markers (if the ruleshave been generalized).Unmarked trees represent text for whi
h an annotation must be 
reated, and therefore 
ontainno answer or preserved nodes. Unmarked trees are never generalized and never 
ontain wild-
ardsor childSubSeq markers:De�nition 4.7. An unmarked tree represents a unit of input that requires annotation. For everynode N in an unmarked tree, the following properties hold:
• type(N) 6= ω: No wild-
ards are permitted in the tree.
• preserved(N) 6= true: No preserved nodes are permitted in the tree.
• answer(N) 6= true: The tree 
ontains no answer nodes.
• childSubSeq(N) 6= true: Children 
annot be a sub-sequen
e of the total set.The use of the same tree stru
ture for representing rules and unmarked trees has a numberof advantages: the same method for 
onstru
ting a tree 
an be employed regardless of whether amanually annotated example or an unseen unit of text is provided; 
orresponding nodes in rulesand unmarked trees 
an be 
ompared to determine whether the trees mat
h; if the trees mat
h thenthe node in the unmarked tree that 
orresponds to the answer node in the rule 
an be identi�ed,and the 
orresponding text annotated as a result.4.4.2 Rule-set 
reationA rule-set is an ordered sequen
e of rules derived from an extra
t of annotated text. We denotean ordered sequen
e as follows:

S−→ = 〈s1, ..., sn〉The 
on
ept of a rule-set is an example of an ordered sequen
e:De�nition 4.8. A rule-set R−→ is an ordered sequen
e of rules Ri, su
h that:
R−→ = 〈R1, ..., Rn〉Algorithm 4.1 
reates a single rule for every (positive or negative) example en
ountered in theinput extra
t, the result of whi
h is referred to as the base rule-set.4.4.3 Rule generalizationThis se
tion des
ribes an algorithm for 
reating a generalized rule from two input rules. We de�nea valid generalized rule in terms of the following 
riterion:
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reation.
create(in: extra
t E 
ontaining a number of examples;out: rule-set R−→ = 〈R1, ..., Rn〉)beginwhile E has more examples do

e←next example in E
onstru
t rule R from example eappend R to R−→endCriterion 4.9. A valid generalized rule has the following properties:1. All preserved nodes in the two input rules exist at the same lo
ation in the generalized rule.2. The generalized rule mat
hes both input rules.3. The generalized rule indi
ates answers in the same lo
ation as the answers in both inputrules.A valid generalized rule is only 
reated if both input rules 
ontain preserved and answer nodesin identi
al lo
ations. If the two input rules fail to meet these pre-
onditions then generalizationfails for this pair of rules.We present an algorithm that generalizes two rules by traversing the two trees node by nodein a depth-�rst manner, 
omparing ea
h pair of 
orresponding nodes. If the 
on
ept representedby both nodes is the same, then a dupli
ate node is 
reated and inserted into a new generalizedrule. If the nodes do not represent the same 
on
ept, then a wild-
ard is inserted instead and nofurther des
endants of the nodes are 
ompared. The generalization pro
ess fails if the insertion ofa wild-
ard prevents preserved nodes in the input rules from being dupli
ated in the generalizedrule.The traversal through the two trees is a

omplished using a re
ursive fun
tion 
alled mergethat 
ompares pairs of nodes, and 
reates a new generalized tree:De�nition 4.10. De�ne the fun
tion merge(N1, N2) 7→ {N0
merge, ..., N

n
merge}|FAIL to be a fun
-tion that takes as input two trees with roots N1 and N2 and produ
es either a set 
ontainingmerged trees N i

merge or FAIL if N1 and N2 
annot be merged.The merge fun
tion operates in two stages. The �rst stage is 
on
erned with 
omparing thetwo input nodes and 
reating a dupli
ate or wild-
arded node for the generalized rule. The se
ondstage is 
on
erned with invoking a re
ursive 
all to the merge fun
tion for merging the 
hildren ofthe two input nodes.4.4.3.1 Node 
omparisonMerging is initially 
onsidered between a pair of nodes, where two nodes are used as input to apro
ess that generates a single, generalized node representing the two input nodes:De�nition 4.11. De�ne the fun
tion combineNodes(N1, N2) 7→ Ncombine|FAIL to be a fun
tionthat takes two nodes N1 and N2 as input, and produ
es either a new node Ncombine, or FAIL ifthe nodes 
annot be merged. FAIL results if N1 and N2 have the following properties:
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• isPreserved(N1) 6= isPreserved(N2)

• isAnswer(N1) 6= isAnswer(N2)Otherwise, combineNodes(N1, N2) results in a new nodeNcombine that has the following properties:
• Type:� if type(N1) = ω or type(N2) = ω, then type(Ncombine)← ω� if type(N1) 6= type(N2), then type(Ncombine)← ω� if type(N1) = type(N2), then type(Ncombine)← type(N1) [= type(N2)]

• children(Ncombine)← 〈〉

• isPreserved(Ncombine)← isPreserved(N1) [= isPreserved(N2)]

• isAnswer(Ncombine)← isAnswer(N1) [= isAnswer(N2)]

• childSubSeq(Ncombine)← falseAssume that nodes N1 and N2 are to be merged. The combineNodes fun
tion (De�nition 4.11)has the ability to 
reate a wild-
ard, whi
h means that the sub-trees of N1 and N2 are irrelevant tothe generalized rule. This is in
orre
t if these sub-trees 
ontain preserved nodes, whi
h means thatwild-
ards should not be 
reated from nodes that are an
estors to preserved nodes. This 
onditionis enfor
ed using the following fun
tion:
checkPreserved(Ncombine, N1, N2) =











































Ncombine if type(Ncombine) 6= ω

Ncombine if type(Ncombine) = ω and number ofpreserved des
endants of N1 and N2 = 0

FAIL if Ncombine = FAIL or type(Ncombine) = ω andnumber of preserved des
endants (N1 or N2) > 0Both the 
ombineNodes and 
he
kPreserved fun
tions are en
apsulated within a single fun
tion:
mergeNodes(N1, N2) = checkPreserved(combineNodes(N1, N2), N1, N2)The mergeNodes fun
tion returns a single node representing both input nodes (or FAIL ifthe nodes 
annot merge). This node does not have any allo
ated 
hild nodes. These are assignedin the next stage of the merge fun
tion.4.4.3.2 Merge of sequen
es of 
hildrenEa
h node in a pair of input rules has zero or more 
hild nodes. Ea
h 
hild node represents the rootof its own sub-tree, and the merge fun
tion is applied re
ursively to every pair of 
orresponding
hild nodes. Cases exist in whi
h a number of sub-sequen
es of 
hildren from one node 
an bemerged with a number of sub-sequen
es of 
hildren from another node, as illustrated in Figure4.18.
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of merge candidatesFigure 4.19: Illustration of merge between sequen
es of nodes.We de�ne a fun
tion enumerate(C−→, D−→) 7→ {E1−→, ..., En−→} that takes as input two sequen
esof nodes C−→ and D−→, and produ
es all possible sub-sequen
es of 
orresponding nodes. Ea
h sub-sequen
e Ei−→ is a list of tuples, where ea
h tuple de�nes a pair of nodes to be merged. Ifm = size(C−→)and n = size(D−→), then the total number of possible sub-sequen
es generated by enumerate is:
max(n,m)
∑

k=0

(n− k)(m− k) (4.1)The merge fun
tion is invoked re
ursively for ea
h pair of nodes in ea
h sub-sequen
e. If a pairdoes not produ
e a valid generalized node, then the entire sub-sequen
e is dis
arded.Themerge fun
tion returns a set of merge 
andidates for a single pair of input nodes (De�nition4.10), as is illustrated in Figure 4.19. Every 
ombination of merge 
andidates from ea
h pairin a sequen
e is enumerated using the × operator as illustrated in the �gure. This pro
ess isen
apsulated in the mergeSub(E−→) 7→ {S1−→, ..., Sn−→} fun
tion that takes as input a sequen
e of tuples
E−→ = 〈〈C1,D1〉 , ..., 〈Ck,Dk〉〉, where ea
h tuple represents a pair of nodes to be merged. Theoutput of this fun
tion is a set 
ontaining every possible 
ombination of merged sequen
es:

mergeSub(E−→) = merge(C1,D1)× ...×merge(Ck,Dk)

= {N0
c1d1

, ..., Nx
c1d1
} × ...× {N0

ckdk
, ..., Nz

ckdk
}

= {
〈

N0
c1d1

, ..., N0
ckdk

〉

, ...,
〈

Nx
c1d1

, ..., Nz
ckdk

〉

}
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tion is invoked for every enumerated sub-sequen
e of 
hild nodes. We usethe mergeChildren fun
tion to merge every possible sub-sequen
e of 
orresponding 
hild nodes.This fun
tion takes as input two sequen
es of 
hild nodes, enumerates every possible sub-sequen
e,merges ea
h sub-sequen
e, and �nally enumerates all possible merged sub-sequen
es. If {E1−→, ..., Ek−→}is the set of enumerated sub-sequen
e pairs resulting from enumerate(C−→, D−→), then:
mergeChildren(C−→, D−→) = mergeSub(E1−→) ∪ ... ∪mergeSub(Ek−→)

= {M1−→, ...,Mn−→}The mergeChildren fun
tion returns 
andidate merged sub-sequen
es of the 
hild nodes of thetwo input nodes. A valid sub-sequen
e 
ontains every preserved 
hild node of the two input nodes.This is 
he
ked as follows:
checkChildPreserved(M−→, C−→, D−→) =































true if number of preserved nodes in C−→ and D−→ =number of preserved nodes in M−→
false if number of preserved nodes in C−→ and D−→ 6=number of preserved nodes in M−→Let Nmerge be a merged node produ
ed from nodes N1 and N2 using mergeNodes(N1, N2).If more than one sub-sequen
e of 
hild nodes is produ
ed using mergeChildren, then Nmerge is
loned for ea
h valid sub-sequen
e, and the nodes in one sub-sequen
e be
ome 
hildren of one 
loneof Nmerge. The set of 
loned Nmerge nodes is returned as the result of the merge fun
tion.Algorithm 4.2 de�nes the merge fun
tion, where the mergeNodes fun
tion is used to 
reatenew generalized nodes, and themergeChildren fun
tion is used to re
ursively merge sub-sequen
esof 
hild nodes. This algorithm has two base-
ases: if a generalized node is a wild-
ard, in whi
h
ase no further re
ursion o

urs; or if no valid merged sub-sequen
es of 
hild nodes exist (either ifnodes are leaf nodes, or if no valid merge is possible). In the latter 
ase, the new node Nmerge isnot assigned any 
hild nodes.The childSubSeq marker is set to true in Nmerge whenever a merged sub-sequen
e of 
hildnodes is smaller than the original set of 
hild nodes. This indi
ates that the set of 
hild nodesassigned to Nmerge is a sub-sequen
e of possible 
hild nodes. A spe
ial 
ase exists in whi
h no
hild nodes are assigned to a 
lone of Nmerge. In this 
ase, childSubSeq is only set to true if theoriginal nodes have 
hildren.We prove that the �rst property of generalized rules (generalized rule 
ontains all preservedand answer nodes, as per Criterion 4.9 on page 66) is satis�ed using the merge fun
tion de�nedby Algorithm 4.2:Lemma 4.12. Let N1 and N2 be the root nodes of two trees that have preserved and answer nodesin 
orresponding lo
ations. Any generalized node Nmerge produ
ed by Algorithm 4.2 
ontains allpreserved and answer nodes in N1 and N2, in the same lo
ation as in N1 and N2.Proof. All answer nodes are preserved nodes, therefore we only need to prove that all preservednodes in the two input trees o

ur at the same lo
ation in a generalized tree. De�ne Ni to be the
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Algorithm 4.2 Merge algorithm.
merge(in: node N1 with 
hildren C−→,node N2 with 
hildren D−→;out: set of merged nodes or FAIL)begin
Nmerge ← mergeNodes(N1, N2) %% Nmerge has no 
hildren yet
M ← {}if Nmerge 6= FAIL thenif type(Nmerge) = ω then %% Do not re
urse if wild-
ard inserted

M ←M ∪ {Nmerge}else
E ← mergeChildren(C−→, D−→) %% Re
ursefor ea
h e−→ ∈ E doif checkChildPreserved( e−→, C−→, D−→) then

Nclone ← clone(Nmerge) %% Clone Nmerge for ea
h sub-sequen
e
children(Nclone)← e−→ %% Assign 
hildren to Nclone%% Indi
ate if sub-sequen
e is not 
omplete set of 
hild nodes
childSubSeq(Nmerge) ← (size( e−→) 6= size(C−→) or size( e−→) 6= size(D−→)) or

(childSubSeq(N1) or childSubSeq(N2))
M ←M ∪ {Nclone}%% Spe
ial 
ase: leaf nodes or no valid mergesif checkChildPreserved(〈〉 , C−→, D−→) then%% Indi
ate if sub-sequen
e is not 
omplete set of 
hild nodes

childSubSeq(Nmerge)← (size(C−→) 6= 0 or size(D−→) 6= 0)

M = M ∪ {Nmerge}if M 6= {} thenreturn Melsereturn FAILend



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 71root node of a tree of height i, and Nj to be a root node of a tree of height j. We employ anindu
tive proof in four 
ases:Case 1: i = j = 0 and Ni and Nj are both preserved. The mergeNodes fun
tion is guaran-teed to return a merged node Nmerge that is also preserved as spe
i�ed by the de�nition ofthe combineNodes fun
tion (be
ause both Ni and Nj are preserved). FAIL 
an never resultfrom checkNodes be
ause neither Ni norNj have 
hildren. If type(Nmerge) = ω in Algorithm4.2 then Nmerge is the only possible result. Otherwise, the re
ursivemergeChildren fun
tionis invoked over the 
hildren of Ni and Nj , returning an empty sequen
e be
ause neither ofthese nodes have 
hildren. checkChildPreserved is guaranteed to return true over the emptysequen
e (be
ause there are no 
hildren), and the result is the return of the preserved node
Nmerge. The preserved node in the generalized tree is in the same lo
ation as in the originaltrees.Case 2: i = j = 1 and Ni and Nj have preserved 
hildren in identi
al lo
ations.If type(Nmerge) = ω then checkPreserved is guaranteed to return a FAIL, preventing thepossibility of a generalized tree with fewer preserved nodes than in Ni and Nj . Three 
asesare possible when merging the sequen
es of 
hild nodes:- mergeChildren returns an empty sequen
e: the spe
ial 
ase is en
ountered, but
checkChildPreserved prevents the addition of Nmerge toM be
ause the number of preserved
hild nodes of the input nodes is greater than zero. The result is an empty set M , whi
h
auses the algorithm to result in a FAIL.-mergeChildren returns a set of sub-sequen
es, none of whi
h pass the checkChildPreserved
ondition: this has the same result as the previous point.-mergeChildren returns a set of sub-sequen
es, some of whi
h pass the checkChildPreservedfun
tion: checkChildPreserved guarantees that the number of preserved nodes in the mergedsub-sequen
e is the same as the number of preserved 
hild nodes of Ni and Nj . If a sub-sequen
e is of the same size as the number of 
hildren of Ni and Nj (assuming this numberis equal), then the lo
ation of the preserved nodes is identi
al be
ause the sub-sequen
e isan exa
t 
opy of the 
hild sequen
es of Ni and Nj . If the sub-sequen
e is of a redu
ed sizethen it is still guaranteed to 
ontain all preserved nodes be
ause of the checkChildPreservedfun
tion. In this 
ase, childSubSeq(Nmerge) = true, and by the de�nition of lo
ation, a valueexists for k so that the preserved nodes in the generalized sub-sequen
e 
orresponds with thepreserved 
hild nodes of Ni and Nj .Case 3: i = 0 and j > 0 where Ni is preserved and Nj is root to a sub-tree 
ontainingpreserved nodes: in this 
ase, Nj 
annot be a parent to a sub-tree 
ontaining preserved nodes(by de�nition, Ni and Nj must have preserved nodes in identi
al lo
ations). Therefore, Njis the only preserved node in its tree. In this 
ase, the mergeNodes fun
tion is guaranteedto return a preserved merged node Nmerge, and be
ause Nj 
annot have preserved 
hildren(and Ni has no 
hildren) the insertion of a wild-
ard never removes preserved nodes.Case 4: i = x and j = y and Ni and Nj both have preserved des
endants. If Ni and Nj ispreserved, then the mergeNodes fun
tion is guaranteed to return a preserved merged node
Nmerge, and a FAIL is guaranteed by checkNodes if a wild-
ard is inserted. Re
ursive
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ation of merge eventually results in either Case 1, 2, or 3, ea
h of whi
h guaranteepreserved nodes in the same lo
ation in the sub-tree, or FAIL. Every generalized sub-treeis guaranteed to have preserved nodes in the same lo
ation as in the input trees.We evaluate 
omplexity of the merge algorithm in terms of the number of 
andidate mergedrules that are produ
ed from a pair of input rules. The worst 
ase o

urs if every node in bothrules 
ontains n 
hild nodes (bran
hing fa
tor of n). The enumerate fun
tion produ
es no greaterthan n × n2 
hild sub-sequen
es (as a result of expression 4.1 on page 68). Assuming there aresiblings to these parent nodes, then the upper bound on the total number of 
andidate mergedsub-trees is n × n2 × n2 (in the worst 
ase, ea
h parent node 
orresponds to every other parentnode, resulting in an additional fa
tor of n2 ). If this o

urs for every node in the tree, and if thereare p nodes in a tree, then the total number of merge 
andidates 
annot ex
eed O(pn5) rules.The upper bound of merge 
andidates is never rea
hed due to the insertion of wild-
ards thatprevent traversal and dupli
ation of the entire input trees. In addition, merge 
andidates aredisquali�ed be
ause of failure points in the merge algorithm. Empiri
al evaluation indi
ates thatan average bran
hing fa
tor of 2 o

urs, where input rules 
ontain on average 30 nodes. Thispresents an upper bound of 2× 305 
andidate trees, but in pra
ti
e we observe an average of only2 
andidates 
reated for ea
h pair of rules.4.4.4 Appli
ation of a generalized rule: mat
hingThe mat
hing pro
ess 
ompares a given rule with an unmarked tree. If the pattern spe
i�ed by therule exists in the unmarked tree, then the mat
h is su

essful. Similar to generalization, mat
hingis performed as a depth-�rst traversal of the rule tree and the unmarked tree, starting at the root.We refer to a node from the rule as NR, while a node from the unmarked tree is referred to as
NU . As per De�nition 4.7 on page 65, an unmarked tree 
ontains neither wild-
ards, childSubSeqmarkers, nor answer nodes. The match algorithm is only 
on
erned with 
he
king that 
orrespond-ing nodes are identi
al.Algorithm 4.3 presents the re
ursive rule-mat
hing pro
ess beginning at the root nodes of twotrees NR and NU . If the node under 
onsideration is an answer node, then the 
orrespondingnode NU is marked as an answer. Subsequent 
he
ks are performed to ensure that the 
onstraintportions of the rules are identi
al. If the node is a wild-
ard, then the 
orresponding node NU
an be of any type, and its sub-tree requires no further mat
hing of NU 's 
hildren. The result is apositive mat
h for the 
urrent sub-tree.The type �elds of the 
orresponding nodes are 
ompared, and if these are di�erent then themat
h fails. If they are the same, then the 
hild nodes are mat
hed re
ursively.The mat
hing of 
hild nodes depends on the status of the childSubSeq marker. If set to true,this marker indi
ates that the sequen
e of 
hild nodes ofNR is not 
omplete, and may be surroundedon either side by nodes. In this 
ase, a mat
h o

urs only if a sub-sequen
e of 
hild nodes of NU
an be found, for whi
h ea
h 
hild node results in a positive mat
h with ea
h 
orresponding 
hildnode of NR. If no mat
hing sub-sequen
e 
an be found, then the mat
h fails. If childSubSeq isset to false, the the entire set of 
hildren of NR must mat
h the entire set of 
hildren of NU . If
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Algorithm 4.3 Rule mat
hing.

match (in: node NU with 
hildren CU−→,node NR with 
hildren CR−→;out: a Boolean value match indi
ating a su

essful mat
h)beginif isAnswer(NR) then
isAnswer(NU )← trueif type(NR) = ω thenreturn trueelseif type(NU ) = type(NR) thenif CU−→ = 〈〉 and CR−→ = 〈〉 thenreturn trueelseif childSubSeq(NR) = true thenif size(CR−→) = 0 thenreturn trueelseif (a sub-sequen
e in CU−→ exists that 
ontains the samenumber of nodes as in CR−→, and where every node in thesub-sequen
e returns positive match with every
orresponding node in CR−→) thenreturn trueelsereturn falseelseif (every node in CU−→ returns a positive match with every
orresponding node in CR−→) thenreturn trueelsereturn falseelsereturn falseend
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ase (for example, if NU has a di�erent number of 
hild nodes to NR), then themat
h fails. Regardless of the status of childSubSeq, a re
ursive 
all to match is made for ea
h
orresponding pair of nodes.The se
ond property of a generalized rule is that it must mat
h the two rules responsible forits 
reation (by Criterion 4.9 on page 66). This property is ensured by the following lemma:Lemma 4.13. Let R1 be an example rule with root N1, and R2 be an example rule with root N2.Let R1 
ontain preserved nodes and answer nodes in the same lo
ations as in R2, and let Nmergebe the root of a merged rule derived by applying merge(N1, N2) from Algorithm 4.2. Then:
∀Nmerge ∈ merge(N1, N2) : match(Nmerge, N1) = true and match(Nmerge, N2) = trueProof. To prove that any merge resulting from merge(N1, N2) will mat
h with N1 and N2, allfailure points in the match algorithm (Algorithm 4.3) must be shown not to be rea
hable whenmat
hing Nmerge = NR (the rule) with N1 = NU or N2 = NU (the unmarked tree). Algorithm 4.3
an result in false in 3 
ases:Case 1: if type(NU ) 6= type(NR): By this stage in Algorithm 4.3, it is asserted that type(NR)is not a wild-
ard. Algorithm 4.2 employs the fun
tion mergeNodes that returns a nodewith type equal to either a wild-
ard ω if type(N1) 6= type(N2) or the type of N1(and N2)if type(N1) = type(N2). As su
h, it is impossible for NR to have been 
reated 
ontaining anode in whi
h type(NU ) 6= type(NR), whi
h means this 
ase will never o

ur if NU = N1 or
NU = N2. This 
ase is therefore guaranteed to never be the reason for a mat
h failure.Case 2: if type(NU ) = type(NR) and childSubSeq(NR) = true and no mat
hing sub-sequen
eexists: A mat
h failure o

urs only if no sub-sequen
e of 
hild nodes from NU 
an be foundthat mat
h the sequen
e of 
hild nodes of NR. The existen
e of NR with size(CR) > 0indi
ates that at least one merged sub-sequen
e of 
hildren was produ
ed from the 
hildrenof N1 and N2. The match fun
tion enumerates and mat
hes every possible sub-sequen
e of
hild nodes of N1 and N2, guaranteeing that the sub-sequen
e found by merge is also foundby match, making a mat
h failure impossible.Case 3: if type(NU ) = type(NR) and childSubSeq(NR) = false: the property
childSubSeq(NR) = false 
an only result from merge in two 
ases: if the type(NR) = ωbe
ause mergeNodes sets this property to false by default and no subsequent 
hanges arepossible if a wild-
ard is inserted; or if the number of merged 
hild nodes is equal to thenumber of 
hild nodes of N1 and N2. The former 
ase does not apply for this point. Inthe latter 
ase, NR is guaranteed to 
ontain the full sequen
e of 
hild nodes identi
al to the
hildren of N1 and N2, and therefore a match failure is impossible.Of the three properties that generalized rules should exhibit, only two are guaranteed by the

merge and match fun
tions. Lemma 4.12 guarantees that any generalized tree 
ontains all pre-served nodes in the same lo
ations as those in the two input rules. Answer nodes are alwayspreserved nodes, as per the de�nition of a rule (De�nition 4.6), and therefore answers in a gener-alized rule are always in the same lo
ation as in the input rules. Lemma 4.13 guarantees that a
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Figure 4.20: Example of the failure to guarantee that all identi
al answers are produ
ed by amerged rule.merged rule generalized from two input rules will always mat
h the two input rules. This ensuresthat the generalized rule is 
apable of repla
ing both input rules.The third property of a generalized rule (Criterion 4.9 on page 66) 
annot be guaranteed, namelythat the answers produ
ed by the appli
ation of the generalized rule are the same answers produ
edby both input rules. An example is illustrated in Figure 4.20, whi
h shows a merged rule thatgeneralizes two input rules. By the de�nition of lo
ation, the answer node is in the same lo
ationas in the original rules be
ause of the childSubSeq marker. However, when this rule is mat
hed toan original rule, the childSubSeq marker results in the enumeration of every sub-sequen
e of 
hildnodes. The match algorithm has the potential to mat
h two di�erent enumeration possibilitiesand indi
ate a di�erent answer in either 
ase, one of whi
h is in
orre
t. The mat
h algorithmhas no method for determining whi
h enumeration possibility is 
orre
t, allowing the potential forin
orre
t annotations.The error illustrated in Figure 4.20 is the result of the 
reation of a merged rule that is not
onstrained enough to distinguish between the two input rules. One option for 
orre
ting this isto prevent the use of the childSubSeq marker when a des
endant is an answer. However, thisover-
onstrains rules making them less appli
able over unseen text. We avoid this problem byidentifying and preventing only the spe
ial 
ases where 
on�i
ts o

ur, and by performing a post-merge match between every generalized 
andidate and the original two rules. If a mat
h o

ursthat results in an in
orre
t answer, then the generalized 
andidate is dis
arded. This post-merge
he
k is a spe
ial 
ase 
on
erned with the avoidan
e of 
on�i
ting rules, a s
enario dealt with whengeneralizing rule-sets.4.4.5 Generalization of a rule-setWe generalize a rule-set in a pair-wise fashion. We begin with en empty set of merged rules. Asingle rule is removed from the base rule-set and added to this set. Thereafter one rule is removedat a time and merged with every rule in the merged rule-set. This results in a set of generalizedmerge 
andidates, from whi
h only a single 
andidate is 
hosen. This 
andidate repla
es the rule in
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generalize(in: S−→ the base rule-setout: M−→ the merged rule-set)begin

M−→← 〈〉
O−→← 〈〉 %%Original rule-setwhile size( S−→) > 0 do
R← removeF irst( S−→)
O−→← append R to O−→ %% Re
ord original rule to prevent 
onfli
ts
(

N−→, Rmerge

)

← selectMerge(R,M−→, S−→,O−→)if N−→ = FAIL thenif (no rule exists in M−→ identi
al to R andnot isConflict(R,M−→, S−→,O−→)) then
M−→← append R to M−→ %% append non-merged rule to merged setelsedis
ard rule R %% R 
auses unresolvable 
onfli
telse

M−→← N−→ %% Repla
e merged set with updated versionif (no rule exists in S−→ identi
al to Rmerge) thenappend Rmerge to S−→ %% Allow future generalization of Rmergeendthe merged rule-set that was used for the 
reation of the 
andidate. If no valid generalized merge
andidates are produ
ed, then the rule from the base rule-set is appended to the merged rule-set.This pro
ess 
ontinues until no further rules exist in the base rule-set. Every time a generalizedmerge 
andidate is added to the merged rule-set, a 
opy is also appended to the base rule-set toallow for future generalization of the same rule.Algorithm 4.4 performs the pair-wise rule-set generalization pro
ess. A fun
tion 
alled selectMergeis used to merge the rule R from the base rule-set with every rule in the merged rule-set, returninga tuple 
ontaining the new merged rule-set and the merged rule that was added to it. Before anymerged or unmerged rule is added to the merged rule-set, it is veri�ed to ensure that it does not
ause a 
on�i
t with any existing rule in the merged rule-set (thus ensuring the third property ofgeneralized rules).Algorithm 4.4 has a time 
omplexity of O(n2), where n is the number of rules, be
ause of themerge between every rule in the base rule-set with every rule in the merged rule-set (whi
h inthe worst 
ase 
ontains no merged rules). However, in our experien
e this s
enario never o

ursbe
ause merged rules are always produ
ed.4.4.5.1 Dete
tion of 
on�i
ting rulesCon�i
ting rules are 
apable of in
orre
tly mat
hing examples and produ
e an in
orre
t answers.They o

ur under the following 
ir
umstan
es:1. Rules in the base rule-set are 
on�i
ting;2. Generalized rules 
on�i
t with rules in the merged rule-set;3. Generalized rules 
on�i
t with the rules responsible for their 
reation.
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on�i
ting, then the most that 
an be done is dete
t when thiso

urs, and raise a warning. The stru
ture of the rules should be enhan
ed to 
ontain moredetailed 
onstraints to avoid 
on�i
ting rules, or alternatively the example data should be 
he
kedfor in
onsisten
ies.The se
ond 
ir
umstan
e is avoided by mat
hing every newly generalized rule with every rulein the merged rule-set, to ensure that no mat
h o

urs that results in an in
orre
t answer.The third 
ir
umstan
e is illustrated in Se
tion 4.4.4, where a generalized rule 
on�i
ts withboth input rules. This is avoided by mat
hing the generalized rule with both input rules, anddis
arding the generalized rule if 
on�i
ting answers are produ
ed. However, this is a spe
ial 
aseof a larger problem. A newly generalized rule might not 
on�i
t with a rule in the merged rule-set,or with the two input rules, but it might 
on�i
t with one of the rules in the original base rule-set.To avoid this, every generalized rule is mat
hed with every rule in the base rule-set (whi
h in
ludesthe two input rules), and is dis
arded if any 
on�i
ting answers are produ
ed.We de�ne the fun
tion matchP (R1, R2) 7→ (Boolean,Boolean) that a

epts two rules andreturns a tuple of two Boolean values (match, same). The match variable is assigned the value of
true if the two rules su

essfully mat
h. The same variable is assigned the value of true if boththe following 
onditions hold:
• R1 identi�es the 
orre
t answer nodes in the R2 tree; and
• R2 identi�es the 
orre
t answer nodes in the R1tree.The matchP fun
tion di�ers from the match fun
tion in that both input trees 
an be rules, and soboth 
ontain wild-
ards, childSubSeq markers, preserved nodes, and answer nodes. Answer nodesare 
onsidered as wild-
ards (as des
ribed in Se
tion 4.3.5).We de�ne 
on�i
ting rules to be rules for whi
h the matchP algorithm produ
es the tuple

(match = true, same = false). We use the fun
tion conflictExists(R,R−→) 7→ Boolean to dete
twhether a rule R is 
on�i
ting with respe
t to a rule-set R−→ (if any rule M exists in R−→ su
h that
matchP (R,M) = (true, false)).Every time a new rule is added to the merged rule-set, all 
ir
umstan
es that result in a 
on�i
tare 
he
ked. This means 
he
king the merged rule-set M−→, the base rule-set S−→, and the originalrule-set O−→ for 
on�i
ts. All these 
he
ks are en
apsulated in the isConflict(R,M−→, S−→,O−→) fun
tionthat returns true if the following 
ondition holds:
conflictExists(R,M−→) = true or conflictExists(R, S−→) = true or conflictExists(R,O−→) = trueThe isConflict fun
tion is used in Algorithm 4.4 in 
ases where no valid merge 
andidates areprodu
ed. The rule R is appended to the merged rule-set only if no 
on�i
t is dete
ted.4.4.5.2 Sele
tion of a generalized ruleAlgorithm 4.4 
hooses a single rule from S−→ that is merged with every rule in M−→ using the
selectMerge fun
tion, whi
h is de�ned in Algorithm 4.5. A merge results in a set of merge
andidates, ea
h of whi
h is 
he
ked to determine whether it is a 
on�i
ting rule. On
e all validmerge 
andidates are determined, a single 
andidate is 
hosen. We previously explored evaluating
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t merged rule-set.
selectMerge(in: rule RC to be merged with any rule in M−→,merged rule-set M−→,rule-set S−→ 
ontaining rules still to be merged,rule-set O−→ 
ontaining original rules;out: tuple (N−→, Rmerge

) | FAIL)begin
W ← {}for ea
h R in M−→ doif R is not identi
al to RC then

V ← merge(R,RC)if size(V ) > 0 thenfor ea
h Rm in V do
N−→←M−→/R %% Remove R from M−→if not isConflict(Rm,M−→, S−→,O−→) thenappend Rm to N−→
W ←W ∪ {

(

N−→, Rm

)

}if W = 〈〉 thenreturn FAILelse
hoose one tuple from W and return itendea
h merged rule over the example set, 
hoosing the rule that 
reates the most 
orre
t annota-tions (Glass and Bangay, 2006). However, this method requires repeated rule-set appli
ation andevaluation. Alternatively, we 
hoose the 
andidate that mat
hes most rules in the merged rule-setwithout 
on�i
t (to promote future generalization), removing the appli
ation and evaluation steps.4.4.6 Rule-set appli
ation to unseen textAn unmarked tree T is 
reated for ea
h example. The rule-set R−→ is then traversed in order, anda match is performed between ea
h rule R from this rule-set and T . If a positive mat
h o

urs,then the answer node 
reated in T by the match fun
tion is used to 
reate the annotation. Thispro
ess is des
ribed in Algorithm 4.6.Assume that the rule-set 
ontains n rules and the example set 
onsists of n examples. Algorithm4.6 has a run-time 
omplexity of O(n2) be
ause the last rule in ea
h rule-set has the potential tomat
h every rule in the example set. We observe that this worst-
ase s
enario is never realized.In general, the apply algorithm is far more e�
ient than the generalize algorithm be
ause everypossible merge 
andidate need not be enumerated, and the match algorithm ends as soon as amat
hing 
andidate is lo
ated. As with most ma
hine learning algorithms, the a
tivity of trainingrequires substantial e�ort (in the order of hours), but the appli
ation pro
ess requires less e�ortor resour
es to exe
ute (in the order of se
onds).
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ation.
apply(inout: extra
t E 
ontaining a number of examples;in: rule-set R−→ = 〈R1, ..., Rn〉)beginwhile E has more examples do

e←next example in E
onstru
t unmarked tree T from the examplefor i← 1 to n doif match(T,Ri) = true thenannotate e a

ording to answer nodes in Tbreak from loop over iend4.5 Hierar
hi
al rules for semanti
 annotationsThis se
tion des
ribes the 
onstru
tion of rules for di�erent 
ategories of semanti
 annotation. We
hoose 
ategories that we believe are useful for 
reating animated 3D virtual environments, andwhi
h also demonstrate the 
apabilities of hierar
hi
al rule-based learning:1. Quote: identi�es the avatar responsible for voi
ing instan
es of dire
t spee
h. A quoteannotation is de�ned in terms of the following quali�ers:(a) Quote (trigger): the a
tual quote 
onsisting of a sequen
e of tokens.(b) Spee
h-verb (text-referen
e): a token in the text that des
ribes the a
t of speaking. Aquote need not have a spee
h-verb.(
) A
tor (text-referen
e): a token in the text that refers to the avatar performing the a
t ofspeaking, and is either a dire
t referen
e (for example, �Julian�, �Anne�) or an anaphori
referen
e (�he�, �she�). A quote need not have an a
tor.(d) Speaker (semanti
-
on
ept): We assume that a list of avatars o

urring in the bookexists (using a method su
h as des
ribed in Se
tion on page 41 in Chapter on page 26).This �eld 
ontains the identi�er of the avatar responsible for the spee
h. Every quoteannotation must identify a speaker.2. Setting: identi�es tokens that indi
ate physi
al lo
ation, for example �hill�, �valley�, �bed-room�, or �town�. This 
ategory is de�ned in terms of the following quali�er:(a) Setting (trigger): a token that des
ribes the physi
al lo
ation of the 
urrent s
ene.3. Obje
t: identi�es tangible entities, for example furniture, �ora, and fauna. This 
ategoryis de�ned in terms of the following quali�er:(a) Obje
t (trigger): a token that des
ribes a tangible entity in the s
ene.4. Transition: identi�es behaviour of an entity in terms of entry or exit from the s
ene, andis de�ned in terms of the following quali�ers:(a) Transition (trigger): a token that indi
ates an entry or exit.



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 80They had it on the top of a hill, in a sloping �eld that looked down into a sunny <setting>valley</setting>.<avatar>Anne</avatar> didn't very mu
h like a big brown <obje
t>
ow</obje
t> who <transi-tion type=�INSIDE� subje
t=�
ow�>
ame</transition> up<relation type=�NEAR� subje
t=�
ow�obje
t=�her�>
lose<relation> and stared at her, but it <transition type=�OUTSIDE� sub-je
t=�it�>went</transition> away when <avatar>Daddy</avatar> told it to.Figure 4.21: Example annotated �
tion text, from the Famous Five 1: Five on a Treasure Islandby Enid Blyton (1942).(b) Subje
t (text-referen
e): a token referring to the entity performing the transition. Thistoken is either a dire
t referen
e or an anaphori
 referen
e. Ea
h transition is requiredto have an asso
iated subje
t to be valid.(
) Type (semanti
-
on
ept): des
ribes the type of transition o

urring. We de�ne twoalternatives for transition annotations, namely inside and outside. The former indi
atesthat the entity is moving into the s
ene, while the latter indi
ates that the entity isleaving the s
ene. Only one of these two is 
hosen for ea
h transition annotation.5. Relation: identi�es behaviour in terms of spatial relationships between two entities in thes
ene, and is de�ned in terms of the following quali�ers:(a) Relation (trigger): a token that indi
ates a spatial relation (for example �on�, �under�,or �behind�).(b) Subje
t (text-referen
e): a token referring to the entity to whi
h the relation applies.This token is either a dire
t referen
e or an anaphori
 referen
e. Ea
h relation is requiredto have an asso
iated subje
t to be valid.(
) Obje
t (text-referen
e): a token referring to the entity that serves as a referen
e pointfor the relation. This token is either a dire
t referen
e or an anaphori
 referen
e. Ea
hrelation is required to have an asso
iated obje
t to be valid.(d) Type (semanti
-
on
ept): des
ribes the type of spatial relation being des
ribed. We de-�ne the following semanti
 relations: near, inFrontOf , behind, toLeftOf , toRightOf ,
onTopOf , and below. Only one of these is 
hosen for ea
h relation annotation.An example of �
tion text annotated using these 
ategories is presented in Figure 4.21. The follow-ing se
tion des
ribes the levels of abstra
tion we in
lude in rules for every 
ategory of annotation.4.5.1 Rule stru
ture for di�erent annotation 
ategoriesWe design rules so that they 
ontain as many levels of abstra
tion as possible to support generaliza-tion. The general prin
iple we adopt for rule stru
ture is as follows: leaf nodes in the trees representindividual tokens from the input text. Multiple levels of abstra
tion are provided between the leafnodes and the root node. For example, tokens are abstra
ted using parts-of-spee
h (resulting ina parent node for ea
h token node). These nodes are grouped into phrases and senten
es, all ofwhi
h form des
endants of the root node.
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<quote speech-verb="said" actor="Meg" . . . .  >"Not so loud!"</quote> said Meg.(b) A
tor(Preserved nodes are highlighted in gray; answer nodes are indi
ated with dashed borders)Figure 4.22: Example rules for extra
ting spee
h-verbs and a
tors.We always mark the answer at a leaf node in a rule be
ause answers are generally tokens.Additional preserved nodes are in
luded when there is a relation between annotation tasks. Forexample, rules that lo
ate the a
tor of a quote mark nodes that indi
ate the spee
h-verb as pre-served, be
ause we believe that the spee
h-verb is fundamental in identifying the a
tor.Rule-stru
tures 
an also 
ontain non-textual data to 
ater for the semanti
 
on
epts. We devisethe method of in
luding a sub-tree below the root node that 
ontains a node for every availablesemanti
 
on
ept. Ea
h of these is preserved, but only one is marked as the answer. This ensuresthat no semanti
 
on
epts are removed during generalization.The advantage of hierar
hi
al rule-based learning is that rule-stru
tures 
an be 
ustomized forea
h 
ategory of annotation, without modifying the 
ore indu
tion pro
esses. The stru
tures weuse are des
ribed in the following se
tions.4.5.1.1 QuotesQuotes are identi�ed in �
tion text with a high level of a

ura
y (des
ribed in Chapter 3). As su
h,we 
onsider only the tasks of lo
ating the speaker for ea
h quote. Glass and Bangay (2007
) showin previous resear
h that this task 
an be a
hieved by �rst lo
ating the spee
h-verb of a quote.A link is then identi�ed between this token and another in the text that identi�es the a
tor ofthe verb. This token is then used to sele
t a speaker using a set of hand-
oded rules. The ruleindu
tion pro
ess removes the need for the intermediate steps of lo
ating spee
h-verbs and a
tors.However, we in
lude these annotation quali�ers as toy examples for demonstrating the abilities ofhierar
hi
al rule-based learning.A rule for identifying the spee
h-verb of a quote is 
onstru
ted for ea
h quote trigger. Tokensfrom one senten
e prior to the quote, the adjoining senten
e of the quote (if there is one), andfrom one senten
e after the quote form leaf nodes of the rule. The node 
ontaining the spee
h-verbis marked as the answer. Every token is abstra
ted using parts-of-spee
h and synta
ti
 fun
tion.Tokens are then grouped into phrases, and then into senten
es. A rule in the spee
h-verb 
ategoryis illustrated in Figure 4.22(a).
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(b) Context-model(Preserved nodes are highlighted in gray; Answer nodes are indi
ated with dashed borders)Figure 4.23: Example speaker rule and avatar 
ontext model.A rule for the a
tor of a quote is identi
al in stru
ture, as illustrated in Figure 4.22(b), withone addition: the token indi
ating the spee
h-verb is marked as preserved (to maintain the linkbetween the a
tor and the quote).The formulation of the speaker rule demonstrates the ability to in
lude non-text data in a rule.We make use of a 
ustom built 
ontext-model to provide a list of avatars that o

ur in a 
urrents
ene. An avatar identi�er is pla
ed at the front of this list every time an expli
it referen
e is madeto an avatar. The speaker quali�er identi�es whi
h avatar to 
hoose from the list for a spe
i�
quote. This makes possible the identi�
ation of speakers involved in two-way dialogue where thespeakers are not indi
ated expli
itly in the text.A rule for identifying the speaker is 
onstru
ted in the same manner as rules for spee
h-verbsand a
tors (but a
tor nodes are marked as preserved). These rules in
lude an additional sub-tree
ontaining nodes that serve as an index to the 
ontext model. An example rule and 
ontext modelis illustrated in Figure 4.23. Ea
h index node is marked as preserved to prevent its removal, andthe node indi
ating the 
orre
t index is marked as the answer.The 
ontext model potentially introdu
es error to the rule-
reation pro
ess. Assume that a ruleis 
reated for a quote that has avatarM as a speaker, but the 
ontext-model for this quote does not
ontain the identi�er for M . A possible reason for this is an indire
t referen
e to M that 
annotbe resolved 
orre
tly by the 
ontext model. However, a human resolved this referen
e during the
reation of the manual annotation. In this 
ase, no answer node 
an be highlighted during the
reation of the rule be
ause no M exists in the 
ontext model. Error introdu
ed in this mannerredu
es the lower bound of 
orre
t annotations 
reated by the base rule-set and subsequentlygeneralized rule-sets (by the Consisten
y Assumption on page 62).4.5.1.2 Settings and Obje
tsSetting and Obje
t annotations are similar in that they only require the identi�
ation of a singletoken as a trigger. We divide an annotated extra
t into tokens, and 
reate a rule for ea
h token.Expli
itly annotated tokens result in positive rules, and the rest result in negative rules.
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ated with dashed borders)Figure 4.24: Example Setting rule derived from an example from the Famous Five 1: Five on aTreasure Island by Enid Blyton (1942).An example rule for identifying Settings is illustrated in Figure 4.24. We believe that tokensbefore and after a positive example are important in dis
riminating whether a token belongs ina 
ategory. Empiri
al tests indi
ate that a window 
onsisting of four tokens before and afterthe trigger is su�
ient to ensure a lower bound of 100% 
orre
t mat
hes as per the Consisten
yAssumption 4.2 on page 62.We abstra
t the trigger token using hypernyms extra
ted from WordNet. All tokens are ab-stra
ted using parts-of-spee
h, and are grouped into senten
es. Preliminary tests indi
ate that rulegeneralization removes surrounding tokens, redu
ing the dis
rimination ability of ea
h rule in theset. We prevent this by inserting a preserved abstra
ted node (�
ontext-word�) as an an
estor toea
h token.We use the same stru
ture for rules 
reated from Obje
t annotations.4.5.1.3 Transitions and RelationsBoth Transition and Relation annotations identify triggers in their respe
tive 
ategories, a taskthat is identi
al to identi�
ation of Setting and Obje
t triggers. We use the same rule-stru
turefor lo
ating triggers in these 
ategories.A similar rule stru
ture for Setting triggers are used to identify the subje
t of a Transition orRelation annotation. The di�eren
e is that the trigger of the annotation is marked as preserved,indi
ating that there is a relationship between the subje
t token and the trigger of the annotation.Rules for the obje
t of a Relation annotation have the same stru
ture as those used to identify thesubje
t.Rules for identifying the type of a Relation are stru
tured in the manner illustrated by Figure4.25. To the right of the rule is a similar stru
ture to Setting rules, but the trigger of the Relationis marked as preserved. The left 
hild of the root node 
ontains type nodes with the de�nedsemanti
 
on
epts for the annotation 
ategory. All are marked as preserved, but only the node
orresponding to the type of the example annotation is marked as the answer. Transition rules aresimilar, ex
ept they only have inside and outside as 
hildren to the type node.
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(Preserved nodes are highlighted in gray; Answer nodes are indi
ated with dashed borders)Figure 4.25: Example Relation rule for annotation type (derived from an example from the FamousFive 1: Five on a Treasure Island by Enid Blyton (1942)).The order in whi
h the subje
t, obje
t, and type quali�ers are determined is not signi�
ant. ATransition or Relation annotation is only de�ned if these �elds have data, and so only positiveexamples are provided for subje
t, obje
t, or type, one for ea
h valid trigger.4.6 Analysis of hierar
hi
al rule-based learningWe examine the properties of hierar
hi
al rule-based learning to determine if it is e�e
tive inautomati
ally 
reating semanti
 annotations over �
tion text. These properties are investigated interms of the following questions:1. Is there a small set of patterns in English that identi�es a large portion of annotations in aparti
ular 
ategory?Hierar
hi
al rule-based learning is based on the premise that patterns exist for identifying
ategories of semanti
 annotation. We investigate if this is the 
ase, and whether hierar
hi
alrule-based learning is 
apable of indu
ing these patterns.2. Does the type of book make a di�eren
e to the types of patterns learned?Fi
tion books are written by di�erent authors, in di�erent genres and for di�erent audien
es.We investigate if the patterns indu
ed from one book are appli
able to di�erent books, andwhether examples from di�erent books enhan
e a model indu
ed by the learning system.3. How does the 
omposition of the example set impa
t the ability of the indu
ed rule-set in
reating 
orre
t annotations?Some annotation 
ategories 
ontain both negative and positive examples. We investigate therelationship between these di�erent types with respe
t to the 
reation of a

urate rule-sets.4. Can a

urate rule-sets be indu
ed for di�erent 
ategories of annotation using the same rule-stru
ture?One potential problem with hierar
hi
al rule-based learning is the need for 
ustomized rule-stru
tures for ea
h annotation 
ategory. We investigate if the same rule-stru
ture 
an beused to indu
e a

urate models for di�erent 
ategories.
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h Fog Ave. Words / Senten
eBook 1 A A 95.6 4.7 9.3Book 2 A A 96.2 5.2 10.5Book 3 B B 87.8 6.6 11.7Book 4 B B 88.1 6.6 12.0Book 5 C C 92.2 6.3 13.0Book 6 G G 83.6 7.8 13.4Book 7 C C 90.5 6.9 14.6Book 8 D D 82.8 8.6 16.7Book 9 D D 80.0 9.1 17.6Book 10 E E 77.7 9.6 18.4Book 11 E E 76.7 10.0 19.2Book 12 F E 76.3 10.4 20.4Book 13 F E 64.8 13.9 28.3Table 4.3: Breakdown of manually annotated �
tion text 
orpus.5. Can generalized rule-sets be a

urately indu
ed for di�erent annotation quali�ers?Annotations are de�ned in terms of triggers, text referen
es, and semanti
 
on
epts. Weinvestigate if hierar
hi
al rule-based learning is 
apable of automating the 
reation of ea
hquali�er type for di�erent 
ategories of annotation, without modifying the 
ore algorithm.6. Can hierar
hi
al rule-based learning be used to automate the 
reation of a

urate semanti
annotations?Assuming that patterns exist for identifying annotations, we investigate if indu
ed patternssupport automation in the following manner:(a) Can 50% (or less) of the total positive examples be used to identify more than 50% ofthe annotations in a 
ategory?(b) How 
an hierar
hi
al rule-based learning be used to redu
e the e�ort required to 
reatethe intermediate representation?This se
tion presents a suite of experiments and des
ribes a 
orpus of data used to answer thesequestions. Metri
s for measuring su

ess are de�ned, and possible sour
es of experimental errorare dis
ussed.4.6.1 Test 
orpusWe 
reate a 
orpus of �
tion that is manually annotated with the semanti
 
ategories identi�ed inSe
tion 4.5. Properties of the books used to 
onstru
t this 
orpus are listed in Table 4.3, indi
atingwhi
h books are from the same series and by the same author. The books are ordered a

ordingto average senten
e length and a

ording to readability metri
s, namely the Fog Index (Gunning,1952) (where low s
ores des
ribe �easy reading�), and the Fles
h Index (Fles
h, 1949) (where highs
ores des
ribe �easy reading�). We observe that the readability indi
es 
orrelate approximatelywith the average senten
e length. Books by the same author, and in the same series generally
luster together in terms of these readability s
ales.
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ts Transitions Relationsspee
h-verbs a
tors speakersBook 1 49662 1109 1109 1229 399 425 108 68Book 2 50011 1382 1382 1446 - - - -Book 3 113950 1169 1169 1666 - - - -Corpus 984036 9675 9674 13913 - - - -Table 4.4: Summary of annotation 
ategories over 
orpus.We 
onsider books to be of di�erent type if they have di�erent authors, and are not 
lusteredtogether in Table 4.3. In this respe
t, Book 1 is similar to Book 2, but is of a di�erent type toBook 3.All the books in Table 4.3 
ontain Quote annotations, but only Book 1 
ontains annotationsin the other 
ategories. The number of annotated examples in ea
h 
ategory is listed in Table 4.4,whi
h indi
ates Book 1, 2, and 3 be
ause these are examined individually in the experiments.4.6.2 Metri
sExperiments are 
ondu
ted by providing an extra
t sour
ed from the 
orpus of annotated books tothe rule-base learning system. A base rule-set is 
onstru
ted from a sub-set of the examples in theextra
t. The base rule-set is applied to the entire extra
t to determine the a

ura
y of the leastgeneralized rule-set over unseen data. When the number of rules in the base rule-set equals thetotal number of examples, the lower bound des
ribed in Consisten
y Assumption 4.2 on page 62is established for the book. The base rule-set is then generalized using the algorithms presented inSe
tion 4.4.5. The generalized rule-set is applied to the extra
t and the resulting annotations are
ompared with the original set.The above pro
ess is repeated using base rule-sets of in
reasing size, until all examples arein
luded in the base rule-set. The su

ess of ea
h merged rule-set provides an indi
ation of therelationship between the number of example annotations required and the su

ess of the generalizedrule-set.Some annotation quali�ers 
ontain both positive and negative examples (Quote: spee
h-verb,a
tor ; Setting: trigger ; Obje
t: trigger : Transition: trigger ; Relation: trigger). In these 
ases, wemeasure the su

ess with whi
h positive annotations are 
reated using:
• False positives: the number of positive annotations 
reated where they should not o

ur.The ideal 
ase is a value of zero for this metri
.
• False negatives: the number of positive annotations not 
reated where they should o

ur.The ideal 
ase is a value of zero for this metri
.
• Corre
t annotations: the sum of true positive and true negative annotations.
• Re
all : the ratio of 
orre
t annotations to the total number of annotations that should exist:

recall =
number of automatic, correct, positive annotations

number of manual, positive annotations
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 determines how well a rule-set identi�es positive annotations, but does not pro-vide an indi
ation of how well the rule-set avoids 
reating in
orre
t annotations. As su
h, itshould always be viewed in 
onjun
tion with pre
ision.
• Pre
ision: the ratio of 
orre
t annotations to the total number of annotations 
reated auto-mati
ally:

precision =
number of automatic, correct, positive annotations

number of automatic positive annotationsThis metri
 provides an indi
ation of the extent to whi
h non-
orre
t annotations are avoided.However, if the number of automati
 positive annotations is small, then the pre
ision ratio ishigh, and so this �gure might be de
eptive. As su
h, it should always be viewed in 
onjun
tionwith re
all.Some annotation quali�ers are 
on
erned only with positive examples be
ause ea
h annotation
ontains exa
tly one instan
e (Quote: speaker ; Transition: subje
t, type; Relation: subje
t, obje
t,type). In these 
ases, the number of false positives is irrelevant, and we are 
on
erned with ensuringthat the 
orre
t data is asso
iated with the annotation. We measure su

ess in terms of:
• A

ura
y : the ratio of 
orre
t annotations to the total number of manual annotations:

accuracy =
number of automatic, correct, annotations

number of manual annotations4.6.3 Sour
es of experimental errorWe a
knowledge the 
omplexity of the English language and its understanding as a sour
e of ex-perimental error. The manual annotations produ
ed for the 
orpus of test data are not guaranteedto 
onsistently follow a single interpretation, and as a result 
annot be evaluated as 
onsistently
orre
t. The possibility exists that identi
al examples are annotated di�erently, resulting in 
on-�i
ting rules. An example of su
h a s
enario is when the 
ontext-model is used for rule-
reation,des
ribed in Se
tion 4.5 on page 79. These 
ases are identi�ed by evaluating the base rule-set overthe example data, allowing a baseline to be established for annotation su

ess (by Consisten
yAssumption 4.2 on page 62).The variety of �
tion authors, genres, and target audien
es is another sour
e of experimentalerror. Examples in a single book need not 
orrelate with examples in other books, be
ause ofdi�erent writing styles. We propose a method for mitigating this sour
e of error that involvestraining a rule-set with examples sour
ed from a number of di�erent books.The stru
ture used to represent rules (de�ned in Se
tion 4.5) is also a sour
e of experimentalerror. The de�nition of these stru
tures is based on experien
e with the learning system, but arenot validated as being the optimum stru
tures for a
hieving generalized rules, or representing aspe
i�
 
ategory of annotation. However, we believe that only marginal improvements are possiblegiven tailored rule-stru
tures for ea
h 
ategory of annotation.The automati
ally 
reated surfa
e annotations that are used for obtaining stru
tural and syn-ta
ti
 properties of text are also a sour
e of error in these experiments (as a result of the smallportion of error in their 
reation, as des
ribed in Chapter 3). We believe that spe
ial purpose
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ed to handle these errors, mitigating the e�e
ts on overall a

ura
y, but potentiallyresulting in larger generalized rule-sets.4.6.4 ResultsThis se
tion des
ribes the individual experiments performed during the investigation of the ques-tions posed at the beginning of this se
tion.4.6.4.1 Analysis of generalized rule-set indu
tionThe experiments in this se
tion investigate whether a small set of patterns exist that identify alarge portion of annotations in a parti
ular 
ategory.Can hierar
hi
al rule-based learning indu
e a small set of patterns from annotatedexamples?We provide the learning system with a set of example annotations and indu
e generalized rule-sets from these examples. We evaluate the a

ura
y with whi
h annotations are 
reated usingthe indu
ed patterns. These experiments are 
ondu
ted for identifying the spee
h-verb, a
tor, andspeaker of a quote.We plot the size of the indu
ed rule-sets (and the number of 
orre
t annotations 
reated)against the in
reasing number of examples for spee
h-verb, a
tor, and speaker annotations inFigures 4.26(a), (
), and (e) respe
tively. In all three �gures, the size of the generalized rule-setis markedly smaller than the base rule-set (wherever the number of provided examples is greaterthan zero). This result indi
ates that a small set of patterns exist for these 
ategories, and thatthese patterns are su

essfully indu
ed using hierar
hi
al rule-based learning.The generalized rule-sets 
orre
tly annotate more examples than provided for training in allthree 
ategories. For example, a rule-set generalized from only 100 examples 
orre
tly annotatesnearly 1000 spee
h-verb examples. This indi
ates that the indu
ed patterns 
orre
tly annotateadditional examples in the text.The lower bound for a

ura
y, determined as the number of example annotations 
orre
tly
reated by the base rule-set, is also indi
ated in Figures 4.26(a), (
), and (e). The base rule-sets generated for spee
h-verbs and a
tors reprodu
e the example annotations pre
isely, but thebase rule-set for speakers produ
es a redu
ed number of 
orre
t annotations. This is attributedto weakness in the 
ontext model (des
ribed in Se
tion 4.5). However, 
onsisten
y 
he
ks onindu
ed rules redu
e this error, demonstrated in that more 
orre
t annotations are 
reated by thegeneralized rule-set than the base-rule set for any number of examples.This experiment demonstrates that a small set of patterns exists for identifying annotations,that these patterns are indu
ed using hierar
hi
al rule-based learning, and that generalized rule-sets
orre
tly reprodu
e the example annotations and 
reate further 
orre
t annotations.What is the nature of the indu
ed patterns?Given a generalized rule-set that is 
apable of reprodu
ing all the annotated examples 
orre
tly,we examine the nature of the indu
ed rules and their usage over the examples. The relative
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*(a) Most frequently used rule.
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context-sentence

sentence-part

noun-phrase verb-phrase other-phrase

pronoun verb punctuat ion

<speech-verb> *

ch

ch

ch ch

*
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* **(b) Se
ond most frequently used rule.
root

context-sentence

sentence

context-sentence

sentence-part

verb-phrase noun-phrase other-phrase

verb proper_noun *

<speech-verb>

ch

ch

ch

Julian

ch

* ** (
) Third most frequently used rule.Figure 4.27: Illustrations of the three most frequently used generalized rules for lo
ating spee
h-verb.distributions of generalized rule-use for spee
h-verb, a
tor, and speaker are presented in Figures4.26(b), (d), and (f) respe
tively. In the 
ase of the spee
h-verb a single rule 
orre
tly annotates17.57% of the entire example set, while the top three rules are responsible for 
orre
tly annotating32.62% of the entire example set. This shows that patterns summarize large portions of the exampleannotations.The top three rules from the indu
ed rule-set for spee
h-verb, are illustrated in Figure 4.27. Themost frequently used rule indi
ates a quote followed by the spee
h-verb, whi
h must be followedby a proper noun. The se
ond most 
ommon rule is similar, but indi
ates that a pronoun shouldpre
ede the spee
h-verb. The third most 
ommon rule is similar to the �rst, but is more spe
i�
, inthat it indi
ates that �Julian� should be the token following the spee
h-verb. While appli
able tothe book over whi
h the rule was indu
ed, it is not appli
able to other books that do not 
ontaina 
hara
ter named �Julian�. This suggests a question regarding the appli
ability of an indu
edrule-set over di�erent books, as examined in Se
tion 4.6.4.2.Does the order in whi
h examples are presented in�uen
e the a

ura
y of the gener-alized rule-set?We investigate whether the order in whi
h examples are provided a�e
ts the a

ura
y of the indu
edgeneralized rule-set by providing the learning system with a reversed set of example annotations.The number of 
orre
t speaker annotations using both a non-reversed and a reversed set of examplesis plotted in Figure 4.28. There is a di�eren
e in the size and a

ura
y of the generalized rule-sets,but these di�eren
es are minimal.4.6.4.2 The e�e
t of the book type on pattern indu
tionThis experiment investigates whether the type of book in�uen
es the indu
ed rule-sets, and theappli
ability of rule-sets over di�erent books.
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hi
al rule-based learning 
reate a

urate rule-sets from di�erent types ofbooks?We answer this question by indu
ing rule-sets from books of similar and di�erent types for iden-tifying the speaker. Book 1 and Book 2 are of similar type, while Book 3 is of a di�erent type toBooks 1 and 2. We evaluate the indu
ed rule-sets over the same books.The su

ess of applying a base rule-set and generalized rule-set to the same book is plottedagainst the size of the example set in Figures 4.29(a), (e), and (i). Corre
t annotations are 
reatedfor all three books, indi
ating that for these 
ases hierar
hi
al rule-based learning is e�e
tive overdi�erent types of books.Can the rule-set learned over one book be used to 
reate a

urate annotations indi�erent books?To answer this question, we indu
e rule-sets using example speaker annotations from one book, andapply these rule-sets over other books. Book 1, Book 2, and Book 3 are used for this experiment,
omparing the appli
ation of rule-sets to similar books (Book 1 and Book 2) and di�erent books(Book 1 and Book 3).We are primarily interested in the number of 
orre
t annotations 
reated by the generalizedrule-set. The su

ess (the 
urve labeled as �Corre
t (generalized rule-set)�) of rule-sets from Book 1applied to Book 2 is plotted in Figure 4.29(b), while Book 2 applied to Book 1 is plotted in Figure4.29(d). In both 
ases, 
orre
t annotations are 
reated in the other book, where the use of only 100rules from one book results in a large number of 
orre
t annotations in the other book. Rule-sets
reated from Book 1 or 2 applied to Book 3 (Figure 4.29(
) and (f)), and Book 3 applied to Book1 or 2 (Figure 4.29(g) and (h)), result in markedly fewer 
orre
t annotations. This demonstratesthat a rule-set from one book 
reates a

urate annotations in a di�erent book of the same type.
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ation of a rule-set learned from di�erent books applied to books of di�erenttype.The same does not hold for books of a di�erent type. We believe this is due to di�erent writingstyles used by di�erent authors.Does the a

ura
y of a rule-set improve over di�erent books if examples from di�erentbooks are used for training?We provide the learning system with example speaker annotations from the three books, usingall the examples from Book 1 �rst, then adding examples from Book 2 and Book 3 in su

ession.We 
hart the number of 
orre
t annotations 
reated by ea
h generalized rule-set over ea
h bookin Figure 4.30. As the full set of examples are used from Book 1 and Book 2, so the number of
orre
t examples identi�ed in these books rea
hes a maximum (whi
h explains the leveling outof the 
urves for these books). There is a marked in
rease in the number of generalized rulesas examples are added from Book 3. This further substantiates the di�eren
es in type betweenthis book and Books 1 and 2. This demonstrates that di�erent books result in rules that are notne
essarily appli
able to one another.On
e examples from all three books are used, annotations are 
reated 
orre
tly in all threebooks. This demonstrates that rule-sets improve in a

ura
y over di�erent books if examples areused from di�erent books. This is signi�
ant be
ause it shows that a single model 
an be 
reatedfor annotating di�erent books given a variety of examples.The number of generalized rules resulting from examples from all three books (1176) is smallerthan the total number of generalized rules 
reated individually for ea
h book (194 (Book 1) +

251 (Book 2) + 747 (Book 3) = 1192). This indi
ates that some patterns exist that are 
ommonbetween the three books, but whi
h are not indu
ed from ea
h individual book.
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False negativesFigure 4.31: Appli
ation of a rule-set learned from di�erent books applied to a large 
orpus ofbooks of di�erent type.How appli
able is an indu
ed rule-set to a large 
orpus of �
tion?We investigate whether generalized rules apply to a large 
orpus of �
tion 
ontaining 13 books ofdi�erent type. We provide the learning system with example speaker annotations from Books 1,2, and 3, using all the examples from Book 1 �rst, then adding examples from Book 2 and Book3 in su

ession. We apply the generalized set to the 
orpus of 13 books.The number of 
orre
t annotations is plotted against the number of training examples in Figure4.31. After the addition of only 100 examples from Book 1, the number of 
orre
t annotations
reated ex
eeds 4000 (out of 13 913) over the larger 
orpus. This indi
ates that rules indu
ed fromjust one book 
ater for annotations in many di�ering types of books.We believe that some indu
ed patterns represent fundamental rules in the English language,whi
h explains their appli
ability over the large 
orpus of �
tion.4.6.4.3 Composition of the example setThere are only 399 annotated Settings and 425 annotated Obje
ts in Book 1. If a rule is 
reatedfor ea
h token in the book, the number of positive training examples a

ounts for less than 0.01%of the total example set (49 662 examples). The experiments in this se
tion investigate the e�e
tthat positive and negative examples have on an indu
ed rule-set.Can an a

urate generalized rule-set be 
reated from only positive examples?We provide the learning system with an example set 
ontaining only positive annotations, andevaluate the indu
ed rule-set over the example set 
ontaining positive and negative examples. Weuse the Setting and Obje
t annotation 
ategories for these experiments.The number of false positives, false negatives, pre
ision, and re
all are plotted against thenumber of training examples in Figures 4.32(a) and (b) for Setting and Obje
t annotations. As
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ation for Setting and Obje
t annotations, using only positiveexamples.the number of positive examples in
reases, the number of false negatives de
reases. The numberof false positives in
reases sharply using less than 50 positive annotations, indi
ating that negativeexamples are being erroneously annotated in these 
ategories. This demonstrates that positiveexamples alone are not su�
ient to 
reate 
onsistent annotations, highlighting the need for negativeexamples.What quantity of negative examples is required to redu
e the number of false positives?We provide the learning system with an example set 
ontaining all positive examples and in
reasingnumbers of negative examples. A 
ontinuation from the 
harts presented in Figures 4.32(a) and(b) are presented in Figures 4.33(a) and (b) with in
reasing numbers of negative examples. Theaddition of only a small number of negative examples (approximately 150) results in a sharpde
rease in false positives. It is at this point that the negative rules be
ome su�
iently generalizedto apply to many negative examples. In total there are 49 263 negative Setting examples, and49 237 negative Obje
t examples. The number of false positives are redu
ed to less than 50given approximately 400 negative examples for both 
ategories. This demonstrates that far fewernegative examples are required to prevent false positives than what is available.What e�e
t does the in
lusion of both positive and negative examples have on a gen-eralized rule-set?The question remains as to whether positive and negative examples impa
t one another when usedsimultaneously to 
reate a generalized rule-set. We provide the learning system with an exampleset 
ontaining positive and negative annotations, and evaluate the generalized rule-set over theexample set 
ontaining all positive and negative examples.The number of false positives and negatives, along with pre
ision and re
all, are plotted inFigures 4.34(a) and (b). The number of false positives and false negatives does not de
reasehomogeneously with the addition of examples. For instan
e, between approximately 25 and 120examples there is a marked redu
tion in the number of false negatives, due to the in
lusion of ageneral rule that e�e
tively identi�es positive annotations. However, this rule does not dis
riminate
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ation for Setting and Obje
t annotations, using �xed positiveexamples and in
reasing negative examples.
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tFigure 4.34: Training and appli
ation for Setting and Obje
t annotations, using in
reasing positiveand negative examples.negative examples, resulting in an in
reased number of false positives. This is 
orre
ted when anegative rule is indu
ed that 
ounters the positive rule, explaining the sharp de
rease in falsepositives where approximately 120 examples are provided.The dis
rete nature of the rule-based learning system is demonstrated in these experiments,spe
i�
ally that single rules have the ability to dramati
ally alter the a

ura
y of the generalizedrule-set. The results be
ome more stable (smaller jumps in false positive or false negatives) asmore example rules are provided for training.This experiment demonstrates that training with both positive and negative examples produ
eserrati
 quantities of false positives and negatives, but less so as further examples are provided.4.6.4.4 Rule stru
ture for di�erent annotation 
ategoriesThe 
harts for Setting and Obje
t in Figures 4.34(a) and (b) exhibit similar 
hara
teristi
s. Inboth 
ases a generalized rule-set smaller than the base rule-set is found that lowers the number
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ation for Transition and Relation triggers using in
reasing positiveand negative examples.of false positives and false negatives. This demonstrates that patterns are indu
ed in di�erent
ategories of annotation using the same rule-stru
ture (rules for Setting and Obje
t have identi
alstru
tures, as shown in Se
tion 4.5). We investigate this observation further in this se
tion.Similar to Setting and Obje
t annotations, Transition and Relation annotations also identifytriggers in the text, and we investigate if the same pattern stru
tures used for Setting and Obje
ts
an be used for identifying Transition and Relation triggers.Can a

urate patterns be indu
ed for di�erent 
ategories of annotation using the samerule stru
ture?We provide the learning system with an example set 
ontaining positive and negative annotationsfor identifying Transition and Relation triggers, and evaluate the indu
ed rule-set over the exampleset 
ontaining all positive and negative examples.The number of false positives and negatives (along with pre
ision and re
all) are plotted inFigures 4.35(a) and (b) for Transition and Relation triggers. A generalized rule-set is alwaysprodu
ed that is smaller than the base rule-set (for Subje
t, Obje
t, Transition, and Relation).The number of false positives follows a similar trend, beginning with high numbers, but redu
ingsharply after enough negative rules are added.The indu
ed rule-sets and their ability to 
reate annotations in four di�erent 
ategories demon-strate that the same rule stru
ture 
an be used for di�erent 
ategories of annotation. This meansthat 
ustom rule-stru
tures need not be designed every time a new annotation 
ategory is de�ned.4.6.4.5 Rule-set indu
tion for di�erent annotation quali�ersSe
tions 4.6.4.3 and 4.6.4.4 provide eviden
e indi
ating that hierar
hi
al rule-based learning ise�e
tive for identifying triggers in �
tion text. We investigate whether a

urate rule-sets areindu
ed for text-referen
es and semanti
 
on
epts.We use Transition and Relation annotations for these experiments be
ause both 
ategoriesin
lude a text-referen
e quali�er (subje
t and obje
t) and both require a semanti
-
on
ept to beasso
iated with the annotation (type). Every Transition and Relation annotation must have exa
tly



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 98
 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100
 0

 0.2

 0.4

 0.6

 0.8

 1

N
u

m
b

e
r 

o
f 

e
x
a

m
p

le
s
 c

o
rr

e
c
tl
y
 a

n
n

o
ta

te
d

(N
u

m
b

e
r 

o
f 

ru
le

s
)

A
c
c
u

ra
c
y

Number of examples in training set

Base rule-set size
Generalized rule-set size

False negatives

Correct
Accuracy(a) Transition  0

 10

 20

 30

 40

 50

 60

 0  10  20  30  40  50  60
 0

 0.2

 0.4

 0.6

 0.8

 1

N
u

m
b

e
r 

o
f 

e
x
a

m
p

le
s
 c

o
rr

e
c
tl
y
 a

n
n

o
ta

te
d

(N
u

m
b

e
r 

o
f 

ru
le

s
)

A
c
c
u

ra
c
y

Number of examples in training set

Base rule-set size
Generalized rule-set size

False negatives

Correct
Accuracy(b) RelationFigure 4.36: Training and appli
ation for the subje
t of Transition and Relation annotations.one de�ned subje
t, obje
t, and type. This means that there are no negative examples for thesequali�ers.Can patterns be indu
ed for identifying text-referen
es?We provide the learning system with example Transition or Relation annotations, ea
h of whi
hhas a de�ned subje
t or obje
t. We evaluate the a

ura
y of the text-referen
es produ
ed by theindu
ed rule-set.A

ura
y is plotted against the number of examples used for training in Figures 4.36(a) and (b)for the subje
t of Transitions and Relations respe
tively (�A

ura
y� and �Corre
t� are equivalentin these graphs, and result in overlapping 
urves). In both 
ases a generalized rule-set is 
reated
ontaining fewer rules than the base rule-set. The generalized rule-set 
reates a greater number of
orre
t annotations than examples provided, given enough examples. Transitions require greaterthan 30 examples, while Relations require greater than 10 examples (indi
ated by the divergen
ebetween the Corre
t/A

ura
y 
urves and the Base rule-set 
urve).A

ura
y is plotted against the number of training examples in Figure 4.37 for the obje
t ofRelation annotations. The generalized rule-set is smaller than the base rule-set, and given enoughtraining examples, 
reates more 
orre
t annotations than examples provided.These experiments demonstrate that generalized patterns are indu
ed for text-referen
e quali-�ers that result in the 
reation of a

urate annotations.Can patterns be indu
ed for asso
iating semanti
-
on
epts to annotations?We provide the learning system with example Transition or Relation annotations, ea
h of whi
hhas a de�ned type. We evaluate the a

ura
y of the semanti
 
on
ept identi�ed for ea
h annotationprodu
ed by the indu
ed rule-sets.A

ura
y is plotted against the number of examples used for training in Figures 4.38(a) and(b) for the type quali�er of Transition and Relation annotations respe
tively. Generalized rule-setsare indu
ed for the type �eld in both the Transition and Relation 
ategory, and a greater numberof 
orre
t annotations are 
reated using the generalized rule-set than the total number of examples
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ation for the type of Transition and Relation annotations usingin
reasing positive negative examples.provided. For example, using only 10 examples, approximately 35 
orre
t type annotations are
reated in the Transition 
ategory.These experiments demonstrate that patterns are indu
ed for 
reating a

urate semanti
-
on
epts. This is a signi�
ant 
ontribution in the �eld of information extra
tion, be
ause it allowssemanti
 data to be asso
iated with a text-based annotation without an external knowledge-base.These results indi
ate that the formulation of the rule stru
tures is �exible enough to be augmentedwith non-textual data, and that the generalization pro
ess provides for the indu
tion of patternseven for non-text data.Can a

urate patterns be indu
ed for annotation quali�ers in di�erent 
ategories usingthe same rule stru
ture?The rule stru
tures used for subje
t and obje
t patterns in the Transition and Relation 
ategoriesare identi
al. The su

essful indu
tion of generalized rule-sets that 
reate 
orre
t annotations inboth 
ategories (shown in Figures 4.36(a) and (b)) demonstrates that the rule-stru
ture need notbe modi�ed for di�erent 
ategories of text-referen
e. An identi
al rule stru
ture is used for indu
ing



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 100Annotation Quali�er PositiveAnnotations PositiveExamples Negativeexamples Pre
ision Re
allQuote spee
h-verb 1109 500 60 97.14% 89.62%a
tor 1109 500 60 97.27% 90.94%speaker 1229 500 - - 76.92%Setting trigger 399 195 195 70.27% 52.13%Obje
t trigger 425 210 210 67.06% 53.64%Transition trigger 108 54 250 96.55% 52.83%subje
t 108 54 - - 56.60%type 108 54 - - 76.41%Relation trigger 68 34 250 50.0%. 51.4%subje
t 68 34 - - 51.4%obje
t 68 34 - - 57.3%type 68 34 - - 77.9%Table 4.5: Summary of results when training with 50% or less of the positive training examples.patterns for type quali�ers of Transitions and Relations, demonstrating that the same applies forsemanti
 
on
epts (shown in Figures 4.38(a) and (b)).The impli
ation of these results is that the addition of 
ategories of annotation 
ontaining text-referen
es or semanti
 
on
epts need not require the 
ustom 
reation of rule-stru
tures for thesequali�ers.4.6.4.6 Automati
 
reation of semanti
 annotationsAll previous experiments verify that hierar
hi
al rule-based learning indu
es patterns from exampleannotations, and substantial eviden
e is provided indi
ating that generalized rule-sets produ
egreater number of 
orre
t annotations than the number of examples provided. We investigatewhether the automati
 
reation of annotations is truly supported in ea
h semanti
 annotation
ategory for the �
tion-to-animation task.Can hierar
hi
al rule-based learning be used to automati
ally 
reate semanti
 anno-tations?The 
reation of positive examples is the most arduous task in 
reating manual examples for training(be
ause negative examples need not be annotated). We 
onsider automation to be su

essful ifthe provision of 50% (or less) of the total positive annotations results in the 
reation of more than50% of the total number of annotations in the book.We indu
e a rule-set using 50% or less of the positive annotations in ea
h semanti
 annotation
ategory. The pre
ision and re
all for every 
ategory is listed in Table 4.5 using the indu
ed rule-set. A re
all of greater than 50% is a
hieved in all 
ategories, demonstrating that the indu
edrule-sets produ
e additional 
orre
t annotations.The 
reation of triggers is the most di�
ult task, indi
ated by the low re
all levels for thisquali�er in all 
ategories. However, highly e�e
tive rule-sets are indu
ed in some 
ategories, forexample in identifying the speaker of a quote, and the type of a Transition or Relation. Re
allrates are highest where the number of examples available is large (demonstrated by the Quote



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 101annotations), and we believe that higher re
all levels are possible should the 
orpus be enlargedwith examples in the Setting, Obje
t, Transition, and Relation 
ategories.These results indi
ate that the 
reation of semanti
 annotations is automated using hierar
hi
alrule-based learning. We spe
ulate that a human annotator would not 
reate 50% of the totalpositive annotations before training the learning system. We develop a boot-strapping methodthat uses the learning system to redu
e the e�ort in 
reating annotations.A boot-strapping method for redu
ing e�ort in the 
reation of semanti
 annotationsThe question remains as to the pra
ti
ality of hierar
hi
al rule-based learning for automating the
reation of semanti
 annotations. The manual 
reation of su�
ient example data for indu
inga

urate rule-sets potentially requires signi�
ant e�ort (for example, in 
reating 50% of the totalnumber of positive examples).We propose a boot-strapping method that guides the rule-set 
reation pro
ess through an iter-ative validation of automati
ally produ
ed results. We believe that validating a sub-set of anno-tations requires less manual e�ort than reading the original text and expli
itly 
reating examples.The boot-strapping pro
ess begins with the manual 
reation of a small set of positive annotationsin a parti
ular 
ategory. These are presented as examples to the rule-based learning system alongwith a small set of negative examples (that are automati
ally obtained from the annotated ex-tra
t). A rule-set is indu
ed and applied to the entire book, the result of whi
h is a larger numberof annotated examples, some of whi
h are 
orre
t, but most of whi
h are likely to be false positives(as demonstrated in Se
tion 4.6.4.3). An annotator reviews the automati
ally 
reated annotationsby sele
ting and marking some annotations as 
orre
t or in
orre
t. A new rule-set is 
reated usingthe validated positive and negative examples. This rule-set 
reates more a

urate annotations thanthe previous rule-set, and the pro
ess of 
orre
tion is repeated until the annotator is satis�ed witha set of annotations 
reated by the system.We demonstrate the validity of the boot-strapping method using the Obje
t annotation 
at-egory. The number of true positives and false positives is re
orded ea
h time the generalizedrule-set is applied to the �
tion text. The a
tions taken by a human annotator in 
reating Obje
tannotations are summarized in Table 4.6. The human initially 
reates 15 positive annotations(
orresponding to one 
hapter of the book). The generalized rule-set 
reated from these examplesresults in a total of 254 annotations, 41 of whi
h are 
orre
t. The annotator reviews these, andsele
ts 10 erroneous annotations and 5 additional 
orre
t ones, and retrains the model. This resultsin 337 annotations, of whi
h 10 are sele
ted as being in
orre
t (more 
ould be sele
ted dependingon the energy or time available to the annotator). The pro
ess repeats until the annotator issatis�ed or runs out of time. The last set 
reated 
ontains 42 positive annotations and only 32false positives. The annotator expli
itly 
reates only 15 positive annotations, and validates only40 automati
ally generated annotations.We observe that automati
ally identi�ed annotations help the annotator re�ne his or her ownidea of whi
h fragments of text belong in a 
ertain 
ategory. During the experiment summarized inTable 4.6, additional annotations are suggested by the learning system that are 
orre
t, but weremissed during the 
reation of the manually annotated 
orpus. In this respe
t, the results presentedin Table 4.6 unfairly penalize false positives, where these a
tually represent in
onsisten
ies in theoriginal test data.



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 102Human e�ort AutomationPositiveannotationssele
ted False positivesdesele
ted True positivespresented(425 total) False positivespresentedHuman 
reates 15 positive annotations; trains:15 0 41 213Human sele
ts 10 negative examples, and an additional 5 positive; trains:20 10 69 268Human sele
ts 10 negative examples; trains:20 20 27 15Human sele
ts 5 positive examples; trains:25 20 33 15Human sele
ts 5 positive examples; trains:30 20 72 159Human sele
ts 5 negative examples: trains:30 25 42 32Table 4.6: Eviden
e in support of a boot-strapping pro
ess using the Obje
t annotation 
ategory.4.6.5 Summary of �ndingsThe experiments presented in Se
tion 4.6.4 provide insight into the 
hara
teristi
s of the rule-basedlearning system, with respe
t to the questions posed at the beginning of this se
tion:1. A small set of patterns exist in natural language that 
orre
tly identi�es a large portion ofannotations in a parti
ular 
ategory. These patterns are indu
ed using hierar
hi
al rule-basedlearning.2. The type of book makes a di�eren
e to the number and su

ess of patterns indu
ed by thelearning system. Rules indu
ed from one book are appli
able to books of a similar type, butless so for books of di�erent type. However, in
luding examples from di�erent types of booksin
reases the a

ura
y of the indu
ed rule-set over di�erent books.3. Example sets 
ontaining both positive and negative examples produ
e the best balan
e be-tween 
orre
t annotation 
reation, and false positive elimination. However, only a smallsub-set of negative examples is needed to remove the majority of false positives.4. A

urate rule-sets are indu
ed for di�erent 
ategories of annotation using the same rule-stru
ture.5. A

urate rule-sets are indu
ed for di�erent annotation quali�ers (in
luding text-referen
esand semanti
-
on
epts) using the same rule-stru
ture.6. Hierar
hi
al rule-based learning automates the 
reation of semanti
 annotations. Spe
i�
ally:(a) 50% of the total examples are generalized into a rule-set that identi�es more than 50%of the annotations in that 
ategory.(b) Hierar
hi
al rule-based learning redu
es the e�ort of 
reating annotations through theuse of a boot-strapping te
hnique.
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lusionThis 
hapter presents hierar
hi
al rule-based learning as a me
hanism for automati
ally 
reatingannotations over �
tion text. This learning system indu
es and generalizes patterns from exampleannotations provided by a human, and applies these patterns to text to a

urately identify addi-tional annotations. Patterns are stru
tured as trees that abstra
t input text on di�erent levels.We present algorithms that automati
ally 
reate these trees, generalize them, and apply them toexamples in the 
reation of new annotations.Hierar
hi
al rule-based learning supports the automati
 
reation of annotations in �
tion text.With parti
ular referen
e to the problems listed in Se
tion 4.1.1, we 
on
lude the following:1. Hierar
hi
al rule-based learning indu
es patterns that re�e
t individual human dis
retionregarding the annotation task. Our automated me
hanism 
an be re�ned to mat
h a human'sannotation style, and produ
e similar annotations to the examples provided.(a) Hierar
hi
al rules express patterns for identifying annotations, using both stru
turaland synta
ti
 properties of text. These provide an e�e
tive me
hanism for expressingpatterns in the English language that identify annotations in �
tion text.(b) A model for 
reating annotations is represented using a set of rules. A rule-set en
ap-sulates a wide range of s
enarios pe
uliar to a parti
ular 
ategory of annotation. Thisis signi�
ant in that both 
ommon and rare s
enarios 
an be a

ommodated in a singlemodel.(
) The tree-stru
ture of a rule provides for the abstra
tion of 
on
epts to 
reate generalizedrules. Generalized rules provide for the appli
ation of a model to unseen text in the
reation of a

urate annotations.(d) Rules generalized using our algorithms are 
onsistent (indi
ate the same answers as theoriginal rules, mat
h with the two rules that result in its 
reation, and do not 
on�i
twith other rules). This means annotation ability is not lost during the generalizationpro
ess.(e) Tree mat
hing determines when a rule applies to a portion of text (and 
reate a 
orre-sponding annotation). This is made possible by the use of the same tree stru
ture forrepresenting rules and unseen text.(f) Generalized rule-sets never produ
e fewer annotations than non-generalized rule-sets.The signi�
an
e is that additional 
orre
t annotations are 
reated by a generalized rule-set, supporting automation.2. Hierar
hi
al rule-based learning indu
es models for multiple 
ategories of annotation. Thismeans that the 
reation of a ri
h intermediate representation (
ontaining many annotation
ategories) is automated using this te
hnique.(a) Rule-stru
tures 
an be tailored for di�erent 
ategories of annotation. The 
ore rule-set
reation, generalization, and appli
ation pro
esses are independent of the rule-stru
ture.Further annotation 
ategories 
an be de�ned without modifying the fundamental algo-rithms.



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 104(b) Rule-stru
tures need not be 
ustomized every time a new annotation 
ategory is de�ned.Stru
tures exist for su

essfully deriving rules in multiple 
ategories.3. Hierar
hi
al rule-based learning quali�es annotations with text-referen
es and semanti
 
on-
epts. This means that annotations are automati
ally parametrized appropriately for futureinterpretation pro
esses.(a) Tree-stru
tures provide for the 
reation of rules that identify quali�ers for an annota-tion. The impli
ation is that patterns indu
ed by the learning system re�e
t stru
tural,relational and semanti
 patterns in the English language.(b) Rules are e�e
tive in asso
iating semanti
 
on
epts to annotations without the use ofan external knowledge-base. This removes the need for subsequent dis
ourse pro
essingin 
ertain 
ategories of annotation.A

urate models are indu
ed over di�erent types of �
tion text using hierar
hi
al rule-based learn-ing. Some indu
ed patterns are appli
able a
ross di�erent books, but better quality models useexamples sour
ed from a variety of book types. The boot-strapping pro
ess that uses hierar
hi
alrule-based learning automates the 
reation of annotations, and also redu
es the repetitive taskof 
reating examples for training a model. We 
on
lude that the 
reation of the intermediaterepresentation in the form of annotated �
tion text is automated using these methods.A model indu
ed using hierar
hi
al rule-based learning 
an potentially be 
onsidered a detailedknowledge-base, whi
h 
on�i
ts with our desired knowledge-poor paradigm for a
hieving the �
tion-to-animation task. However, knowledge-
entri
 systems use manually pre-
onstru
ted bases ofspe
ialized knowledge to guide the text analysis pro
ess (Coyne and Sproat, 2001; Lu and Zhang,2002; Ma, 2006). Our te
hnique is knowledge-poor in that it makes no prior assumption (in termsof en
oded knowledge) about how to perform the task, but rather indu
es assumptions from aspe
i�
 human. We believe that this distin
tion is in keeping with the knowledge-poor paradigmdes
ribed in Chapter 1.Hierar
hi
al rule-based learning resembles existing te
hniques in its ability to learn models fordi�erent 
ategories (although we 
annot 
ompare any two of these systems dire
tly, as des
ribedin Se
tion 4.2). Similar to existing information extra
tion te
hniques, our method exhibits a widerange of re
all levels, depending on the 
ategory of annotation.The resear
h presented in this 
hapter 
ontributes innovative work with respe
t to the text-to-graphi
s and information extra
tion domains:
• The use of a pattern-based information extra
tion te
hnique for 
reating semanti
 anno-tations is novel in the text-to-graphi
s �eld. The only other text-to-graphi
s system thatemploys information extra
tion te
hniques is CarSim, whi
h uses statisti
al ma
hine learn-ing algorithms (Johansson et al., 2005).
• We de�ne a set of semanti
 annotation 
ategories for identifying visual des
riptions in �
tiontext. The formalization of these 
ategories 
ontributes to the text-to-graphi
s domain in thatthey are the �rst that are formally spe
i�ed for handling �
tion text.
• We 
ontribute to the domain of information extra
tion by demonstrating that tree-stru
turesare e�e
tive for representing, abstra
ting, and generalizing patterns in free text.



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 105
• We provide two innovative methods for generalizing patterns in natural language, usinggeneral and spe
ial purpose childSubSeq wild-
ards.
• The ability to indu
e models regarding di�erent quali�ers of annotations su
h as triggers,text-referen
es, and semanti
 
on
epts 
ontributes to the �eld of information extra
tion. Theability to asso
iate semanti
 data (without the use of a knowledge-base) and thus perform atype of dis
ourse analysis is a signi�
ant 
ontribution.Future work in this area in
ludes the extension of the 
orpus of annotated �
tion text, in terms ofsize and in terms of the 
ategories of annotation 
reated over the 
orpus.



Chapter 5Constraint-based quanti�
ation ofbehaviourThis 
hapter investigates the problem of quantifying behaviour in a virtual environment from a
onstraint-optimization perspe
tive (des
ribed in Se
tion 5.1). The use of a 
onstraint optimizationmethod is motivated in Se
tion 5.2 by 
omparing alternative approa
hes to this problem. Wepresent an innovative optimization te
hnique that lo
ates solutions (or solution approximations)to 
onstraint systems de�ned over 
ontiguous intervals of time. This te
hnique is based on intervalarithmeti
, a brief overview of whi
h is provided in Se
tion 5.3. We develop an interval-basedoptimization approa
h for lo
ating solutions (or solution approximations) to 
onstraint systemsin Se
tion 5.4. Properties of the interval-based optimization approa
h are investigated using asuite of ben
hmarks in Se
tion 5.5. We present 
on
lusions and 
ontributions resulting from ourinnovations in Se
tion 5.6.5.1 Introdu
tion5.1.1 Problem statementFi
tion books des
ribe the set of entities that exist in an environment and the behaviour of theseentities. We use the term behaviour to refer to the positioning of an entity and its motion withinan environment. Behaviour is identi�ed in �
tion text using 
ategories of annotation that sug-gest spatial 
onstraints between entities (further details on interpreting annotations are providedin Chapter 6). We investigate the problem of automati
ally quantifying behaviour in a virtualenvironment so that it 
onforms to spatial 
onstraints pres
ribed by annotations. In parti
ular:1. We de�ne virtual environments in terms of spa
e and time, whi
h introdu
es the problemof quantifying behaviour that 
onforms to 
onstraints spe
i�ed over 
ontiguous intervals oftime.2. An animated �lm is 
onstru
ted as a sequen
e of 
lips, potentially �lmed out of order. Weinvestigate the quanti�
ation of behaviour at any time-instant in a virtual environment,106
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h like a big brown 
ow who 
ame up 
lose and stared at her, but it went away when Daddytold it to....He tiptoed by him to the table behind his un
le's 
hair.Figure 5.1: Example �
tion text indi
ating spatial positioning and behaviour from the FamousFive 1: Five on a Treasure Island by Enid Blyton (1942).without simulating every instant of time in an in
remental fashion until the desired state for�lming is rea
hed.3. We believe that des
riptions in �
tion text imply under-
onstrained behaviour, the quanti�-
ation of whi
h involves a sear
h for valid options. We investigate the problem of sear
hing,while dire
ting the sear
h towards valid behaviour.4. We spe
ulate that the more 
omplex the behaviour in the s
ene, the more di�
ult the taskof quantifying the behaviour be
omes. This translates to an in
reased sear
h time. Weinvestigate the problem of providing behaviour 
on�gurations that only approximate thedesired behaviour, but whi
h are derived in spite of bounds on 
omputation time.5. We anti
ipate that annotations in �
tion books are potentially �awed, either be
ause ofin
onsisten
ies in the original narrative or be
ause of in
onsisten
y in manual or automatedannotation 
reation. Flawed annotations potentially translate to 
on�i
ting 
onstraints, andwe investigate the problem of approximating behaviour where su
h 
on�i
ts o

ur.We investigate the above problems under the assumption that a pro
ess exists for translatingannotations into 
onstraints (see Chapter 6 for this aspe
t of the problem). This 
hapter is 
on-
erned only with 
onstraint optimization as a method for identifying pre
ise numeri
al solutionsthat quantify visual behaviour.5.1.2 Problem formulationDes
riptions found in �
tion text imply the positioning or behaviour of entities within a s
ene. Anexample of �
tion text 
ontaining su
h des
riptions is presented in Figure 5.1. These des
riptionsare identi�ed using spe
i�
 
ategories of annotation (for example, Transition or Relation annota-tions, as demonstrated in Figure 5.2). The Relation annotation illustrated in Figure 5.2(a) spe
i�esthat a �table� is �behind� a �
hair�. The problem in this 
ase is to determine exa
t 
oordinates forthe �table� and �
hair� obje
ts so that the �behind� spatial-relation holds. The Transition annota-tion illustrated in Figure 5.2(b) spe
i�es that a �
ow� is �outside� the environment, indi
ating thatan appropriate motion for the 
ow must be 
al
ulated so that this behaviour is visualized.The quanti�
ation of behaviour involves 
al
ulating exa
t values that des
ribe an entity's be-haviour in a virtual environment. We de�ne an environment in terms of its dimension, its bound-aries, and the interval of time over whi
h the environment exists. We name ea
h environment as
ene, de�ned as follows:De�nition 5.1. De�ne S (dimension, boundary, time) to be a s
ene spe
i�ed as a Cartesian spa
ein a number of dimensions where ea
h dimension is bounded a

ording to a boundary. The s
eneexists over the duration spe
i�ed by time.
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behindTrigger:

Type:

Subject:

BEHIND

table

RELATION:

Object: chair

the table behind his uncle’s chair

BEHIND

(a) Relation annotation
wentTrigger:

Type:

Subject:

OUTSIDE

i t  <COW>

TRANSITION:

but i t went away when Daddy told i t  to.

OUTSIDE

(b) Transition annotationFigure 5.2: Example annotations from �
tion text.
• Entity M has a traje
tory de�ned as rM (t) = (1− t)pM

0 + tpM
1

• Entity N has a traje
tory de�ned as rN (t) = pN
0Example system of 
onstraints over the two traje
tories:

M near N : ||rM (t)− rN (t)||2 − (aM + aN + α)2 < 0∀t ∈ [tstart, tend]
M noCollide N : ||rM (t)− rN (t)||2 − (aM + aN )2 > 0∀t ∈ [tstart, tend]... Figure 5.3: Example set of time-based mathemati
al 
onstraints.For example S (2, {[−20, 20], [−20, 20]}, [0, 15]) is a s
ene in two dimensions, where ea
h dimen-sion is de�ned over the intervals [−20, 20]. This s
ene is spe
i�ed to last for 15 se
onds.A s
ene 
ontains geometri
 models representing entities des
ribed in the �
tion text. Textannotated in 
ategories su
h as Relation or Transition 
onstrain a model's behaviour in a s
ene.For example, the Relation in Figure 5.2(a) des
ribes a 
onstraint over the behaviour of the �
hair�and �table� models, spe
ifying that the �
hair� must be behind the �table�, no matter where the�table� model is pla
ed in the s
ene. The Transition illustrated in Figure 5.2(b) spe
i�es that the�
ow� model must leave the s
ene, whi
h is interpreted as a 
onstraint on the behaviour of the�
ow� that requires the model to be outside the boundaries of the s
ene at a 
ertain time.A s
ene is de�ned as an n-dimensional Cartesian spa
e, and this allows spatial 
onstraintsto be expressed as symboli
 fun
tions. We des
ribe the behaviour of entities in a s
ene usingtraje
tories that are 
onstrained a

ording to the annotations. Phrased in this manner, the problemof behaviour quanti�
ation is one of 
onstraint satisfa
tion. Example traje
tories are presented inFigure 5.3, along with examples of the symboli
 fun
tions that 
onstrain these traje
tories.S
enes are de�ned in terms of a spa
e interval (boundary) and a time interval (time). Thismeans that values must be found for the variables de�ning the traje
tories that satisfy the 
on-straints both spatially, as well as over a 
ontiguous interval of time. This is represented in Figure5.3 by the expression ∀t ∈ [tstart, tend]. The in
lusion of a temporal aspe
t to the formulationof 
onstraints presents a universally quanti�ed 
onstraint satisfa
tion problem (Benhamou et al.,2004; Rats
han, 2006), where the time-dimension is said to be universally quanti�ed.We assume that 
onstraint systems su
h as those illustrated in Figure 5.3 are 
reated auto-mati
ally from annotations (see Chapter 6 for details on this pro
ess). An automated pro
ess hasthe potential to 
reate 
onstraints that 
on�i
t within the same system, in whi
h 
ase no solution
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Fiction book

Problem 1: Text Analysis

  1.1) Linguistic indicators

  1.2) Annotation creation

Problem 2: Interpretation

   2.1) Interpretation of annotations

    2.2) Specification of behaviour 

           in a virtual environment

    2.3) Populating 3D environments

Intermediate 

representation

Animated 3D environment

Animated f i lm

Annotated f ict ion text

Automatic creation

of surface annotations

Machine-learning for

automating creat ion

of semantic 

annotat ions

Create structured 

scene descriptions

Automatic constraint

solving/optimization

Automatic populat ion

of 3D vir tual environment

Human knowledge:

- Manual examples

Human knowledge:

- Clarify l inguistic ambiguity

- Implied scene layout

- Creative ideas

Human knowledge:

- Creative enhancements

Interval-based quantif ied 

constraint optimizerFigure 5.4: Context of the interval-based quanti�ed 
onstraint optimizer with respe
t to the �
tion-to-animation problem.exists. We prefer an approximate solution to be presented rather than no solution, be
ause thisguarantees quanti�ed behaviour that 
an be used to populate a s
ene (no matter how �awed).The problem investigated in this 
hapter is automati
ally �nding values for entity traje
toriesthat satisfy a system of 
onstraints. Constraints are expressed as non-linear, symboli
 fun
tionsthat in
lude a universally quanti�ed time variable and spatial variables bounded to intervals.The solver must produ
e solutions that satisfy the 
onstraints over 
ontiguous intervals of time(where 
onstraint systems are 
onsistent), or produ
e approximations of quanti�ed solutions (where
onstraint systems are in
onsistent).5.1.3 ContextThe resear
h presented in this 
hapter examines one sub-problem of the interpretation task inthe �
tion-to-animation pro
ess. The 
ontext of this problem within the 
onversion pro
ess isillustrated in Figure 5.4. We examine a method that generates pre
ise numeri
al values thatquantify behaviour in a virtual environment. These values are used in a subsequent 
omponent forpopulating a virtual environment that 
orresponds to the �
tion text. The input to this pro
ess isa set of 
onstraints derived automati
ally from an annotation interpretation module (des
ribed inChapter 6).5.2 Related workWe name the problem investigated in this 
hapter spatial reasoning, and this term des
ribes problemof deriving exa
t values that quantify an entity's behaviour in a virtual environment so that itvisually 
orresponds to the behaviour des
ribed by annotations. Spatial reasoning is 
hara
terizedby the fa
t that behaviour is spe
i�ed using high level (non-detailed) instru
tions, while the pre
isevalues de�ning behaviour in an environment are left to be 
al
ulated by an automated pro
ess.We 
ategorize existing spatial reasoning te
hnologies a

ording to the manner in whi
h pre-
ise values are obtained. We identify two 
ategories, namely those that formulate these valuesin
rementally through dire
t manipulation of the environment (environment-sensitive), and those
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 expressions that are solved independently of theenvironment (environment-independent).5.2.1 Environment-sensitive reasoningWe broadly de�ne environment-sensitive reasoning as the 
olle
tion of te
hniques that progresstowards a

eptable behaviour by iteratively updating and evaluating behaviours of entities in theenvironment. These methods are 
hara
terized by a tight 
oupling with the target environment,usually in
luding dire
t manipulation and simulation of the environment in determining valuesthat des
ribe behaviour. Ea
h state in a time-based environment is the 
ulmination of all previousstates.We examine environment-sensitive reasoning in two 
ategories, namely those that are 
on
ernedwith stati
 environments (
ontaining entities without motion), and those that are 
on
erned withdynami
 environments (
ontaining moving and non-moving entities).5.2.1.1 Stati
 environmentsSpatial reasoning in a stati
 environment is 
on
erned with spe
ifying the lo
ation and orientationof entities within a �nite spa
e. Pro
edural methods su
h as those des
ribed by Parish and Muller(2001) use a suite of hand 
oded rules to guide the pla
ement of roads and buildings in an environ-ment. This method is environment-sensitive in that the pla
ement of a road segment is a�e
tedby the pla
ement of previous road segments in the environment.An alternative method for spatial reasoning exists where the environment is des
ribed by a setof 
onstraints. Values that satisfy the 
onstraints de�ne the 
orre
t geometri
 layout of entities inthe environment. Environment-sensitive methods for performing the reasoning in
lude sto
hasti
and 
onstru
tive methods (Le Roux and Gaildrat, 2003) (however, numeri
al methods also existfor these problems as shown in Se
tion 5.2.2). Sto
hasti
 methods progressively re�ne the layoutof entities in an environment by perturbing entity lo
ations and evaluating the subsequent envi-ronment layout (a

ording to the degree to whi
h they satisfy the 
onstraints) (Xu et al., 2002;San
hez et al., 2003). Constru
tive methods build the environment in
rementally, by pla
ing asingle entity in the environment and then enumerating and testing every possible lo
ation for thenext entity (Baykan and Fox, 1991; Kwaiter et al., 1998; Bonnefoi and Plemenos, 1999; Le Rouxand Gaildrat, 2003), then sele
ting only valid options.5.2.1.2 Dynami
 environmentsSpatial reasoning in a dynami
 environment is an example of the motion planning problem. Motionplanning initially emerged as a �eld of study in roboti
s with the aim of determining a path throughan environment that avoids 
ollisions between an autonomous agent and possible obsta
les (and issometimes referred to as the Piano Mover's problem in the �eld of Arti�
ial Intelligen
e (Garberand Lin, 2003)). The motion planning problem is phrased in terms of a start-lo
ation and a goal-lo
ation within a workspa
e that 
ontains several obsta
les. The task of an autonomous agent isto �nd a 
ollision-free path from the start to the goal.
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lassify motion planning te
hniques in two 
ategories, namely global and lo
al te
hniques,based on the information available to the agent during the 
reation of a path (Garber and Lin,2002).Global methods assume the prior existen
e of a populated environment, as well as global knowl-edge regarding the layout of obsta
les within it (Foskey et al., 2001; Garber and Lin, 2002). Prob-abilisti
 road-map algorithms are examples of global methods and fun
tion by sele
ting randomsamples a
ross the workspa
e, and then 
onne
ting samples with paths (Overmars, 1992; Kavrakiand Latombe, 1994; Overmars and vSvestka, 1995; Salomon et al., 2003). The path from the startlo
ation to the goal lo
ation is determined by sear
hing the resulting graph using algorithms su
has A* (Calomeni and Celes, 2006). This algorithm assumes global knowledge in the sense thatthe lo
ation of obsta
les a
ross the environment is available for use by the agent in 
reating agraph. Paths that result in 
ollisions with these obsta
les are dete
ted and removed. Probabilisti
road-map algorithms 
ater for stati
 obsta
les (Kavraki and Latombe, 1994; Pettré et al., 2003)and dynami
 obsta
les (Gayle et al., 2005; van den Berg and Overmars, 2006), and many motionplanning problems make use of some variant of this te
hnique (Koga et al., 1994; Nieuwenhuisenand Overmars, 2003; Pettré et al., 2003). Another example of a global motion planning te
h-nique is 
ell de
omposition, whi
h breaks the workspa
e into a number of simple 
ells (Ku�ner Jr.,1998; Latombe, 1999), using shortest-path algorithms to determine paths from the start-lo
ationto goal-lo
ation.Lo
al motion planning te
hniques are employed when an agent does not have global knowledgeof the workspa
e, and repeatedly observes the environment to dete
t and avoid obsta
les. Anexample is the potential-�eld method that asso
iates attra
tive and repulsive for
es to obsta
lesin the environment. The agent is attra
ted to the goal lo
ation, while repulsed from obsta
les(Dru
ker and Zeltzer, 1994; Hong et al., 1997; Ge and Cui, 2002).Motion planning te
hniques exist that spe
ify 
onstraints over the motion of an entity, inaddition to the task of �nding a path that avoids 
ollisions. Examples of su
h 
onstraints in
ludefor
ing agents to adhere to physi
al laws su
h as gravity and volume preservation (Gayle et al.,2005), or for maintaining 
onne
tivity between joints in arti
ulated models (Garber and Lin, 2002).These 
onstraints are used in 
ombination with lo
al or global path planning te
hniques, where
onstraints are evaluated to determine whether the next dis
rete move of the entity satis�es orminimizes the set of 
onstraints.Global motion planning te
hniques are environment-sensitive be
ause they require repeatedqueries to the environment for setting up a path, espe
ially where other dynami
 entities o

ur ina s
ene. Lo
al motion planning te
hniques are environment-sensitive be
ause the lo
ation of anentity in an environment is determined in relation to its previous lo
ation. If a parti
ular time-instant in an environment is required (for �lming), then every environmental state prior to therequired time-instant must be simulated to that point.5.2.2 Environment-independent reasoningTe
hniques for spatial reasoning exist that phrase the problem in terms of symboli
 fun
tions thatare solved analyti
ally or numeri
ally. These te
hniques remove the need for simulation or tight
oupling with the environment, and transform behaviour quanti�
ation into a general 
onstraint
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tion problem. All that is required is a set of symboli
 
onstraints, a set of variables, andinitial domains for ea
h variable. An independent 
onstraint solver is applied to lo
ate a solution.We 
onsider approa
hes for quantifying behaviour in stati
 and dynami
 environments.5.2.2.1 Stati
 environmentsBehaviour of entities in a stati
 environment is 
on
erned only with layout. Constraints are for-mulated as symboli
 inequalities that de�ne the layout of the environment, and solving te
hniquessu
h as linear programming are used to determine values that satisfy these 
onstraints (de Vriesand Jessurun, 2000).5.2.2.2 Dynami
 environmentsReasoning regarding entities with motion is 
ompli
ated by the time dimension. In pra
ti
e, time isrepresented as another variable in ea
h 
onstraint. However, solutions must satisfy the 
onstraintover the entire interval of time. The 
lassi
al approa
h is to dis
retize the time dimension into asequen
e of values, and perform 
onstraint solving at ea
h dis
rete point (Witkin and Kass, 1988).This approa
h is used for text-to-graphi
s resear
h by the CarSim system (Johansson et al., 2005).The dis
retization of time-intervals is avoided in the �eld of automated 
amera 
ontrol byrepresenting time as 
ontiguous intervals rather than breaking the time dimension into dis
retepoints (Jardillier and Languénou, 1998; Benhamou et al., 2004). Interval methods for motionplanning are based on Interval Analysis, the �eld of mathemati
s 
on
erned with the use of intervalsof real numbers rather than �nite values during 
al
ulations. This allows a time variable to berepresented as a 
ontiguous interval, for example T = [tstart, tend]. An advantage of this approa
his that solutions to 
onstraint systems 
an be found that are guaranteed to be valid over 
ontiguousintervals.Interval arithmeti
 is used in a number of appli
ations in 
omputer graphi
s be
ause of itsusefulness in solving systems of 
onstraints, namely ray tra
ing of parametri
 surfa
es (Toth, 1985;Mit
hell, 1991), 
ontour tra
ing and impli
it surfa
es (Mit
hell, 1991), 
ollision dete
tion (Snyderet al., 1993; Redon et al., 2002), and approximations of o�sets/bise
tors/medial-axes (Oliveira andDe Figueiredo, 2003).5.2.3 Interval-based 
onstraint solving as an environment-independentspatial reasoning me
hanismBoth environment-sensitive and environment-independent methods have advantages with respe
tto the task of spatial reasoning. Environment-sensitive methods do not require formulations ofexpli
it expressions that require solving, and are also useful for real-time motion planning. In
ontrast, environment-independent methods are 
hara
terized by the following advantages:
• A solution determined by an environment-independent method des
ribes entity behaviourat any point in the s
ene, without the need for prior states to be 
al
ulated �rst. This isthe primary di�eren
e to environment-sensitive methods that require the environment tobe repeatedly updated, with the e�e
t that every state of the environment is a fun
tionof all previous states. In terms of �
tion-to-animation 
onversion, a solution provides the
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ene at any point, without pre-
onstru
ting the entire duration ofthe environment.
• Environment-independent methods separate the problem domain from the solution strategy,unlike environment-sensitive methods in whi
h the environment is repeatedly updated andevaluated during the reasoning pro
ess. Environment-independent methods pose the problemas a set of domain independent 
onstraints that are solved using an arbitrary solver. Thissolver is independent of the problem domain, and 
an be improved or repla
ed withoutmodifying the original problem.Based on these observations, we employ an environment-independent method for performing spatialreasoning. This means that behaviour of entities in a s
ene is des
ribed by systems of 
onstraintsthat require solving. Interval-based solving methods have bene�ts unavailable to other forms of
onstraint solving (for example linear programming (de Vries and Jessurun, 2000), or Newton-Rhapson solving (Witkin and Kass, 1988)):
• Time (and other quantities) is represented as 
ontiguous intervals using interval 
onstraintsolving. This is suitable given our de�nition of a s
ene that spe
i�es the spa
e and time interms of intervals (De�nition 5.1 on page 107).
• Interval arithmeti
 avoids the need to sample the time dimension at dis
rete points. Te
h-niques exist in interval-based 
onstraint solving that are 
apable of providing solutions toquanti�ed 
onstraint systems, that is, 
onstraints that are spe
i�ed over 
ontiguous intervalsof time.
• Interval-based te
hniques solve an entire quanti�ed system in a single operation, rather thaninvoking a solver at ea
h dis
rete time instan
e. This provides for more e�
ient solving.
• The output from an interval 
onstraint solving pro
ess is a set of 
ontiguous intervals, anyvalue from whi
h represents a solution to the 
onstraint system. This provides a range ofvalid behaviour options for a s
ene.Most appli
ations of interval arithmeti
 in 
onstraint solving are 
on
erned with lo
ating a solutionto a system of equations or inequalities, spe
i�
ally in the 
amera 
ontrol domain (Jardillier andLanguénou, 1998; Benhamou et al., 2004). However, we presume that 
onstraints are automati
allygenerated by the �
tion-to-animation system, and that some automati
ally generated 
onstraintsystems have the potential to be in
onsistent. Existing 
onstraint solvers perform an exhaustivesear
h of the 
on�guration spa
e before 
on
luding that no solution exists. An optimization me
h-anism is preferable, so that traje
tories are spe
i�ed even in the absen
e of a 
onsistent solution.Optimization te
hniques exist that are based on interval arithmeti
 (Snyder, 1992; Huyer andNeumaier, 1999; Dolgov, 2005), but these methods do not 
ater for universally quanti�ed variables.This 
hapter des
ribes an optimization te
hnique for 
onstraint systems 
ontaining universallyquanti�ed variables. This te
hnique is based on existing universally quanti�ed 
onstraint solvingme
hanisms (Benhamou and Goualard, 2000; Benhamou et al., 2004).
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onstraint solv-ingThis se
tion provides a brief introdu
tion to interval arithmeti
, after whi
h te
hniques in interval-based 
onstraint solving are des
ribed. We fo
us on quanti�ed interval-based 
onstraint solving,primarily using te
hniques developed by (Benhamou et al., 2004) and (Benhamou and Goualard,2000) and relevant portions of this resear
h are des
ribed here. Formal des
riptions and proofsof these pro
esses are not reported in this exposition, but are lo
ated in the original sour
es(Benhamou et al., 1994; Benhamou, 1995; Benhamou and Older, 1997; Benhamou et al., 1999;Benhamou and Goualard, 2000; Benhamou et al., 2004).Interval Analysis was pioneered by Moore (1966) as a method for 
oping with round-o� errorsthat o

ur during 
al
ulations performed by ma
hines with limited representation for �oatingpoint numbers. Real numbers are repla
ed by intervals that 
ontain them and whose bounds aredes
ribed using 
omputer representable numbers. For instan
e, the 
onstant π is represented as
[3.14, 3.15] rather than a single �oating point number rounded up or rounded down (Benhamouet al., 2004). Complete theoreti
al expositions in interval arithmeti
 and analysis are providedby Moore (1966) and Neumaier (1990), and the following se
tions des
ribe only those aspe
tsne
essary for investigating the quanti�ed 
onstraint satisfa
tion problem.5.3.1 Interval analysisThis se
tion develops the fundamentals of interval analysis that are used for subsequent 
onstraintsolving te
hniques. Let R be the set of real numbers. F is the set of 
omputer representable �oatingpoint numbers, and is a subset of the set of real numbers su
h that F ⊂ R. A set of real numbersis represented on a 
omputer by spe
ifying �oating point bounds, as des
ribed by the followingde�nition:De�nition 5.2. Floating point interval (Moore, 1966): A �oating point interval is a set of realnumbers bounded on either side by �oating point numbers. Formally1, given g ∈ F and h ∈ F,then [g, h] = {r ∈ R|g ≤ r ≤ h}. Therefore, the interval [g, h] 
ontains every real number between(and in
luding) g and h.The set of all intervals is denoted as I, and a single interval is denoted using a 
apital letter(for example, I = [g, h]). For the remainder of this 
hapter, unless otherwise stated, small lettersrepresent �oating point numbers. It is often ne
essary to refer to the lower or the upper-bound ofan interval, and this is indi
ated using lower(I) and upper(I) respe
tively.The set of primitive operations used for real numbers are extended to interval arithmeti
 in a
onservative manner. All real numbers that 
ould possibly o

ur as a result of the operation arein
luded in the result:De�nition 5.3. Interval Extension. De�ne ♦(x1, ...xn) 7→ R to be a real-valued operation 
on-sisting of n real-valued operands (xi ∈ R). An interval extension of operation ♦ is denoted as1Similar to Moore (1966), this exposition uses the notation {x|P (x)} for �the set of x su
h that the proposition
P (x) holds.
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�(X1, ...,Xn) 7→ I, whi
h is the 
orresponding operation extended to fun
tion over n �oating-pointintervals (Xi ∈ I), su
h that:

x1 ∈ X1, ..., xn ∈ Xn ⇒ ♦(x1, ...xn) ⊂ �(X1, ...,Xn)De�nition 5.3 means that an interval extension of a real valued operation produ
es an interval
ontaining the result produ
ed by the 
orresponding real-valued fun
tion if the operands of thereal-valued fun
tion fall within the 
orresponding interval operands. Natural interval extensionsof elementary operations are de�ned by Moore (1966) as follows:De�nition 5.4. Let A = [a, b] and B = [c, d]. Natural interval extensions of real-valued elementaryoperations are de�ned as follows:
• Addition: A⊕B = [a+ b, c+ d]

• Subtra
tion: A⊖B = [a− d, b− c]

• Multipli
ation: A⊗B = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

• Division: A⊘B = [a, b]⊗ [1/d, 1/c] if 0 /∈ [c, d], unde�ned otherwiseThe natural interval extension of a real-valued fun
tion f(x1, ..., xn) is the fun
tion F (X1, ...,Xn)
onstru
ted by repla
ing ea
h real-valued elementary operation in f with a 
orresponding naturalinterval extension, and repla
ing ea
h real value xi with a 
orresponding interval Xi.Interval extensions of real-valued fun
tions have an important property, des
ribed by the fun-damental theorem of interval analysis (Moore, 1966; Benhamou et al., 1994). If F (X1, ...,Xn)is an interval extension of the real valued fun
tion f(x1, ..., xn), then the interval produ
ed by
F (X1, ...,Xn) 
ompletely 
ontains any real-value produ
ed by f(x1, ..., xn) as long as any realnumber xi is in the 
orresponding interval Xi:

x1 ∈ X1, ..., xn ∈ Xn ⇒ f(x1, ...xn) ⊂ F (X1, ...,Xn)The fundamental theorem of interval analysis leads to an important property, namely that aninterval extension of a real-valued fun
tion is in
lusion monotoni
. This means that the intervalextension of a fun
tion is guaranteed to return an interval 
ontaining the real-valued result for any
xi ∈ Xi. This property implies that interval arithmeti
 is a 
onvenient me
hanism for 
al
ulatingthe range of a real-valued fun
tion over a spe
i�
 domain. However, natural interval extensionsare 
onservative in their approximation. While an interval returned by an interval extension of afun
tion 
ontains the 
omplete range of the real-valued fun
tion, it potentially 
ontains values thatare not in the range. Alternatives to natural interval extensions exist that more tightly bound therange of a fun
tion, but are more 
omputationally expensive to implement (van Hentenry
k et al.,1997).Union and interse
tion operators are often used in interval 
onstraint solving. Let I1 and I2 betwo intervals, then the union of the two intervals is the smallest interval 
ontaining both I1 and
I2:

I1 ∪ I2 = [min (lower(I1), lower(I2)) ,max (upper(I1), upper(I2))]
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tion of two intervals is the largest interval 
ommon to I1 and I2. Let
IU = [max (lower(I1), lower(I2)) ,min (upper(I1), upper(I2))], then the interse
tion is one of twooptions:

I1 ∩ I2 =







IU if lower(IU ) ≤ upper(IU )

undefined if lower(IU ) > upper(IU )An interval I = [a, a] is 
alled a degenerate interval, and is used to represent 
onstants. A
anoni
al interval is an interval of the form I = [a, b] where b is the next �oating point value after
a. Canoni
al intervals are the smallest possible interval representable on a ma
hine with limited�oating point representation.The following examples are provided to demonstrate interval arithmeti
:Example 5.5. Let A = [−3, 2] and B = [2, 4] then:
• A⊕B = [−1, 6]; A⊖B = [−7, 0]; A⊗B = [−12, 8]; A⊘B = [−1 1

2 , 1]

• A ∪B = [−3, 4]; A ∩B = [2, 2]

• if f(a, b) = a+ 2 ∗ b then F (A,B) = A⊕ 2⊗B = [−3, 2]⊕ [2, 2]⊗ [2, 4] = [1, 10]The Cartesian produ
t of a set of n intervals is 
alled a box, su
h that B = I1 × I2 × ... × In.Boxes are denoted using boldfa
e 
apitals.5.3.2 Solution-bounding using interval analysisInterval analysis lends itself to 
onstraint solving be
ause of its ability to 
ompute the bounds overthe range of a fun
tion. For example, assume that the 
onstraint f(x) < 0 must hold given a
ertain variable x and a �nite domain for x. If the interval extension F (X) = [a1, a2] (where X isan interval 
onstru
ted using the lower bound and upper bound of the domain of x) evaluates toan interval for whi
h a2 (the upper bound) is less than zero, then the 
onstraint is guaranteed tohold for all values in X. If a1 (lower bound) is greater than zero then the 
onstraint never holdsfor any value in X. These observations are a dire
t result of the fundamental theorem of intervalanalysis. However, be
ause of the exaggerated bounds resulting from natural interval extensions,the 
onstraint is not guaranteed to hold over the entire domain if 0 ∈ [a1, a2], nor is it guaranteedto violate the 
onstraint over the entire domain.Moore (1966) proposes a solution to the problem of exaggerated bounds. The narrower thedomain of a fun
tion be
omes, the more a

urately the interval extension approximates the real-valued fun
tion. For example, a more a

urate approximation of the fun
tion F (X) is evaluatedby splitting the domain represented by X into a number of smaller sub-intervals and taking theunion of ea
h resulting range: X = [b1, b2] ∪ [b2, b3] ∪ ... ∪ [bn−1, bn]. Spe
i�
ally, Moore (1966)proves that:
lim

n→∞

n−1
⋃

i=1

F ([bi, bi+1]) = {f(x)|x ∈ [b1, bn]}If a problem is phrased so that all values of x must be found that satisfy f(x) < 0, then intervalarithmeti
 
an be used to lo
ate intervals within X that satisfy the 
onstraint. If the originaldomain does not 
on
lusively satisfy the 
onstraint, then the interval X 
an be re
ursively split
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tion over the sub-interval 
on
lusively veri�es or violatesthe inequality. The method of alternating evaluation and splitting steps forms the basis of aninterval-based 
onstraint solving algorithm, whi
h is 
on
erned with lo
ating all solutions to a setof non-linear 
onstraints (in
luding inequalities). The sear
h spa
e is evaluated as being a validsolution, no solution, or indeterminate. In indeterminate 
ases, the spa
e is split and re-evaluatedin a re
ursive fashion (Jaulin and Walter, 1993, 1996; Jardillier and Languénou, 1998). No furthersplits o

ur when the intervals be
ome 
anoni
al, and no further splits 
an be represented on the�oating point ma
hine.We use the following terminology for 
onstraint solving, assuming that a 
onstraint f(x1, ..., xn) <

0 is de�ned over n variables: the value of ea
h variable xi is drawn from a �nite interval of realnumbers Xi whi
h is the domain of that variable. The domain of the fun
tion f is represented bythe box B = X1×...×Xn, and this domain is loosely referred to as the sear
h spa
e or 
on�gurationspa
e be
ause it is to be sear
hed for solutions that satisfy the 
onstraint.5.3.3 Constraint propagation using lo
al 
onsisten
iesConstraint solving me
hanisms bene�t from propagation te
hniques that remove values from thesear
h spa
e that 
annot possibly satisfy the 
onstraints. Interval arithmeti
 is shown to be bene-�
ial in this regard (Cleary, 1987; Older and Vellino, 1990; Puget, 1994), and relevant te
hniquesfor this are des
ribed in this se
tion.We make use of an example to illustrate the 
on
epts used for 
onstraint propagation in intervalarithmeti
. Consider the following 
onstraint:
c : x+ y = zThis 
onstraint 
onsists of three real valued variables, x, y, and z. Any 
onstraint de�nes a relationbetween sets of real values, where values from these sets validate the 
onstraint. In the example
onstraint, the relation des
ribes the sets of real numbers for the variables x, y, and z that 
ausethe 
onstraint to hold (Benhamou and Older, 1997). A relation is expressed using the symbol ρand is de�ned as follows:De�nition 5.6. An n-ary relation ρc is the set of n-tuples of real numbers that validate a 
onstraint

c (Hi
key et al., 1998).A relation di�ers from a solution to a 
onstraint in that a relation des
ribes every possibletuple of real values that validates the 
onstraint. A solution is a sub-set of the underlying relation:De�nition 5.7. A solution to a 
onstraint is a sub-set of n-tuples from the relation of the 
on-straint.A

ording to De�nition 5.6, the relation for 
onstraint c is the set of 3 − tuples in R
3 thatvalidates it. Given the initial domain for the 
onstraint represented as a box B = X × Y × Z,the interse
tion of the relation and the box ρc ∩B represents a solution to the 
onstraint over theinitial domain.An initial domain is not always a subset of the relation of the 
onstraint. For example, assumethat ea
h variable x, y, and z have initial domains X = [−3, 2], Y = [1, 2] and Z = [0, 100]. The
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t of X, Y , and Z form a box B that en
loses all or part of the relation. The box
B = X × Y × Z does not ex
lusively des
ribe the relation of c be
ause if x = −3 and y = 1 then
x+ y = −2 whi
h is not part of the domain of Z.It is possible to narrow an initial domain so that it more a

urately approximates the relationby removing portions of the box that violate the 
onstraint. The exa
t values for ρc are notknown, but ρc ∩ B is approximated using proje
tions of box B that are de�ned a

ording toproperties of the operators involved in the relation (de�ned by Hi
key et al. (1998)). For example,the addition operator implies three relationships, namely that the addition of the operands equalsthe sum, and that the di�eren
e between the sum and one operand equals the other operand(for both operands). Values violating these properties are removed from the domains using three
orresponding proje
tion operators:

πX(ρc ∩B) = X ∩ (Z − Y )

πY (ρc ∩B) = Y ∩ (Z −X)

πZ(ρc ∩B) = Z ∩ (X + Y )The Cartesian produ
t of πX , πY , and πZ results in B′, a narrowed box that better approximates
ρc. In the example, Z is redu
ed to [0, 4] as a result of the πZ proje
tion as follows:

(X + Y ) ∩ Z = ([−3, 2] + [1, 2]) ∩ [0, 100] = [−2, 4] ∩ [0, 100] = [0, 4]Further proje
tions over elementary operations in
luding subtra
tion, division, and multipli
ationare also de�ned by Hi
key et al. (1998). Proje
tions are not always su�
ient to 
al
ulate exa
tvalues for ρc ∩ B, espe
ially when a 
onstraint 
ontains more than a single operation. In 
asessu
h as these, ρc ∩ B 
an only be approximated using propagation te
hniques based on hull andbox 
onsisten
y.5.3.3.1 Hull 
onsisten
yDis
arding all real numbers from a box that do not satisfy a 
onstraint is not a
hievable in thegeneral 
ase, and so a 
oarse method 
alled hull 
onsisten
y is used to 
al
ulate the smallestbox 
ontaining all ρc ∩ B (Benhamou and Older, 1997). If r is a real number, then the fun
tion
Hull(r) 7→ I returns the smallest �oating-point interval I 
ontaining r. More generally, the fun
tion
Hull�(B) 7→ B′ returns the smallest �oating-point box B′ 
ontaining box B (Benhamou et al.,1994; Benhamou, 1995).Given a 
onstraint c and a domain expressed as a box B, the term hull 
onsisten
y is used toindi
ate that B represents the smallest box 
ontaining ρc. A real 
onstraint c is hull 
onsistentwith respe
t to a box B if and only if B = Hull�(ρc ∩B) (Benhamou et al., 1999).Hull 
onsisten
y is ensured if the smallest box is found that 
ontains all tuples that form thesolution from the initial domain. The relation ρc is potentially 
omprised of multiple disjoint boxes,and in this 
ase the hull of this relation 
ontains tuples that are not part of the solution.Hull 
onsisten
y is a
hieved using a hull 
onsisten
y operator, an algorithm that makes useof proje
tions to determine the hull of ρc ∩ B. Benhamou et al. (1999) present an algorithm
alled HC4, whi
h a
hieves hull 
onsisten
y for non-primitive 
onstraints. HC4 is a method for
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ording to a set of arbitrary 
onstraints, or dete
ting when a box doesnot 
ontain any portion of the relation. The algorithm formulates an evaluation tree for ea
h
onstraint, where ea
h node in the tree des
ribes a primitive operation. Proje
tion operators areinvoked at ea
h node in the tree, resulting in a narrowed domain. Domains are narrowed repeatedlyuntil no further narrowing o

urs, a pro
ess 
alled 
haoti
 iteration (Apt, 1999). Algorithm HC4is explained further in Appendix C, and spe
i�
 detail and proofs regarding this algorithm areprovided by Benhamou et al. (1999).Hull 
onsisten
y does not guarantee that the returned box 
ontains only the solutions. Partof the 
ause of this is that the proje
tion operators are not always able to narrow the domains ofvariables any further without the risk of losing valid solutions. Related resear
h also a
knowledgesthat hull 
onsisten
y is limited in its ability to handle 
onstraints in whi
h a single variable o

ursmultiple times (Benhamou et al., 1994). As a result, a tighter form of narrowing is used based onthe idea of box 
onsisten
y.5.3.3.2 Box 
onsisten
yThe primary problem with hull 
onsisten
y over 
omplex 
onstraints (
onstraints 
ontaining mul-tiple instan
es of the same variable (Benhamou et al., 1994)) is the de
omposition of the 
onstraintexpression into elementary operations (at ea
h step in the evaluation tree). This introdu
es depen-den
y problems between ea
h instan
e of the same variable (Benhamou et al., 1999). To over
omethis, box 
onsisten
y avoids de
omposition, and hen
e is able to produ
e tighter narrowing of aninitial box.The 
onditions for box 
onsisten
y are more 
omplex than for hull 
onsisten
y. Let a 
onstraint
c 
ontain k variables, where ea
h variable vi is de�ned over a domain Di from the box D. The
onstraint is rewritten as a set of k univariate 
onstraints Ci where 1 ≤ i ≤ k. Every variable in
Ci is repla
ed with its 
orresponding domain, ex
ept for the variable vi. D is box 
onsistent if thefollowing relation holds (for all 1 ≤ i ≤ k):

Di = Di ∩ {vi ∈ R|Ci(D1, ...,Di−1, vi,Di+1, ...,Di)}Simply stated, a box D is box 
onsistent if every Di ∈ D represents the hull of the solution tothe ith univariate 
onstraint.Intervals forDi that exhibit box 
onsisten
y are determined using an iterative algorithm. Givena 
onstraint Ci, we repla
e ea
h variable with its domain in the input box, ex
ept for one variable.This transforms the 
onstraint into a univariate interval fun
tion. The bounds on the solutionsin Di to the univariate fun
tion are then lo
ated. Finding the bounds of Di is a
hieved by usingroot �nding methods (typi
ally the Interval Newton Method) over the univariate fun
tion. Morespe
i�
ally, the left most and right most root is lo
ated.Benhamou et al. (1994) de�ne an algorithm 
alled BC4 that a
hieves box 
onsisten
y overa set of 
onstraints, and that is 
apable of narrowing the initial domain more tightly than hull
onsisten
y. BC4 is also able to dete
t when a domain 
ontains no solutions. BC4 uses analgorithm 
alled BC3Revise that a
hieves box 
onsisten
y for a single 
onstraint at a time. Thesealgorithms are des
ribed in detail by Benhamou et al. (1999), as well as in Appendix C.
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onsisten
y operators are e�e
tive for removing portions of the sear
h spa
ethat do not form part of a solution to a set of 
onstraints. These narrowing operators are termedouter 
ontra
ting operators be
ause they 
ontra
t the domain as mu
h as possible without removingany portion of the solution spa
e (Benhamou et al., 2004). However, neither of these te
hniquesguarantee that a narrowed box 
ontains only solutions, and so outer 
ontra
ting operators aloneare not su�
ient for lo
ating the solution to a set of 
onstraints. Boxes that ex
lusively 
ontainsolutions are sound, and further methods are required to lo
ate sound solutions to a system of
onstraints.5.3.4 Sound 
onstraint solvingSound 
onstraint solving te
hniques produ
e boxes that 
ontain only solutions. We are interestedin 
onstraint systems de�ned over universally quanti�ed variables, and the de�nition of a solution isextended to en
ompass this 
on
ept. Constraints with universally quanti�ed variables are requiredto hold over the entire 
ontiguous intervals de�ned by these variables. This means the initialdomain of a universally quanti�ed variable must be identi
al to its 
orresponding domain in thesolution box:De�nition 5.8. A solution to a 
onstraint 
ontaining a universally quanti�ed variable u 
ontainsthe entire initial domain of u.Outer 
ontra
ting operators impli
itly identify boxes that are not solutions to universally quan-ti�ed 
onstraints, be
ause any narrowing that o

urs over the domain of the universally quanti�edvariable violates the universal requirement. If this o

urs, then the box is guaranteed not be auniversally quanti�ed solution.An inner 
ontra
ting operator produ
es boxes that fall ex
lusively within the solution spa
e(Benhamou and Goualard, 2000; Benhamou et al., 2004) and dis
ards all values from the initialbox that do not form part of the solution, as well as values that form part of the solution but
annot be en
losed in a 
omputer representable box.An inner 
ontra
ting operator narrows a domain using the original set of 
onstraints, andthen narrows the domain over the set of negated 
onstraints (that is, where relational symbolsare reversed, for example from > to ≤). Narrowing over the negated 
onstraints removes portionsfrom the domain that are guaranteed to be non-solutions to the negated 
onstraint. These removedportions are then guaranteed to be solutions to the original 
onstraints by impli
ation. This pro
essis illustrated in Figure 5.5 for a 
onstraint that in
ludes a universally quanti�ed variable.In Figure 5.5(a), the initial box B is narrowed using the outer 
ontra
ting operator over a
onstraint and produ
es box B′ eliminating some, but not all, invalid ranges of values from theinitial domain. Narrowing operators never dis
ard solution spa
e, and if the universally quanti�edvariables are narrowed in this step then it means that no solutions exist in B and this box isdis
arded.
B′ is then narrowed using the 
orresponding negated 
onstraint, whi
h is derived by invertingthe relation operator from > to ≤. The result of this narrowing is box B′′, as illustrated inFigure 5.5(b). This narrowed box 
ontains all solutions and possibly non-solutions to the negated
onstraint. However, the di�eren
e between the original box B′ and this narrowed box B′′ isguaranteed to be a solution to the original 
onstraint, be
ause it is guaranteed to be a non-solution
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Box Set Difference: Option 1 Box Set Difference: Option 2(
) Step 3: Box set di�eren
e yields a solution and smaller universally quanti�ed interval.Figure 5.5: Graphi
al illustration of solution �nding approa
h for 
onstraints using universallyquanti�ed variables.
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A

B

A-B(a) Upper bound of A overlaps B
A

B

A-B(b) Lower bound of A overlaps B
A

B

A-BA-B(
) A overlaps B, but bounds do notoverlap
A

BA-B(d) A does not overlap B A

B(e) A 
ompletely subsumed by BFigure 5.6: Illustration of set di�eren
e between two intervals.to the negated 
onstraint. Using this reasoning, solutions are found without the need to evaluatethe fun
tions and risk exaggerated range bounds. In addition, a solution is identi�ed withoutsampling over the universally quanti�ed variable t.The solution of the negated 
onstraint is the inverted solution of the original 
onstraint, andany box-set di�eren
e between B′ and B′′ is guaranteed to be a solution to the original 
onstraint.Set di�eren
e is di�erent to the subtra
tion of intervals, and is illustrated graphi
ally in Figure5.6. In ea
h example B is subtra
ted from A, and the set di�eren
e is unde�ned if B 
ompletelysubsumes A (Figure 5.6(e)). If A 
ompletely subsumes B then the set-di�eren
e results in twointervals (Figure 5.6(
)). Box-set di�eren
e is the set di�eren
e of ea
h domain within the twooperand boxes, and potentially returns more than a single box as a result.Figure 5.5(
) indi
ates two options for 
al
ulating the box set di�eren
e. The �rst optionyields a solution P that spans all t and is a universally quanti�ed solution (Q is not a universallyquanti�ed solution in this respe
t). If further solutions are required, then B′′ is sear
hed furtherfor solutions. This has the e�e
t of narrowing the universally quanti�ed domain, be
ause the
onstraint is guaranteed to hold for any x over the entire sub-interval of t in Q′.If a solution is not en
ountered, then box B′′ is split along any domain ex
ept that of the uni-versally quanti�ed domain, and the pro
ess repeated on ea
h sub-box. The pro
ess of 
ontra
tingand splitting is repeated until boxes be
ome 
anoni
al, or solutions are found.The above te
hnique is 
apable of lo
ating solutions for universally quanti�ed variables withoutrequiring an evaluation step, and also enables the redu
tion in size of the universally quanti�eddomain. Benhamou et al. (2004) formalize this te
hnique as the ICO2 algorithm that a
ts as aninner 
ontra
ting operator over a single 
onstraint. Solving for a set of 
onstraints is a
hieved by�nding all solutions for ea
h 
onstraint in turn, and using the solutions for ea
h 
onstraint as initialboxes for the next 
onstraint to be 
onsidered. The exa
t algorithm for a system of 
onstraints isformally des
ribed by Benhamou et al. (2004) as the IPA algorithm. IPA is shown to be sound,that is, boxes returned by the algorithm 
ontain only solutions.Figure 5.7 illustrates the various 
omponents of a sound 
onstraint solver. The IPA algorithmis used to lo
ate sound solutions to a system of 
onstraints. It uses the ICO2 algorithm to lo
ate
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IPA

ICO2

BC3Revise

Sound constraint solving:

Inner contracting operator:

Outer contracting operator:

Set of constraints

Single constraint

Single negated constraintOuter contracting operator: BC3Revise

Single non-negated constraint

Figure 5.7: Illustration of the 
omposition of a sound interval 
onstraint solver by Benhamou et al.(2004).sound solutions for ea
h 
onstraint in turn. The ICO2 algorithm uses a narrowing operator, namely
BC3Revise to narrow the domain over the 
onstraint, as well as over the negated 
onstraint.5.3.5 Alternative formulations of interval 
onstraint solvingSome interval extensions of primitive operations are more rigorously de�ned to provide intervalevaluations with tighter bounds. For instan
e, Hi
key et al. (2001) indi
ate that the division op-eration need not be unde�ned if the denominator interval 
ontains zero, but rather produ
es twodisjoint intervals. In the te
hniques des
ribed until this point, one interval is used to subsumedisjoint intervals for the reason that preserving disjoint intervals is too 
omputationally expen-sive (Benhamou et al., 1994). Alternative methods exist that maintain disjoint intervals however(Chabert et al., 2005), and in some instan
es this is shown to improve splitting strategies (Batniniet al., 2005).Other improvements to the 
onstraint solving te
hnique in
lude dete
ting and using 
y
leinformation between 
onstraints to optimize 
haoti
 iteration (Lhomme et al., 1998), removing
onstraints from the system as they are satis�ed (Borning et al., 1996) and performing intervalnarrowing on a parallel ar
hite
ture (Granvilliers and Hains, 2000). Rats
han (2006) proposes amore generalized quanti�ed 
onstraint solver that splits the universally quanti�ed domain (unlikeBenhamou et al. (2004) who never split these domains), and ensures that a solution exists for allsub-domains of the universally quanti�ed domain. We follow the work by Benhamou et al. (2004)in this 
hapter.5.4 Interval-based quanti�ed 
onstraint optimizationThis se
tion des
ribes our innovative approa
h to lo
ating solutions to quanti�ed 
onstraint sys-tems. Interval-based 
onstraint solvers (su
h as the one des
ribed in Se
tion 5.3.4) fail when fa
edwith 
onstraint systems that are in
onsistent, or are ine�
ient for systems in whi
h solutions
onsist of small disjoint portions of the sear
h spa
e:
• Constraint solvers are interested in �nding only global solutions. If a 
onstraint system isin
onsistent, then an extensive sear
h is performed without any immediate results. The resultis stri
tly binary: a solution, or no solution.
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• The solver presented in Se
tion 5.3.4 is a split and sear
h algorithm in the worst 
ase.Unless tailored heuristi
s are employed (for example alternative spa
e traversal strategies(Benhamou et al., 2004) or �
oordinate sear
h� (Huyer and Neumaier, 1999)) there is no
orrelation between the amount of sear
hing performed and the proximity to a solution.We des
ribe an optimization strategy that addresses both these problems, while maintaining theability to lo
ate universally quanti�ed solutions. We use the term optimizer to refer to the proposedalgorithm, and the term solution to refer to a box that satis�es a set of 
onstraints. We use theterm minimizer when referring to a box that approximates a solution.The optimization strategy des
ribed in this se
tion uses the quanti�ed 
onstraint propagationand sound 
onstraint solving te
hniques presented in Se
tion 5.3.4. This strategy is able to providea minimizer at any point (even if the minimizer is not a proper solution to the 
onstraint system).The longer the optimization 
ontinues, the more the minimizer resembles the a
tual solution ofthe 
onstraint system. If the 
onstraint system is in
onsistent, then the minimizer approximates asolution even though one does not exist.The following se
tions des
ribe the 
on
ept of relaxed 
onstraints and how these are used toa
hieve optimization.5.4.1 Optimization using relaxed 
onstraintsOur te
hnique for optimization is based on the following 
onje
ture:Conje
ture 5.9. Assume a 
onstraint c with underlying relation ρc 
an be �relaxed� in somemanner, so that the underlying relation of the relaxed 
onstraint ρδ

c 
ompletely 
ontains ρc, that is
ρc ⊆ ρδ

c. We spe
ulate that approximating ρδ
c is a �simpler� task than approximating ρc in the 
asewhere ρc exists, and that ρδ

c is a �minimizer� for the 
onstraint in the 
ase where the 
onstraint isin
onsistent.Figure 5.8 provides an illustration of Conje
ture 5.9, in the 
ase where a solution exists. Assumesome 
onstraint F (B) < 0 is applied over a domain represented by box B. The 
onstraint isrelaxed by rephrasing the 
onstraint as F (B) < δ given a large enough δ. Lo
ating a solution forthis relaxed 
onstraint does not require any splitting or narrowing of B given a large enough δ. For a redu
ed value of δ, the task of lo
ating solutions is more di�
ult, but still requires lesssplitting than the original 
onstraint.For this exposition we dis
uss 
onstraints that are phrased in the manner c : f(x1, ..., xn) ≤ 0,but all the des
ribed methods are appli
able to other inequality relations. We relax a 
onstraintby repla
ing the zero on the right hand side with a value δ (
alled the relaxation 
onstant) that isgreater than zero, in the following manner:
cδ : f(x1, ..., xn) ≤ δWe assume that a large enough value of δ exists that 
auses the 
onstraint to hold over the initialdomains of x1, ..., xn.Example 5.10. Let c be a 
onstraint de�ned as follows: c : 2x + y ≤ 0 where x ∈ [−2, 4] and

y ∈ [−1, 2]. Evaluating the interval extension of f over the original domain results in F (X,Y ) =
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Figure 5.8: Illustration of interval optimization pro
ess.
[2, 2] ∗ [−2, 4] + [−1, 2] = [−5, 10]. This interval does not verify the 
onstraint (not all numbersare less than or equal to zero), and so a relaxation 
onstant δ = 10 is 
hosen so that F (X,Y ) =

[−5, 10] ≤ [10, 10].Example 5.10 illustrates that an initial value for δ is found using the interval evaluation ofthe fun
tion over the initial variable domains. This method is used to determine the relaxation
onstant, and the initial domain is a solution to the relaxed 
onstraint.The value of δ is redu
ed and the newly tightened 
onstraint is solved on
e again, resultingin a solution that is a sub-set of the initial domain. The pro
ess of redu
ing δ and solving thetightened 
onstraint is repeated until δ rea
hes zero, whereby the resulting solutions are solutionsto the original 
onstraint. If no solutions are found at a spe
i�
 value of δ, then no solutions existfor the 
onstraint and the solutions for the previous value of δ are minimizers.This method for 
onstraint optimization produ
es a fo
used traversal of the sear
h spa
e,be
ause portions of the spa
e that are not solutions to a relaxed 
onstraint are removed from thesear
h-spa
e for a non-relaxed 
onstraint. These portions of spa
e are removed for ea
h value of
δ, and as δ approa
hes zero the remaining portions of spa
e be
ome 
loser approximations of thesolution spa
e.Interval-based 
onstraint solving methods return solutions as boxes, whi
h means that a solutiondes
ribes a range of values that satisfy the 
onstraint. Solutions to relaxed 
onstraints provide boxapproximations to the a
tual solutions, and the value of δ indi
ates the upper bound of deviationfrom an a
tual solution with respe
t to any range of values 
omprising an approximate solution.In this respe
t, a box returned as an approximate solution potentially 
ontains a
tual solutions,where the likelihood in
reases as δ approa
hes zero.The following se
tion des
ribes the method used for solving relaxed 
onstraints at any level of
δ. These 
onstraints potentially 
ontain universally quanti�ed variables.
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onstraintsThe method employed for 
onstraint solving at ea
h value of δ is similar to the approa
h developedby Benhamou et al. (2004), and is based on the use of an outer and inner 
ontra
ting operator.The primary di�eren
e is that the 
ontra
ting operators are implemented over a set of 
onstraintsrather than a single 
onstraint at a time.An outer 
ontra
ting operator outerContract takes as input a system of 
onstraints C and abox B representing the domain of the variables in the system of 
onstraints. Three results arepossible, namely an un
hanged box, a redu
ed box, or failure. These are interpreted as follows:
outerContract(C,B) ⊆ B ⇒ existen
e of a solution in B is indeterminate

outerContract(C,B) = FAIL ⇒ no solution in BThe BC3 algorithm detailed by Benhamou et al. (1994) is used for the outerContract operator.If the algorithm returns FAIL, this means that no solution exists in the input domain (for instan
e,if any universally quanti�ed variable is shrunk then FAIL is returned). The primary fun
tion ofthe outer 
ontra
ting operator in the optimization pro
ess is to narrow the sear
h spa
e using
onstraint propagation and to dete
t if the sear
h spa
e 
ontains no solutions.An inner 
ontra
ting operator innerContract takes as input a system of 
onstraints C and abox B representing the domain of the variables in the system of 
onstraints. The result is a tuple
(S = {S1, ...,Sn},L) 
ontaining a set of solution boxes, and a box L representing a narrowed B.These are interpreted as follows:

Si ⊆ B ⇒ solutions exist in box B, and Si is a solution
S = {} ⇒ existen
e of solution in B indeterminate,but if it does exist, it is in the redu
ed box LThe primary fun
tion of the inner 
ontra
ting operator is to dete
t whether an entire box isa subset of the solution spa
e, that is, dete
t sound solutions. Leftover spa
e L 
an neither beguaranteed to 
ontain solutions, nor guaranteed not to 
ontain solutions.We design an inner 
ontra
ting operator that has these properties in the manner des
ribed byAlgorithm 5.1. This algorithm is similar to the ICO2 algorithm in that it uses the idea of negated
onstraints and box-set di�eren
e to lo
ate solutions (Benhamou et al., 2004). Algorithm 5.1 isdi�erent from ICO2 be
ause it applies to a set of 
onstraints rather than a single 
onstraint at atime. The algorithm takes as input a set of 
onstraints, and a box B that is previously narrowedusing the outerContract operator. Ea
h 
onstraint is negated and narrowed individually overbox B and if a FAIL is returned then B is the solution spa
e to the 
onstraint by impli
ation.Otherwise, the box set di�eren
e between B and the narrowed box is a solution to the 
onstraint.Ea
h 
onstraint has the potential to produ
e a number of disjoint solution boxes. To �nda global solution to the set of 
onstraints, an interse
tion is performed for every 
ombination ofsolution boxes produ
ed by ea
h 
onstraint. This is illustrated in Figure 5.9, in whi
h 
onstraint c1results in three disjoint solutions, 
onstraint c2 results in two disjoint solutions, and 
onstraint c3results in three disjoint solutions. The ⊎ operator is used to enumerate every possible 
ombinationof disjoint solution boxes from ea
h 
onstraint. The interse
tion of ea
h 
ombination is a globalsolution to the system of 
onstraints.
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Algorithm 5.1 Inner 
ontra
ting operator over a set of 
onstraints.

innerContract(in: 
onstraint set C,box B previously narrowed by outerContract;out: tuple (T,L) where:
T is set of solution boxes
L is the narrowed left-over box)begin

R← {} %% Every 
ombination of solutions
L← ∅ %% Initialize left-over spa
e as empty-setfor ea
h c ∈ C do
S ← {} %% Solutions for this 
onstraint
B′ ← outerContract({c},B) %% Narrow B over single negated 
onstraintif B′ = FAIL thenadd B to S as a solution to this 
onstraintelse
Q← B ⊟ B′ %% Box set differen
efor ea
h box Q ∈ Q doadd Q to S if universally quantified domain not narrowedif B′ 6= B then

L← L ∪B′ %% Get union of left-over box
R← R

⊎

S %% Enumerate all 
ombinations of solutions
T ← {}%% Ea
h set in R 
ontains one solution box for every 
onstraintfor ea
h set V in R doif interse
tion between all solutions in V is defined thenadd interse
tion to Treturn (T,L)end

Figure 5.9: Illustration of the 
ombination of solutions performed by the inner 
ontra
ting operator(de�ned in Algorithm 5.1).
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ontra
ting operators fun
tion together as a 
onstraint solving me
h-anism. The outerContract operator is used to remove portions of the domain that 
ontain nosolutions, and innerContract is used to identify sound solutions within domains previously nar-rowed by outerContract. The manner in whi
h these operators are invoked in an optimizationpro
ess is des
ribed in the following se
tion.5.4.3 Optimization through iterative tighteningWe present an optimization pro
ess that repeatedly solves systems of progressively tightened 
on-straints. The less relaxed a system of 
onstraints, the more its set of solutions approximates thea
tual solutions to the original set of 
onstraints.A relaxed 
onstraint set is 
reated by relaxing ea
h individual 
onstraint within it. This isdone by evaluating ea
h individual 
onstraint ci over the initial domain, and sele
ting a δi thatrelaxes the 
onstraint su�
iently so that it is validated over the initial domain. The sum of δivalues represents the overall relaxation 
onstant for the 
onstraint set. A relaxed 
onstraint set Cwith total relaxation δ is denoted as Cδ.The 
onstraint optimization algorithm over universally quanti�ed 
onstraints is presented asAlgorithm 5.2, whi
h 
onsists of a pair of nested loops. The inner loop populates a set T withsolutions of the 
onstraint system (using outer and inner 
ontra
ting operators) for a spe
i�
relaxation 
onstant. Boxes for whi
h no solutions are expli
itly lo
ated are split using the splitfun
tion (never splitting universally quanti�ed variables). These split boxes are added to the set
D for further sear
hing and splitting. The inner loop exits when no further boxes exist in D, astate that o

urs when boxes 
annot be split any further on a �nite �oating point representationma
hine.After the inner loop exits, the set of solutions at the 
urrent level of δ represent 
urrent minimiz-ers to the 
onstraint system. The 
onstraint system is tightened by redu
ing δi for ea
h 
onstraint,and the outer loop iterates using the set of solutions at the previous step as initial domains tobe sear
hed. The outer loop exits under three 
onditions: if there are no domains for the nextiteration, in whi
h 
ase no solution exists for the 
onstraint system; if δ is su�
iently 
lose to zero,in whi
h 
ase the 
urrent solution is a solution to the system; and if the exe
ution time of thealgorithm ex
eeds a manually spe
i�ed threshold.The problem with Algorithm 5.2 is its slowness to 
onverge to a minimum or solution. Boxesthat are indeterminate are split repeatedly at ea
h level of δ until ma
hine pre
ision is rea
hed,whi
h means that the number of boxes in D grows very qui
kly. This results in a large portion ofexe
ution time being spent in the inner loop of the algorithm. The next se
tion dis
usses strategiesfor mitigating this problem.5.4.4 Redu
tion of exe
ution timeWe modify Algorithm 5.2 to redu
e the amount of time spent sear
hing for solutions at ea
h levelof δ using a pair of thresholds that are used to exit the inner loop prematurely.The �rst threshold for exiting the inner loop of Algorithm 5.2 de�nes a maximum number ofsolution boxes τsolutions to be found at ea
h value of δ. If the number of solution boxes in Tex
eeds this threshold, then the inner loop exits. The other threshold limits the number of split
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Algorithm 5.2 Quanti�ed interval optimizer.
IOPT(in: 
onstraint set C, box B,pre
ision level for re
ognizing solutions ε,time 
utoff threshold τtime;out: set S of solution or minimizer boxes)begin
Cδ ← 
onstraint set relaxed over initial domain
D ← {B} %% Set of solutions at previous δ
M ← {} %% Minimizers found so farwhile size(D) > 0 and δ > ε and time < τtime do

T = {} %% Solutions at this level of δwhile size(D) > 0 and time < τtime do
B← removeF irst(D)
B′ ← outerContract(Cδ,B)if B′ 6= FAIL then

(Q,L)← innerContract(Cδ,B′)if size(Q) > 0 thenadd all solutions in Q to T
D ← D ∪ split(B′) %% Split for future sear
hing
D ← D ∪ split(L) %% Split for future sear
hingif size(T ) > 0 then %%There are solutions at this δ

D ← T %% Use these solutions as input for redu
ed δ value
M ← T %% Save these solutions as minimizers
Cδ ← tighten 
onstraint set Cδ(redu
e δ)if δ > ε then %% Outer loop exits without rea
hing δ = 0return M %% return minimizerselsereturn D %% return solutionsend
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reated within the inner loop. If the number of boxes in D ex
eeds the threshold τsplits,then the inner loop exits. The use of these thresholds limits the number of iterations performedby the inner loop. However, the early termination of the inner loop introdu
es the problem thatpotential solutions in D are never re
ognized.We use ba
ktra
king to avoid the problem introdu
ed by thresholds. When a threshold isrea
hed, all boxes in D that have not yet been sear
hed are saved, along with the 
urrent relaxed
onstraint system. If any subsequent sear
hes fail to lo
ate solutions for a tightened 
onstraintsystem, the algorithm relaxes the 
onstraints to their previous level, and 
ontinues sear
hing theremaining boxes.We represent D using a queue stru
ture. At ea
h iteration of the inner loop the �rst box from
D is removed and sear
hed, and if no solutions are found the box is split. Newly split boxes areappended to the end of D. This pro
ess is analogous to a breadth-�rst traversal of a tree. Toredu
e the problem introdu
ed by thresholding, we only enable thresholds if ea
h depth in theimpli
it sear
h tree is sear
hed to a su�
ient degree. In pra
ti
e, we �nd that sear
hing 200 boxesat ea
h depth in the tree (before thresholds are enabled) provides adequate performan
e gains.These boxes are 
hosen in a distributed manner so that they are sampled from a
ross the entirerange at a parti
ular depth.The enhan
ed interval optimizer is presented as Algorithm 5.3, in whi
h the enhan
ements fromAlgorithm 5.2 are highlighted. Algorithm 5.3 makes use of a variable 
alled δbest, whi
h re
ords thelowest level of δ for whi
h solutions are found. This is required in the event that ba
ktra
king o

ursto distinguish future minimizers from the best solution lo
ated until that point. A set 
alled Statesis also maintained for ba
ktra
king purposes, 
ontaining tuples of the form (Cδ = {cδ1 , ..., cδn},D),ea
h of whi
h asso
iates a set of relaxed 
onstraints with a set of boxes that still require sear
hing.The outer loop of Algorithm 5.3 remains un
hanged, but the inner loop is modi�ed in a numberof ways. Instead of removing the �rst box from the set D for sear
hing, a box is removed at aspe
i�
 index to ensure that boxes are sampled from a
ross the 
urrent depth of the tree. Newlysplit boxes are not immediately added to D for future pro
essing, but are rather added to anintermediate set N representing the next depth in the tree to be sear
hed. Only in the event that
D be
omes empty are the elements in N appended to D. The inner loop only exits if the 
urrentdepth has been adequately sampled a

ording to the manually spe
i�ed factor value (number ofboxes sear
hed at ea
h level) and one of the two thresholds are rea
hed. The inner loop also exitsif a time limit is rea
hed, or no remaining boxes are left for sear
hing at the 
urrent value of δ.The exit of the inner loop results in either a set of solutions for the 
urrent value of δ (the set
T ), or no solutions (T = {}). If solutions are found and the 
urrent δ is less than δbest then thesesolutions are minimizers, and the 
onstraint set 
an be tightened and solved over these solutions.If no solution is found (T = {}), then a ba
ktra
k must o

ur, relaxing the 
onstraint set to aprevious level of δ that still has unsear
hed boxes. The de
ision as to whi
h 
onstraint set andset of boxes to sear
h at the next iteration of the outer loop is en
apsulated in the switchStatefun
tion, whi
h either tightens the 
onstraint set, or ba
ktra
ks to a relaxed 
onstraint set:

switchState(Cδ, T, States) =







(tightened Cδ, T ) if size(T ) > 0

removeF irst(States) if size(T ) = 0
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Algorithm 5.3 Interval optimizer updated for e�
ien
y.

IOPT2(in: 
onstraint set C, box B,pre
ision level for re
ognizing solutions ε,time 
utoff threshold τtime,solution 
utoff threshold τsolutions,split 
utoff threshold τsplitsnumber of boxes before thresholds enabled factor;out: set S of solution or minimizer boxes)begin
Cδ ← 
onstraint set relaxed over initial domain
D ← {B} %% Set of solutions at previous δ
M ← {} %% Minimizers found so far

◮ δbest ← δ %% Lowest δ found with solutions
◮ States← {} %% Ba
ktra
k stateswhile size(D) > 0 and δ > ε and time < τtime do

T = {} %% Solutions at this level of δ
◮ distribution← size(D)/factor %% Cal
ulate how to sele
t sear
h boxes
◮ removeIndex← 0 %% Index for removing sear
h boxes
◮ N = {} %% Next level of split boxeswhile size(D) > 0 and time < τtime and
◮ not(removeIndex > size(D) and
◮ (size(N) > τsplits or size(T ) > τsolutions)) do

◮ B← remove box at index removeIndex from D
◮ removeIndex← removeIndex+ distribution

B′ ← outerContract(Cδ,B)if B′ 6= FAIL then
(Q,L)← innerContract(Cδ,B′)if size(Q) > 0 thenadd all solutions in Q to T

◮ N ← N ∪ split(B′) %% Split for future sear
hing
◮ N ← N ∪ split(L) %% Split for future sear
hing
◮ if size(D) = 0 then
◮ D ← N %% If level is 
omplete, sear
h next leveladd all boxes in N to D

◮ if size(T ) > 0 and δ < δbest then
◮ M ← T
◮ δbest ← δ
◮ if size(D) > 0 then add (Cδ,D) to States %% Save state
◮ (Cδ,D)← switchState(Cδ, T, States) %% Redu
e δ or ba
ktra
kif δ > ε then %% Outer loop exits without rea
hing δ = 0return M %% return minimizerselsereturn D %% return solutionsend
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ription
ε Level of pre
ision for relaxation 
onstant δ

factor Number of boxes to be sear
hed at ea
h depth before thresholds are enabled
τtime Threshold for exe
ution time

τsolution Threshold for solutions found in inner loop
τsplits Threshold for split boxes 
reated in inner loopTable 5.1: Summary of parameters for the interval-based quanti�ed 
onstraint optimization algo-rithm.

IOPT2

outerContract

BC3

BC3Revise

Constraint optimization:

Inner contracting operator:

Outer contracting operator:

Set of constraints

Single constraint

Single negated constraint

innerContract

Set of constraints

Set of constraints

Set of constraintsFigure 5.10: Illustration of the 
omponents of the interval optimization algorithm.The outer loop iterates until δ rea
hes a su�
ient proximity to zero (de�ned by the 
onstant
ε), or until no further ba
ktra
king states exist. The outer loop also exits if the time thresholdis rea
hed, in whi
h 
ase the minimizer at the 
urrent δbest value is returned as an approximatesolution.The set of parametrization values for the IOPT2 algorithm is summarized in Table 5.1.5.4.5 ImplementationWe implement the IOPT2 algorithm using 
omponents sour
ed from existing resear
h. Figure5.10 illustrates that the primary two 
omponents of IOPT2 algorithm are the outerContract and
innerContract operators. The outerContract operator is implemented using the BC3 algorithmde�ned by Benhamou et al. (1994). This algorithm in turn in
orporates the BC3Revise (Ben-hamou et al., 1994, 1999) 
omponent for a
hieving box 
onsisten
y. The innerContract algorithm(Algorithm 5.1 on page 127) is based on the ICO2 algorithm de�ned by Benhamou et al. (2004),in whi
h a single negated 
onstraint is narrowed at a time using the outerContract operator.We implement interval arithmeti
 operations in Java, using natural interval extensions of primi-tive operators des
ribed by Moore (1966) and Hi
key et al. (2001). Conservative outward roundingis provided in the implementation using the BigDe
imal 
lass available in the Java 1.5 API, whi
hperforms rounding at manually spe
i�ed levels of pre
ision.Our implementation of box 
onsisten
y is di�erent to the method used by Benhamou et al.(1994). We use a divide and 
onquer approa
h for �nding the right-most and left-most roots ofthe univariate fun
tions (instead of the Newton method). The Newton method is faster in lo
atingroots, but it requires the 
al
ulation of the derivative of a fun
tion, as well as an implementation ofthe interval division operator, both of whi
h are non-trivial. For example, the handling of division
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 is a topi
 with disputed solutions (Moore, 1966; Hi
key et al., 1998).The divide and 
onquer approa
h avoids this issue, at the 
ost of slower 
onvergen
e however.The IOPT2 algorithm performs an initial evaluation of the set of 
onstraint fun
tions to deter-mine the starting value of δ. Evaluation of an interval fun
tion F (B) is performed using an intervalevaluation te
hnique based on 
entered forms for produ
ing less exaggerated bounds, des
ribed byMoore (1966).Input 
onstraints are expressed symboli
ally (examples of whi
h appear in Appendix D) andare parsed using the Java Expression Parser2. An initial, non-in�nite box B is spe
i�ed thatrepresents the sear
h domain for a system of 
onstraints.5.5 Analysis of the interval-based quanti�ed 
onstraint opti-mizerWe examine the properties of the interval-based quanti�ed 
onstraint optimizer to determine ifit is e�e
tive in quantifying behaviour spe
i�ed by systems of 
onstraints. These properties areinvestigated in terms of the following questions:1. What parametrization values are appropriate for the interval-based quanti�ed 
onstraint op-timizer?We investigate the two threshold values τsolutions and τsplits to determine the e�e
t theseparameters have on the time taken to lo
ate a solution to a system of 
onstraints.2. Does the implementation of underlying algorithms 
ompare to reported implementations interms of exe
ution time and s
alability?The BC3 algorithm is an important 
omponent of both the 
onstraint solving (Se
tion 5.3.4)and 
onstraint optimization algorithms (Se
tion 5.4). We investigate if our implementationof this algorithm is 
omparable to reported implementations.3. Is the interval-based quanti�ed 
onstraint optimizer able to lo
ate solutions for standard uni-versally quanti�ed 
onstraint solving ben
hmarks?One requirement that we pla
e on the interval-based quanti�ed 
onstraint optimizer is that itbe 
apable of lo
ating solutions to 
onstraint systems that are 
onsistent. We investigate thesu

ess of the algorithm over standard ben
hmarks, and 
ompare the optimization algorithmwith an implementation of an existing 
onstraint solver.4. Is the 
onstraint optimizer 
apable of lo
ating solutions to 
onstraint systems that des
riberelations between stationary and moving entities in a virtual environment?The �
tion-to-animation system is 
on
erned with moving multiple entities around a Carte-sian spa
e with a time dimension, as pres
ribed by our de�nition of a s
ene in Se
tion 5.1.We investigate ben
hmarks that perform this task, and determine whi
h of the optimizer orsolver is more appli
able for solving these 
onstraint systems.2JEP: http://www.singularsys.
om/jep/ [a

essed on 16 June 2008℄



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 134Ben
hmark Sour
eCLPRevisited{a,b,
} A toy ben
hmark des
ribed by Benhamou et al. (1994).Broyden BandedFun
tions{5,10,20,40,80,160} Used as ben
hmarks by Benhamou et al. (1994, 1999) to shows
alability to in
reasing number of variables and 
onstraints.More-Cosnard{10,20,40,80} Used as ben
hmarks by Benhamou et al. (1994, 1999) to shows
alability to in
reasing number of variables and 
onstraints.Table 5.2: Ben
hmarks for verifying underlying narrowing and solving algorithms.Ben
hmark Sour
eParabola Fitting, Cir
le,Robot, Point-path andSatellite Des
ribed by Benhamou et al. (2004) as ben
hmarks for 
onstraintsolving over universally quanti�ed variables.Robust 1 Used by Rats
han (2006) from the bibliography available from hiswebsite (Rats
han, 2008).Table 5.3: Ben
hmarks for verifying ability to solve universally quanti�ed 
onstraint systems.This se
tion presents a suite of experiments for answering the above questions, and des
ribesben
hmarks used in these experiments. Metri
s for measuring su

ess are de�ned, and possiblesour
es of experimental error are identi�ed.5.5.1 Ben
hmarksWe divide ben
hmarks into three 
ategories: those used to verify underlying algorithm implemen-tation, those used to validate and 
ompare the ability to solve standard universally quanti�ed
onstraint ben
hmarks, and those that 
ontain 
onstraint systems likely to be 
reated by the�
tion-to-animation pro
ess.5.5.1.1 Non-quanti�ed ben
hmarks to verify underlying algorithmsThe 
onstraint optimizer relies on an implementation of outer and inner 
ontra
ting operators thatmake use of the BC3 algorithm de�ned by Benhamou et al. (1994). The implementation of thisalgorithm is evaluated using standard 
onstraint solving ben
hmarks in related resear
h. Theseben
hmarks are listed in Table 5.2. The Broyden and Cosnard fun
tions are 
hosen as ben
hmarksbe
ause the fun
tions 
an be in
reased in terms of the number of variables and 
onstraints, andprovide an indi
ation as to the s
alability of the 
onstraint solving implementation.The ben
hmarks listed in Table 5.2 are all non-quanti�ed root-�nding problems. Full formula-tions are listed in Appendix D.5.5.1.2 Quanti�ed ben
hmarks to verify solving abilityThe goal of the interval-based quanti�ed 
onstraint optimizer is the ability to lo
ate solutions for
onstraint systems that in
lude a universally quanti�ed variable. Standard ben
hmarks exist forvalidating this ability, listed in Table 5.3.All ben
hmarks de�ned by Benhamou et al. (2004) are 
on
erned with solving 
onstraint sys-tems in whi
h ea
h 
onstraint 
ontains a single universally quanti�ed variable. Rats
han (2006)
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hmark Des
riptionFront Four obje
ts, ea
h 
onstrained to appear inFrontOf and near one of theothers. noCollide 
onstraints over all obje
ts.S
ene Six obje
ts arranged using toRightOf , toLeftOf , inFrontOf , behind,
noCollide and near 
onstraints.Layout3 Three obje
ts arranged with the noCollide 
onstraint.WayPoints One obje
t 
onstrained to pass through 3 �xed way-points, using the near
onstraint over 3 di�erent time-intervals.Dynami
1Stati
1 One obje
t is stati
, the other dynami
 with traje
tories of in
reasing degreein ea
h dimension. near and inFrontOf are applied over a sub-interval oftime. noCollide is applied over the entire interval of time.Dynami
2 Both obje
ts are dynami
, having traje
tories of in
reasing degree in ea
hdimension. near and inFrontOf are applied over sub-interval of time.
noCollide is applied over entire interval of time.Collision n obje
ts, ea
h 
onstrained to be near and noCollide with every other obje
t.In
reases in 
omplexity with addition of ea
h obje
t, and for n > 3 isin
onsistent.Table 5.4: Ben
hmarks for �
tion-to-animation 
onstraints.de�nes a suite of ben
hmarks in whi
h ea
h 
onstraint 
ontains more than one quanti�ed vari-able. Our implementation of the interval-based quanti�ed 
onstraint optimizer 
urrently handles asingle quanti�ed variable per 
onstraint (although many quanti�ed variables per system) be
ausewe anti
ipate that time is the only universally quanti�ed value in our behaviour quanti�
ationproblem. Therefore, out of the six possible �Robust� experiments de�ned by Rats
han (2008) weonly use �Robust 1�, the only ben
hmark from this suite in whi
h 
onstraints 
ontain at most oneuniversally quanti�ed variable. Full formulations of these ben
hmarks are listed in Appendix D.5.5.1.3 Quanti�ed �
tion-to-animation 
onstraint systemsWe use a suite of ben
hmark 
onstraint systems that de�ne the motion of entities in a d-dimensionalCartesian spa
e. We limit the number of dimensions to three, be
ause greater dimensionality is notrequired for visual representation. Entity traje
tories are represented as n-degree Bezier splinesde�ned over a universally quanti�ed time variable. The 
onstraint solving task is 
on
erned with�nding values for the 
ontrol points of the Bezier splines so that the resulting traje
tories satisfythe de�ned relational 
onstraint over a spe
i�ed time interval.These ben
hmarks are divided into those des
ribing stati
 and those des
ribing dynami
 s
enes,summarized in Table 5.4. We phrase 
onstraints in terms of spatial relations (su
h as inFrontOfand near) that are motivated and formulated in Chapter 6. For these experiments, we assumethat these ben
hmarks are representative of 
onstraint systems to be produ
ed by an automatedpro
ess. For repeatability, the exa
t 
onstraint formulations for these experiments are detailed inAppendix D.The Front, S
ene, Layout3, and Collision ben
hmarks are used as non-quanti�ed 
on-straint solving ben
hmarks and only 
ontain entities without motion. The WayPoints, Dy-nami
1Stati
1, and Dynami
2 ben
hmarks de�ne s
enes 
ontaining moving entities, and areused to evaluate 
onstraint optimization for systems 
ontaining a universally quanti�ed variablerepresenting time.
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sTime-to-solution is the most 
ommon metri
 used for evaluating 
onstraint solving te
hniques(Benhamou et al., 2004; Rats
han, 2006). We measure this metri
 as the number of se
ondsbetween the invo
ation of the solving/optimization pro
ess and the dete
tion of a solution.We also report the δ value for the system of 
onstraints during the 
onstraint optimizationpro
ess. This value is re
orded on
e every ten se
onds, and in these experiments we are interestedin the following observations:
• δstart: the largest relaxation 
onstant for the system of 
onstraints. The initial domain is asolution to this system of relaxed 
onstraints.
• δbest: the lowest value of δ a
hieved by the optimization pro
ess at the time of termina-tion. This value indi
ates the remaining quantity of tightening required before a solution isobtained.5.5.3 Sour
es of experimental errorA sour
e of experimental error in this investigation is the 
omputer system on whi
h the imple-mented algorithm is exe
uted. We perform our experiments on a Pentium 4 dual 
ore 1.86GHzma
hine with 2GB of memory. The operating system permits multiple simultaneous pro
esses,whi
h means that the time-to-solution value for the solving/optimizing pro
ess is potentially af-fe
ted by other exe
uting pro
esses. We mitigate this sour
e of error by exe
uting ea
h pro
essmultiple times, and taking the average exe
ution time as the time-to-solution.Another sour
e of experimental error is the type of rounding performed on a parti
ular ma
hine.We mitigate this problem using the BigDe
imal 
lass, and for all experiments enfor
e outwardrounding at a pre
ision level of 10−2.5.5.4 ResultsThis se
tion des
ribes the individual experiments performed during the investigation of the ques-tions posed.5.5.4.1 Parametrization and behaviour of the optimizerThis experiment examines the e�e
t of the threshold parameters on the solving and optimizingability of the IOPT2 algorithm, and also provides initial insight into the nature of the relaxation
onstant. We investigate the following questions:
• What values of τ provide the best 
ompromise between exe
ution time and low values for δ(where τ refers to both τsolutions and τsplits simultaneously)?
• What is the relationship between the value of the relaxation 
onstant and the amount ofexe
ution time of the optimization pro
ess?We use three ben
hmarks for this experiment. The Satellite ben
hmark is used to represent a
ommon universally quanti�ed solving task, while the S
ene ben
hmark is used as an example
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ε factor τsolution τsplits

10−2 200 120 120Table 5.5: Optimizer parameters used for experiments.of a �
tion-to-animation task. The Collision7 ben
hmark is also used as an example of anin
onsistent 
onstraint system.The experiment is 
ondu
ted as follows: a value of 5 is 
hosen for τ and the optimizationpro
ess is invoked for a ben
hmark. The value of δ is re
orded at 10 se
ond intervals, until either asolution is found, or until the total exe
ution time ex
eeds 90 minutes. This experiment is repeatedten times, doubling the value of τ for ea
h experiment. This experiment does not investigate theindependent e�e
ts of τsolutions and τsplits.The level of pre
ision ε is �xed at 10−2 for all experiments, and the distribution fa
tor at ea
hlevel in the sear
h tree is �xed at factor = 200. τtime is �xed at 90 minutes.We plot the δ value as a fun
tion of time in Figure 5.11 for ea
h experiment. For the Satelliteproblem time-to-solution is minimal using thresholds of 5, as shown in Figure 5.11(a). However,using a threshold of 5 the optimization pro
ess never rea
hes a solution in the time allotted forthe S
ene ben
hmark, as shown in Figure 5.11(b). Instead, higher thresholds (of 20 and 80) aremore su

essful. Thresholds of 10 and 160 produ
e the two lowest values for δ for the Collision7ben
hmark in Figure 5.11(
).The above observations indi
ate that a dependen
e exists between the type of 
onstraint systembeing solved and the most appropriate threshold values for minimal exe
ution time. We 
hoose athreshold value of 120 for the majority of experiments in subsequent se
tions, be
ause this is anintermediate value within the range of su

essful thresholds observed in this experiment. However,we suggest a rule-of-thumb based on personal experien
e with the solver stating that this thresholdvalue should be in
reased as the number of variables in a 
onstraint system in
reases.All three graphs in Figure 5.11 indi
ate that the value of δ de
reases with the progression oftime. The redu
tion in δ is step-wise in nature, re�e
ting the fa
t that redu
tion only o

urswhen solution boxes are lo
ated. The more di�
ult the solution �nding pro
ess for a parti
ular
δ, the longer the overall relaxation value stays 
onstant. However, the graphs indi
ate that givensu�
ient exe
ution time, solutions or minimizers at low δ levels are lo
ated eventually.These experiments demonstrate that appropriate threshold values for the optimization algo-rithm are dependent on the type of 
onstraint system being solved, but values re�e
ted in Table5.5 are generally su

essful. All subsequent experiments use these parameter values unless other-wise indi
ated. We also 
on
lude that an inverse relationship holds between the amount of timespent optimizing a 
onstraint system and the value of δ. This means that better approximationsare expe
ted given additional exe
ution time of the algorithm, but the degree of improvementdiminishes the longer the pro
ess runs.5.5.4.2 Implementation of underlying algorithmsThis experiment investigates whether the underlying algorithms are implemented to a 
omparablelevel to existing implementations. The reason for this experiment is that our implementation
ontains di�eren
es to existing methods (for example using a divide and 
onquer approa
h for
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hmark Consistent Corre
t Time / [s℄ Growth Reported GrowthCLPRevisited(a) Yes 3 1.096 - -CLPRevisited(b) Yes 3 0.908 - -CLPRevisited(
) No 3 0.911 - -Broyden 5 Yes 3 1.253 - -Broyden 10 Yes 3 2.330 1.860 7.59 (Benhamou et al., 1994)Broyden 20 Yes 3 5.041 2.164 2.94 (Benhamou et al., 1994)Broyden 40 Yes 3 12.669 2.513 2.38 (Benhamou et al., 1994)Broyden 80 Yes 3 38.309 3.024 2.07 (Benhamou et al., 1994)More-Cosnard 10 Yes 3 2.414 - -More-Cosnard 20 Yes 3 11.332 4.694 6.333 (Benhamou et al., 1999)More-Cosnard 40 Yes 3 79.811 7.043 3.052 (Benhamou et al., 1999)More-Cosnard 80 Yes 3 698.898 8.757 4.724 (Benhamou et al., 1999)Table 5.6: Performan
e ben
hmarks for non-quanti�ed 
onstraint solving.�nding roots as opposed to the Newton method). We evaluate whether these di�eren
es impa
ts
alability, and by doing so, a�e
t the ability of an implemented universally quanti�ed 
onstraintsolver and optimizer. We investigate the following questions:
• Can our implementation of underlying algorithms be used to lo
ate solutions to non-quanti�edben
hmarks?
• Is our implementation 
omparable to existing implementations in terms of s
alability (withregards to the number of variables and 
onstraints)?We 
ondu
t this experiment using the BC3 algorithm for 
onstraint propagation (Benhamou et al.,1994) over a number of ben
hmarks. The �rst ben
hmark is the CLPRevisited problem des
ribedby Benhamou et al. (1994), whi
h we use to verify that the implemented algorithm is 
apable ofdete
ting in
onsistent 
onstraint systems. S
alability is investigated using the Broyden-bandedfun
tions and More-Cosnard fun
tions, both of whi
h are systems of 
onstraints with doublingnumbers of variables and 
onstraints. The time-to-solution is re
orded for ea
h ben
hmark.We evaluate the s
alability of the implemented algorithms using the ratio between 
onse
utiveinstan
es of in
reasingly 
omplex 
onstraint systems. This ratio represents growth, a metri
 used byBenhamou et al. (1994) to evaluate the penalty in time that exists when in
reasing the 
omplexityof the 
onstraint systems.The re
orded time-to-solution values over the aforementioned ben
hmarks are listed in Table5.6. A solution is found for all ben
hmarks using the implemented algorithm, and the in
onsistent
onstraint system is 
orre
tly identi�ed.The growth ratio observed for 
onse
utive Broyden and Cosnard fun
tions is also presentedin Table 5.6, along with the 
orresponding growth �gures observed for related implementations(Benhamou et al., 1994, 1999). The growth �gures reported for the related implementations arevaried, and do not present 
onstant growth for either the Broyden or the Cosnard fun
tions. Thisvariability is also re�e
ted in our implementation, although we report growth �gures within thesame order of magnitude as the referen
e implementation. We report redu
ed growth ratios forsome Broyden and Cosnard fun
tions indi
ating that, up to a point, our implementation produ
esbetter s
alability than the related implementation.
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hmark Reported Solver Optimizer Relaxation 
onstant
(ε = 10−2) Time / [s℄ Time / [s℄ Time / [s℄ δfirst δbestParabola Fitting 0.02∗ 0.097 4.292 3.0 0Cir
le 0.01∗ 0.500 13.452 4891.09 0PointPath 7.85∗ 1.151 50.296 146.07 0Robot 0.01∗ 0.954 5.271 10.98 0Satellite 0.99∗ 2.860 653.308 79.19 0Robust 1 < 1+ 0.053 2.561 197.80 0

∗As reported by Benhamou et al. (2004).
+As reported by Rats
han (2006)Table 5.7: Performan
e ben
hmarks for non-linear, universally quanti�ed 
onstraint solving.These experiments demonstrate that our implementation of 
onstraint propagation and solvingalgorithms are 
omparable to existing implementations, and that our implementation is 
apable oflo
ating solutions to standard 
onstraint solving ben
hmarks. The s
alability of our implementa-tion is also 
omparable to existing implementations with regards to the number of variables and
onstraints in the system.5.5.4.3 Ben
hmarks in universally quanti�ed 
onstraint solvingThis experiment investigates whether solutions 
an be found for standard ben
hmarks in universallyquanti�ed 
onstraint solving using the optimization algorithm. We 
ompare our implementationof the universally quanti�ed solving pro
ess with an implementation reported in related resear
h,and also investigate how an optimization approa
h 
ompares over these problems. In parti
ular:

• Is the interval-based quanti�ed 
onstraint optimizer able to lo
ate solutions for standard uni-versally quanti�ed 
onstraint solving ben
hmarks?
• Is our implementation of the universally quanti�ed 
onstraint solver 
omparable to a relatedimplementation reported by Benhamou et al. (2004)?
• Does the optimization method in
rease or de
rease time-to-solution over standard ben
h-marks, and what is the nature of the relaxation 
onstant for these ben
hmarks?This experiment is 
ondu
ted as follows. Ea
h ben
hmark is solved using our implementation ofthe IPA algorithm des
ribed in Se
tion 5.3.4 and by Benhamou et al. (2004) and the time-to-solution re
orded. The same ben
hmark is solved using the optimization algorithm, re
ording thetime-to-solution, the initial relaxation 
onstant, and the �nal relaxation 
onstant.The reported solving time (for �nding the �rst solution) for existing systems over the set ofben
hmarks is listed in Table 5.7. Our implementation of the IPA solver su

essfully lo
atessolutions to all the ben
hmarks.The time-to-solution of our implemented solver is greater than the reported time-to-solution ofthe existing implementation in all 
ases ex
ept for the PointPath ben
hmark. We attribute thisfa
t to a number of fa
tors: our implementation is penalized in exe
ution e�
ien
y due to thevirtual ma
hine-based exe
ution; our implementation uses a simple depth-�rst traversal a
ross thesear
h spa
e, as opposed to the heuristi
 traversal strategies used by Benhamou et al. (2004); and
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onquer approa
h for lo
ating roots a�e
ts the 
onvergen
e to solutions(as demonstrated in Se
tion 5.5.4.2). In spite of these di�eren
es, the reported time-to-exe
ution isof the same order (both within a range of se
onds) in both implementations of the solver, indi
atingthat the implementations are 
omparable.The reported solving time for the 
onstraint optimizer is presented in Table 5.7. We observethat the optimizer lo
ates solutions to all ben
hmarks, but the time-to-solution in all 
ases is largerthan that observed using the solver. This indi
ates that there is a penalty in exe
ution time forusing an optimization approa
h rather than a solving approa
h. We believe that this penalty iso�set by the availability of an approximate solution at any point during the exe
ution.The initial values of the relaxation 
onstant for ea
h ben
hmark are also presented in Table 5.7.These values vary a

ording to the ben
hmark, indi
ating that the interpretation of the 
onstantis dependent on the formulation of the 
onstraints. However, in all 
ases the 
onstant rea
hes zero.We 
on
lude that our implementation of the 
onstraint solver and optimizer is 
apable oflo
ating solutions to ben
hmarks in universally quanti�ed 
onstraint solving. Our implementationof the solver is 
omparable to a related implementation, whi
h means that further evaluations 
anbe performed using this solver as a representative of the solving strategy (see Se
tion 5.5.4.4, whi
h
ompares solving and optimization strategies for �
tion-to-animation ben
hmarks).5.5.4.4 Ben
hmarks formulated for virtual environmentsThis experiment investigates the problem of �nding solutions to 
onstraint systems that are for-mulated for spe
ifying time-based spatial relations in n-dimensional s
enes. We investigate thisproblem to determine if the interval optimizer is 
apable of lo
ating solutions to the types of
onstraints that are formulated by an automati
 �
tion-to-animation pro
ess. We investigate thefollowing questions:
• Is the interval-based quanti�ed 
onstraint optimization algorithm 
apable of lo
ating solutionsto 
onstraint systems formulated for s
enes without motion (non-quanti�ed) as well as s
eneswith motion (quanti�ed)?
• Does the 
onstraint optimizer fo
us the sear
h with the result of lo
ating solutions in lesstime?
• Is the interval optimizer 
apable of produ
ing approximate solutions for in
onsistent 
on-straint systems?This experiment is 
ondu
ted using the set of �
tion-to-animation ben
hmarks dis
ussed in Se
-tion 5.5.1.3, whi
h in
lude 
onstraint systems that spe
ify s
enes with and without motion, as wellas 
onstraint systems that are in
onsistent. These ben
hmarks are solved using the implementa-tion of the solver, and also using the interval optimizer. Time-to-solution is re
orded using bothte
hniques, and we �x an upper limit of 90 minutes for the solving/optimizing pro
ess.Time-to-solution for ea
h �
tion-to-animation ben
hmark is presented in Table 5.8 for boththe solver and the interval optimizer. The ∞ symbol is used when no solution is found withinthe allo
ated 90 minute period. The interval solver performs poorly over the set of 
onsistentben
hmarks, only �nding a solution for two ben
hmarks in the set. The interval optimizer lo
ates
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hmark Time/[s℄ Relaxation 
onstantName d n τ Solver Optimizer δfirst δbest Time-to-δbest/[s℄Consistent ben
hmarks without motion:Front 2 0 120 ∞ 1929.28 3620.63 0 1929.282S
ene 2 0 120 ∞ 2928.03 19339.99 0 2928.03Layout3 2 0 120 1364.438 60.78 9648.00 0 60.787Consistent ben
hmarks with motion:WayPoints 2 2 120 ∞ 578.768 63871.8 0 578.7682 3 500 ∞ 2071.92 56615.68 0 2055.775Dynami
1Stati
1 1 1 120 218.493 22.53 594 0 22.5332 1 500 ∞ 173.95 1197.00 0 173.952 2 600 ∞ ∞ 927.71 24.20 232.154Dynami
2 1 1 500 ∞ 337.35 81197.01 0 337.352 1 500 ∞ 471.97 324007.02 0 471.972 2 600 ∞ ∞ 761070.10 25.08 833.07In
onsistent ben
hmarks with and without motion:Collision4 2 0 120 ∞ ∞ 9546.00 219.54 3882.0762 1 120 ∞ ∞ 9642.24 4639.15 3213.20
d =dimension; n =degree of traje
tory; τ =threshold value for both τsolutions and τsplitsTable 5.8: Performan
e ben
hmarks for �
tion-to-animation 
onstraints.solutions to nine of the eleven ben
hmarks, in
luding ben
hmarks with and without motion. Thisindi
ates that 
onstraint systems exist where the interval optimizer lo
ates solutions in less timethan the interval solver. We believe that this is be
ause the relaxation pro
ess guides the sear
htowards solutions.The starting relaxation 
onstant δfirst and the lowest relaxation 
onstant a
hieved by theinterval optimizer δbest are re
orded in Table 5.8. In 
ases where solutions are lo
ated, δbest rea
heszero. Minimizers are found for ben
hmarks for whi
h no solutions are lo
ated, and the relaxation
onstant δbest provides an indi
ation of how 
losely the minimizer approximates a solution throughits distan
e to zero. We observe that the two 
onsistent ben
hmarks for whi
h no solutions arelo
ated result in minimizers that are 
lose to zero in 
omparison with δfirst.As expe
ted, solutions to in
onsistent ben
hmarks are neither lo
ated by the solver nor arethey lo
ated by the optimizer. However, the optimizer provides minimizers to both ben
hmarks,and in the 
ase of the s
ene without motion, produ
es a relaxation 
onstant that is redu
ed by97.70%. This result highlights the strength of the optimization approa
h, in that an approximatesolution is provided even where no solution exists.Table 5.8 presents the time-to-δbest value, whi
h is the time required to rea
h the lowest re-laxation 
onstant for a ben
hmark. In all 
ases where solutions are lo
ated, this value is equalto time-to-solution. However, for all in
onsistent ben
hmarks, this value is less than 5400 (90minutes), indi
ating that minimizers are lo
ated earlier than the 
uto� time threshold.The interval optimizer is e�e
tive at lo
ating solutions for 
onstraint systems that spe
ify time-based behaviour. The optimizer fo
uses the sear
h for solutions su
h that it lo
ates solutions fasterthan the solving te
hnique for these types of 
onstraint systems, and also produ
es approximatesolutions for in
onsistent 
onstraint systems.
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tion 5.5.4 on page 136 provide insight into the properties of theinterval-based quanti�ed 
onstraint optimizer with respe
t to the questions posed at the beginningof this se
tion:1. Threshold values for parametrizing the interval-based quanti�ed 
onstraint optimizer (toredu
e exe
ution time) vary a

ording to the 
onstraint system to be solved. The relaxation
onstant de
reases as a fun
tion of time, and given su�
ient time, the optimizer eventuallylo
ates a solution (for 
onsistent systems).2. Our implementation of the underlying algorithm is 
omparable to an existing implementationin terms of its ability to lo
ate solutions to standard ben
hmarks, as well as in terms of itss
alability with respe
t to the number of variables and 
onstraints in a system.3. The interval-based quanti�ed 
onstraint optimizer lo
ates solutions to 
onsistent 
onstraintsystems that 
ontain universally quanti�ed variables. There is a penalty for using an opti-mization pro
ess for �nding solutions to universally quanti�ed 
onstraint systems, whi
h iso�set by the availability of an approximate solution at any point.4. The 
onstraint optimizer lo
ates solutions to 
onstraint systems that des
ribe relations be-tween stationary and moving entities in a virtual environment. It also derives approximatesolutions for in
onsistent 
onstraint systems. Systems exist spe
i�
ally in the �
tion-to-animation domain where the trade-o� experien
ed using the optimizing strategy (as opposedto a solving strategy) is nulli�ed, and the optimizer lo
ates solutions faster than the solver.5.6 Con
lusionThe interval-based quanti�ed 
onstraint optimizer provides a solution to the problem of quan-tifying behaviour in a virtual environment. If behaviour is phrased as symboli
ally formulated
onstraints, this me
hanism is guaranteed to produ
e quanti�ed values that satisfy the 
onstraintsor approximate valid behaviour (in 
ases where 
onstraints 
on�i
t). We 
on
lude the followingwith regards to the initial problem statement at the beginning of this 
hapter:1. Constraints formulated over 
ontiguous intervals of time and spa
e are represented e�e
tivelyusing interval arithmeti
. This enables dire
t solving of symboli
ally phrased 
onstraints, andremoves the need to transform systems into dis
rete representations.2. Environment-independent spatial reasoning is a
hieved using an analyti
al formulation of
onstraints and their solutions using interval-based methods. This means that behaviour isquanti�ed prior to the instantiation of the environment, and provides for the 
onstru
tion ofenvironments at any point in the duration of a s
ene (for non-sequential �lming).(a) The interval-based representation provides for the identi�
ation of sound quanti�edsolutions over a 
ontiguous interval (this 
on
lusion is also rea
hed by Benhamou et al.(2004)). This ensures that no errati
 behaviour is produ
ed in a s
ene that 
ouldpotentially result from aliasing when using dis
rete solving methods.
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ess are also phrased as
ontiguous intervals. This provides a range of options for valid behaviour in a s
ene.3. The interval-based quanti�ed 
onstraint optimizer dire
ts the sear
h for solutions with theresult that it lo
ates solutions faster than a regular solving algorithm (for �
tion-to-animationben
hmarks). Relaxed 
onstraints and iterative tightening su

essfully prune the sear
h spa
eposed by the original 
onstraints. This is signi�
ant be
ause it redu
es sear
h time, and alsoestablishes a 
orrelation between sear
h time and the proximity of the pro
ess to an a
tualsolution.4. The interval-based quanti�ed 
onstraint optimizer addresses the trade-o� between lo
atingvalid behaviour 
on�gurations and the amount of time spent sear
hing for these 
on�gura-tions.(a) The optimization method e�e
tively maintains a solution approximation that is re�nedwith further exe
ution of the optimizer. This suggests that a human with limited timeis 
apable of 
ontinuing the �
tion-to-animation pro
ess with an approximate solution,but is free to use a more re�ned solution at a later stage if the optimization pro
ess
ontinues.(b) Optimization time is a�e
ted by the type of 
onstraint system being solved. The useof thresholds redu
es optimization time, but 
ustom threshold values must be deriveddepending on the type of system. We use a rule-of-thumb stating that the greater thenumber of variables, the larger these thresholds should be for shorter time-to-solution.5. A null solution is not the only possibility for in
onsistent 
onstraint systems that are 
re-ated automati
ally. The interval-based quanti�ed 
onstraint optimizer produ
es approximatesolutions even for in
onsistent 
onstraint systems. This guarantees quanti�ed behaviour (re-gardless of how �awed), despite in
onsisten
ies in the text or annotations.The interval-based quanti�ed 
onstraint optimizer provides a me
hanism for automati
ally quan-tifying s
ene behaviour. The derivation of analyti
al 
onstraint systems, as well as the 
onversionof 
onstraint solutions into 
orresponding visuals is dis
ussed in Chapter 6.This 
hapter 
ontributes innovative work with regards to the text-to-graphi
s task and interval-based 
onstraint solving:
• We present the �rst use of interval-based 
onstraint solving in the text-to-graphi
s domain.
• To the knowledge of the author, this work is the �rst to employ quanti�ed 
onstraint solvingte
hniques from an optimization perspe
tive rather than a solving perspe
tive. In parti
ular:� This work presents the �rst method for optimizing universally quanti�ed 
onstraintsystems where a solution is not guaranteed to exist.� This work is the �rst to provide a me
hanism that allows early termination of theuniversally quanti�ed solution-�nding pro
ess while still providing values that 
an beused in subsequent appli
ations.
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• We 
ontribute to the �eld of interval-based 
onstraint solving through the 
reation of an inner
ontra
ting operator that fun
tions over a set of 
onstraints (rather than a single 
onstraintat a time).
• Our method of using a divide and 
onquer approa
h for lo
ating roots over univariate fun
-tions 
ontributes an alternative strategy for implementing the BC3 algorithm that does notrequire the implementation of division or root operators. While resulting in slower 
on-vergen
e, this method does not seriously impa
t the performan
e or s
alability of solvingmethods.Future work in
ludes investigating further enhan
ements to the IOPT2 algorithm to speed up
onvergen
e to a minimum or solution. This is parti
ularly important when s
aling to the typesand quantity of 
onstraints automati
ally generated from annotated text. This issue is investigatedfurther in Chapter 6.



Chapter 6Population of virtual worldsThis 
hapter des
ribes the 
reation of multi-modal animated 3D environments and �lms from an-notated �
tion text. The interpretation pro
ess 
onsists of deriving high-level s
ene des
riptionsfrom the annotations that in
lude the list of s
enes to visualize and the 
ontents and behaviourin ea
h s
ene (Se
tion 6.2). High-level behaviour is expressed using abstra
t 
onstraints, and isquanti�ed in a virtual environment through the optimization of 
orresponding analyti
al expres-sions (Se
tion 6.3). The �nal step in the pro
ess automati
ally populates virtual environments sothat they visually represent the des
riptions in the original text (Se
tion 6.4). We evaluate theinterpretation pro
ess in terms of the degree of 
onsisten
y of the automati
ally generated 
ontent,and in terms of the degree to whi
h the visualized s
ene 
orresponds to the original text (Se
tion6.5). We provide 
on
lusions regarding the automated interpretation pro
ess in Se
tion 6.6.6.1 Introdu
tion6.1.1 Problem statementAnnotated text forms the intermediate representation of the �
tion-to-animation pro
ess. Giventhe existen
e of annotations identifying visual des
riptions in �
tion text, we investigate the inter-pretation of these annotations for 
reating 
orresponding virtual environments. This problem is
hara
terized as follows:1. Annotations (in 
ategories su
h as those des
ribed in Chapter 4) identify s
ene related aspe
tsof the �
tion text. These annotations must be interpreted for 
reating s
ene des
riptions(su
h as: the list of s
enes to be visualized; the 
ontents of ea
h s
ene; and the behaviour ofentities in ea
h s
ene) in a stru
tured manner.2. Given the presen
e of stru
tured s
ene des
riptions, 
orresponding virtual environments mustbe instantiated and populated, a problem that in
ludes: 
hoosing appropriate visual i
onsto represent entities des
ribed in the text; 
reating geometry that visualizes appropriateba
kground s
enery; and visualizing the behaviour spe
i�ed by the annotations. This problemalso in
ludes the automati
 
onstru
tion of multi-modal presentations of the �
tion text.146



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 147Room:Anne slept in the next room. Julian ran in and shook her. "Wake up! It's Tuesday! And the sun's shining."Anne woke up with a jump and stared at Julian joyfully. "It's 
ome at last!" she said. "I thought it never would.Oh, isn't it an ex
iting feeling to go away for a holiday!"Outside:They started soon after breakfast. Their 
ar was a big one, so it held them all very 
omfortably. Mother sat in frontwith Daddy, and the three 
hildren sat behind, their feet on two suit
ases. In the luggage-pla
e at the ba
k of the
ar were all kinds of odds and ends, and one small trunk. Mother really thought they had remembered everything.London:Along the 
rowded London roads they went, slowly at �rst, and then, as they left the town behind, more qui
kly.Country:Soon they were right into the open 
ountry, and the 
ar sped along fast. The 
hildren sang songs to themselves, asthey always did when they were happy.Figure 6.1: Example de
omposition of �
tion text into s
enes, from the Famous Five 1: Five on aTreasure Island by Enid Blyton (1942).The virtual environments 
reated from the interpreted text should 
onform to the des
riptions inthe original text. The above problems are investigated under the assumption that annotated textis available (produ
ed with the aid of the ma
hine learning algorithm in Chapter 4).6.1.2 Problem formulationThe interpretation of annotated �
tion text for 
reating virtual environments is subje
tive to thehuman performing the task. Previous work interprets a �
tion book as an a

ount of a virtualuniverse, where events in the book are reported out of order for dramati
 purposes (Glass andBangay, 2007a). The 
reation of a virtual universe means �unraveling� the order of events so thatthey o

ur in the 
orre
t order in the 3D environment. Fi
tion text does not always provide expli
itindi
ations of event order, whi
h means that knowledge-ri
h reasoning must be used to automatethe unraveling pro
ess (Ma and M
Kevitt, 2004a; Ma, 2006).We use an alternative interpretation that divides a book into a number of s
enes (the de�nitionof whi
h is provided in Chapter 5, De�nition 5.1 on page 107), ea
h of whi
h is independent and
onsidered its own virtual universe. Sequen
es of tokens in a �
tion book des
ribe one parti
ulars
ene, examples of whi
h are presented in Figure 6.1. Textual triggers for Setting, Obje
t, Avatar,Transition, and Relation annotations within ea
h segment of text are interpreted only in the s
enein whi
h they o

ur.The identi�
ation of whi
h s
enes to instantiate forms the �rst part of the interpretation pro-
ess. Subsequent tasks in
lude interpreting annotations for identifying the entities that o

ur inea
h s
ene, and how these entities behave. We �rst spe
ify these s
ene details on a high level,re
ognizing that ambiguity manifests during the interpretation of annotations. This allows forhuman intervention if required. For example, behaviour in a s
ene is �rst expressed using high-level abstra
t 
onstraints that are human readable and 
ondu
ive to review and modi�
ation ifne
essary.We design abstra
t 
onstraints to allow dire
t 
onversion into symboli
 analyti
al equivalents.Solutions to these 
onstraints quantify behaviour in a virtual environment, and are determinedusing the interval-based quanti�ed 
onstraint optimizer (des
ribed in Chapter 5).Given stru
tured s
ene des
riptions and quanti�ed s
ene behaviour, the �nal step in the inter-pretation pro
ess instantiates animated 3D virtual environments. This in
ludes sele
ting geometry
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Figure 6.2: Illustration of the 
onstraint 
reation and s
ene 
reation modules in the �
tion-to-animation pro
ess.to represent entities in ea
h environment as well as applying the 
orre
t behaviour to entities inea
h s
ene.Ea
h of the above three problems are investigated in this 
hapter, namely the interpretation ofannotations for spe
ifying s
ene des
riptions, the quanti�
ation of behaviour in a s
ene, and theinstantiation and population of virtual environments.6.1.3 ContextThe interpretation task of the �
tion-to-animation pro
ess is investigated in this 
hapter. The
ontext of this problem within the 
onversion pro
ess is illustrated in Figure 6.2). We assumethe existen
e of annotated �
tion text, the automati
 
reation of whi
h is des
ribed in Chapter4. In this 
hapter we investigate the interpretation of these annotations in 
reating quanti�ed
onstraint systems, solutions to whi
h are found using the interval-based quanti�ed 
onstraintoptimizer des
ribed in Chapter 5.Te
hniques for automati
ally populating a virtual environment from interpreted annotationsand quanti�ed behaviour are des
ribed in this 
hapter. The output of these pro
esses in
ludesmulti-modal animated 3D virtual environments, and 
orresponding animated �lms. The workpresented in this 
hapter is a more detailed des
ription of resear
h by the same author (Glass andBangay, 2008).6.2 High-level s
ene des
riptions from interpreted annota-tionsWe use the term s
ene des
ription to 
olle
tively des
ribe: the list of s
enes to be instantiatedas virtual environments, the 
ontents of ea
h s
ene, and the behaviour of entities in ea
h s
ene.This information is expressed using high-level (but stru
tured) des
riptions. This ensures that
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Figure 6.3: Illustration of the interpretation module for 
reating 
onstraints from annotated �
tiontext."Mother, have you heard about our summer holidays yet?" said Julian, at the breakfast-table. "Can we go toPolseath as usual?""I'm afraid not," said his mother. "They are quite full up this year."The three 
hildren at the breakfast-table looked at one another in great disappointment. They did so love thehouse at <setting>Polseath</setting>. The <setting>bea
h</setting> was so lovely there, too, and thebathing was �ne."Cheer up," said Daddy. "I dare say we'll �nd somewhere else just as good for you. And anyway, Mother and Iwon't be able to go with you this year. Has Mother told you?"Figure 6.4: Example of text 
ontaining Setting annotations, from the Famous Five 1: Five on aTreasure Island by Enid Blyton (1942).s
ene des
riptions are human readable (providing for manual modi�
ation or for the inje
tion of
reativity), but are also 
ondu
ive to further pro
essing using automated te
hniques.We present a work-�ow of automated knowledge-poor te
hniques for 
reating high-level s
enedes
riptions from annotated �
tion text. The di�erent 
ategories are illustrated in Figure 6.3, asare the knowledge-poor pro
esses used for their 
reation. This work-�ow permits human interven-tion for handling ex
eptions that o

ur during interpretation not handled by the knowledge-poorte
hniques.The knowledge-poor te
hniques for produ
ing ea
h 
ategory of s
ene des
ription are dis
ussedin the following se
tions.6.2.1 S
ene segmentationAs des
ribed in Se
tion 6.1.2, ea
h s
ene 
orresponds to a single physi
al setting. Annotation
ategories su
h as Setting (de�ned in Chapter 4) identify physi
al settings, and we use theseannotations to segment text into s
enes.S
ene des
riptions are not always expli
itly mentioned in �
tion writing, an example of whi
h ispresented in Figure 6.4. The initial setting in this example is not expli
itly stated, and every tokenup until �Polseath� is automati
ally assigned a DEFAULT setting. Human intuition indi
ates thatthe des
ribed s
ene is likely to be o

urring in a KITCHEN based on eviden
e from des
ribedobje
ts su
h as �breakfast-table�. A human is able to spe
ify the 
orre
t setting manually forex
eptional 
ases su
h as this.The next step in the abstra
t 
onstraint 
reation pro
ess is 
on
erned with identifying entitiesin ea
h s
ene.
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ation of entitiesThe entities that appear in a s
ene are identi�ed using annotation 
ategories su
h as Avatar andObje
t, and we 
onstru
t a list of entities identi�ed by these annotations for ea
h s
ene. Werepresent entities using entity des
riptors, whi
h are s
ene-independent stru
tures that asso
iateinformation (regarding instantiation in a virtual environment) with ea
h entity mentioned in abook. Des
riptors 
ontain information unique to an entity, in
luding the geometri
 model torepresent the entity graphi
ally in a virtual environment, and the type of motion asso
iated withthe entity.An entity des
riptor is 
reated for every unique entity in the �
tion book. Entities su
h asavatars o

ur in many di�erent s
enes, and the same entity des
riptor for an entity is used a
rossdi�erent s
enes.When an entity des
riptor is 
reated, a geometri
 model is automati
ally sele
ted to representthe entity in a virtual environment. We sour
e models from a library of geometri
 models. Ea
hmodel in the library is annotated with des
riptive keywords that are mat
hed against the annotatedtokens. The types of model returned by the library depend on the 
ategory of annotation, and forAvatar and Obje
t 
ategories are as follows:
• Avatars: Avatars are assumed to be human, and only humanoid models are appropriate forthis 
ategory. The token annotated in this 
ategory is likely to be the name of the avatar andwe use a gazetteer of names to determine the gender, and sele
t the appropriately genderedmodel.
• Obje
ts: The token annotated in this 
ategory is used as a sear
h term when querying themodel library, mat
hing the sear
h term with the des
riptive keywords asso
iated to ea
hmodel. In 
ases where no mat
hing keywords are found, we use synonyms of the annotatedtoken as sear
h terms (provided by WordNet Fellbaum (1998)). We also use hypernyms ofthe annotated token as a sear
h term, abstra
ting the tokens until no further abstra
tion ispossible. If no mat
hing models are found, we use a default pla
eholder obje
t (a 
ube) torepresent the obje
t visually.The a

urate sele
tion of geometri
 models depends on the annotation 
onventions adopted for
reating Obje
t and Avatar annotations. For example, in our annotated version of the FamousFive 1: Five on a Treasure Island by Enid Blyton (1942), the 
hara
ter Timothy is annotated asan avatar, but Timothy is a
tually a dog. This ex
eption is 
orre
ted manually.We also use the annotation 
ategory to determine whether a model is stati
 or dynami
 in a vir-tual environment. Avatars are assigned traje
tories that permit motion in the virtual environment,while the traje
tories assigned to obje
ts permit no movement.6.2.3 Co-referen
e resolutionAmbiguous referen
es to entities exist in the annotated text. For example, anaphora is often usedto refer to entities (the use of �he� or �it�). Annotation 
ategories su
h as Transition and Relationpotentially identify anaphori
 tokens as the subje
t or obje
t of the behaviour, and these must beresolved to determine the entities that are involved in the behaviour des
ribed by the annotations.
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ts:ANNE COWDADDYAnne/ANNE didn't very mu
h like a big brown 
ow/COW who 
ame up 
lose and stared at her/ANNE, butit/COW went away when Daddy/DADDY told it/COW to.Figure 6.5: Illustration of an entity list and resolved 
o-referen
e.We resolve instan
es of personal pronominal anaphora (su
h as �he� and �she�) by keepingtra
k of the last expli
itly mentioned male and female avatars, and mat
hing the gender of theanaphori
 token with the 
orresponding gender-mat
hed avatar (avatar gender is determined usingthe method des
ribed in Chapter 3). Currently, we do not resolve non-gender spe
i�
 pronounssu
h as �it� and we do not 
ater for general anaphori
 
ases (for example, in the 
ase where theword �boy� indire
tly refers to a spe
i�
 male avatar). Human intervention is permitted to resolvethese ex
eptions should they o

ur. Future enhan
ements to this pro
ess in
lude the use of moresophisti
ated anaphora resolution te
hniques (Lappin and Leass, 1994; Nasukawa, 1994; Kennedyand Boguraev, 1996; Mitkov, 1998; Mitkov et al., 2002; Castaño et al., 2002; Dimitrov, 2002) and
o-referen
e resolution methods (Baldwin, 1997; Dimitrov, 2002).An example of an entity list 
reated for a s
ene from the Famous Five 1: Five on a TreasureIsland by Enid Blyton (1942) is presented in Figure 6.5, whi
h 
ontains entities in the 
ategory ofAvatar and Obje
t. The senten
e 
ontains examples of resolved 
o-referen
es with regards to theentities listed above. The pronoun �her� is automati
ally linked to the entity �Anne�. Pronounssu
h as �it� are resolved manually to the �
ow� entity.6.2.4 Abstra
t 
onstraints for spe
ifying behaviourWe 
reate a human readable summary of behaviour in a s
ene using abstra
t 
onstraints. Abstra
t
onstraints are phrased in terms of the entities involved, the type of behaviour that o

urs, as wellas the interval of time over whi
h the behaviour is to take pla
e. They are stru
tured to allow forautomati
 
onversion into equivalent analyti
al expressions:De�nition 6.1. An abstra
t 
onstraint spe
i�es a time-quanti�ed relation between two entitiesin an environment. Abstra
t 
onstraints are de�ned in terms of the following �elds:
• Subje
t: The entity responsible for the behaviour.
• Relation: The type of behaviour des
ribed by the 
onstraint.
• Obje
t: The referen
e entity or an
hor point of the behaviour.
• Start-time: The time in the s
ene at whi
h the behaviour begins.
• End-time: The time in the s
ene at whi
h the behaviour terminates.Annotation 
ategories that des
ribe behaviour (su
h as Transition and Relation) map dire
tlyto abstra
t 
onstraints. The token in the subje
t text-referen
e of the annotation is linked to anentity des
riptor (this link is 
reated during the 
o-referen
e resolution step), and the identi�er



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 152Annotated text:He/JULIAN stole <transition subje
t=�he� type=�INSIDE�>in</transition>. ...He tiptoed by him to the table/TABLE <relation subje
t=�table� obje
t=�
hair�type=�BEHIND�>behind</relation> his un
le's 
hair/CHAIR.Corresponding abstra
t 
onstraints:CONSTRAINT 1: CONSTRAINT 2:Subje
t: JULIAN Subje
t: TABLERelation: INSIDE Relation: BEHINDObje
t: ROOM Obje
t: CHAIRStart-time: 5 Start-time: 0End-time: 30 End-time: 30Figure 6.6: Example abstra
t 
onstraints derived from annotated behaviour in a �
tion extra
t.for the des
riptor is used for the subje
t �eld of the 
onstraint. The same applies for the obje
ttext-referen
e and 
orresponding �eld in the 
onstraint. The type �eld for both Transition andRelation annotations is used in the relation �eld of the abstra
t 
onstraint. An example of a setof abstra
t 
onstraints is presented in Figure 6.6.Abstra
t 
onstraints are 
reated from annotation 
ategories spe
ifying behaviour (expli
it 
on-straints), or are 
reated automati
ally to ensure physi
al believability in the s
ene (impli
it 
on-straints). Impli
it noCollide 
onstraints are added for every pair of entities in the s
ene to ensurethat entities do not interpenetrate. The one ex
eption is the 
ase where one entity is inside anotherentity (spe
i�ed by a Relation annotation). We also 
reate an impli
it near 
onstraint for 
ertaintypes of Relation annotation, in
luding inFrontOf , behind, toLeftOf , toRightOf , onTopOfand below.Temporal information is required for the start-time and end-time �elds. Assume a �
tionbook is narrated in the audio modality (
orresponding to being read aloud) using, for example,a spee
h synthesizer. Language units in the book use a �nite interval of time when verbalized.Ea
h s
ene 
onsists of a sequen
e of language units, and the total time taken for the play-ba
k ofthe 
orresponding audio provides an indi
ation of s
ene duration, and a referen
e against whi
hthe time-�elds of abstra
t 
onstraints 
an be spe
i�ed. We des
ribe a time-line derived fromaudio narrations as a presentation time-line be
ause it represents the original order of presentationintended by the author (and avoids the event �unraveling� problem des
ribed in Se
tion 6.1.2).Time information for abstra
t 
onstraints is derived by 
al
ulating the time-value of an anno-tation trigger with respe
t to the presentation time-line. Spee
h synthesis produ
es audio at thesenten
e level, and the timing for an annotation trigger is estimated in terms of the token's o�setin the senten
e and the starting time of the senten
e in the s
ene:
offset of trigger in sentence =

position of token in sentence

number of tokens in sentence
∗ audio length of sentence

start time of trigger = start time of sentence+ offset of trigger in sentence
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inFigure 6.7: Illustration of the relationship between the presentation time-line and behaviour in a3D virtual environment.An illustration of the relationship between �
tion text, the audio �les, and their interpretationas a presentation time-line is illustrated in Figure 6.7. The manner in whi
h abstra
t 
onstraintsare syn
hronized is also indi
ated.The derivation of a start-time and end-time for an abstra
t 
onstraint depends on the 
ategoryof annotation from whi
h the 
onstraint is derived:1. Transition: By default, the start-time of the 
onstraint 
orresponds to the time of the triggerof the annotation, while the end-time 
orresponds to the end of the s
ene. A sequential listis maintained for ea
h entity that re
ords all the 
onstraints that apply to it. On
e all
onstraints are added, ea
h entity's list is traversed from start to end, setting the end-timeof ea
h 
onstraint to the start-time of the following 
onstraint. If the �rst 
onstraint foran entity is of type inside at a time greater than zero, then an impli
it outside 
onstraintis inserted from time 0 to the start-time of the �rst 
onstraint, to ensure that the entity isinitially outside the s
ene. Any entities that are not 
onstrained by a transition 
onstraint areautomati
ally assigned an impli
it inside 
onstraint for the duration of the s
ene to ensurethat they appear in the s
ene.2. Relation: The start-time and end-time for relation 
onstraints depend on the traje
tory ofthe entities involved. If both entities are stati
, then the 
onstraint is set to last the durationof the s
ene (be
ause the entity is unable to move to satisfy the 
onstraint). If a dynami
entity is involved then the start-time of the 
onstraint is set to the time of the trigger token ofthe annotation, while the end-time is set to the end-time of the s
ene. If a relation 
onstraintapplying to an entity overlaps with an outside 
onstraint for that entity, then the end-timeof the relation 
onstraint is set to be the start-time of the outside 
onstraint for that entity.This avoids potential 
on�i
ts in terms of relations that 
annot hold while an entity is outsidethe s
ene.High-level s
ene des
riptions that are 
reated using the knowledge-poor methods in this se
tionin
lude: a list of s
enes to be instantiated; the 
ontents of ea
h s
ene (spe
i�ed using des
riptors);and the behaviour of entities in ea
h s
ene (spe
i�ed using abstra
t 
onstraints). Before a virtualenvironment 
an be instantiated for ea
h s
ene, pre
ise values that quantify the behaviour in ea
hvirtual environment are required.
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t 
onstraints des
ribe behaviour on a high level, but do not provide pre
ise numeri
alvalues for visualizing behaviour in a virtual environment. If abstra
t 
onstraints are 
onverted intosymboli
 analyti
al expressions, then the interval-based quanti�ed 
onstraint optimizer des
ribedin Chapter 5 
an be used to �nd these values.We de�ne entity behaviour in terms of lo
ation, whi
h is expressed as a fun
tion of time so thatentities are 
apable of moving in the virtual world. We represent this behaviour using traje
toriesthat are de�ned in terms of a set of variables. These traje
tories should 
onform to the behavioursummarized in the set of abstra
t 
onstraints.6.3.1 Constrained model traje
toriesWe assume a s
ene exists over the time interval [t0, t1]. Ea
h modelM in the s
ene of dimension d isasso
iated with a traje
tory rM
d (t) = [r1(t), ..., rd(t)] parametrized a

ording to time t. Traje
toriesare de�ned as parametri
 
urves over time, using for example, a Bezier 
urve of degree n (Buss,2003):

rM (t) =

n
∑

i=0

Bn
i (t)piwith the blending fun
tion Bn

i (t) = ti(1 − t)n−i. The 
ontrol points pi spe
ify the shape of the
urve, and 
onsequently the traje
tory of the asso
iated model in the s
ene. The problem ofquantifying behaviour is transformed into �nding values for the 
ontrol points so that the set of
onstraints is satis�ed over the duration of the s
ene.Abstra
t 
onstraints express spatial relations between two entity models over an interval oftime. We de�ne an equivalent analyti
al 
onstraint as follows:De�nition 6.2. Quanti�ed Constraint : Let rM (t) and rN (t) be traje
tories for two models Mand N respe
tively. A quanti�ed 
onstraint c(rM , rN , [tstart, tend]) is a symboli
 expression thatexpresses a relation between the two traje
tories that exists for all time between tstart and tend.Quanti�ed 
onstraints are derived for ea
h abstra
t 
onstraint. The formulation of the expres-sion depends on the relation �eld of the abstra
t 
onstraint. In this exposition, the Transition andRelation annotation 
ategories are used to spe
ify behaviour (and 
reate abstra
t 
onstraints),and expressions must be derived for the di�erent types of behaviour in these 
ategories. Transi-tion annotations are de�ned as one of two semanti
 types, namely inside or outside, indi
atingwhether the entity is inside or outside the s
ene (des
ribed in Chapter 4). A Relation annotationis one of several types, in
luding inFrontOf , behind, toLeftOf , toRightOf , onTopOf , or below.Behaviour types are interpreted as spatial relationships between two entities.6.3.1.1 Spatial 
onstraintsLet M and N be the obje
t models for two items in a s
ene with dimension d. Assume that ea
hmodel is bound using a bounding sphere of radius aM and aN respe
tively. Let rM (t) and rN (t)be traje
tories for the two models M and N respe
tively. We de�ne the spatial relations in termsof three 
anoni
al quanti�ed 
onstraints, namely near, noCollide, and directionRelation.
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Figure 6.8: Illustration of the spatial relationship des
ribed by the near 
onstraint.

Figure 6.9: Illustration of the spatial relationship des
ribed by the noCollide 
onstraint.Near The 
onstraint near(rM (t), rN (t), [tstart, tend]) spe
i�es that two models must be 
lose toone another over time interval t ∈ [tstart, tend], expressed in terms of the Eu
lidean distan
e asfollows:
||rM (t)− rN (t)||2 < (aM + aN + α)2 ∀t ∈ [tstart, tend]

||rM (t)− rN (t)||2 − (aM + aN + α)2 < 0 ∀t ∈ [tstart, tend]where α is the minimum distan
e 
onsidered to verify the term �near� (for instan
e, 1 meter). The
near s
enario is illustrated in Figure 6.8.Abstra
t 
onstraints with the relation near or inside are 
onverted into expressions of thistype. For near 
onstraints, α is 
hosen as 1 meter, but for inside 
onstraints there must be nodistan
e between the two models, and so we use a value of α = 0 for 
onstraints of this type.NoCollide The 
onstraint noCollide(rM (t), rN (t), [tstart, tend]) spe
i�es that two models mustnot interpenetrate over time interval t ∈ [tstart, tend], expressed in terms of the Eu
lidean distan
eas follows:

||rM (t)− rN (t)||2 > (aM + aN )2 ∀t ∈ [tstart, tend]

||rM (t)− rN (t)||2 − (aM + aN )2 > 0 ∀t ∈ [tstart, tend]The noCollide s
enario is illustrated in Figure 6.9. Abstra
t 
onstraints with the relation noCollideare 
onverted into expressions of this type.Dire
tionRelation The 
onstraint directionRelation(rM (t), rN (t), [tstart, tend]) spe
i�es the lo-
ation of M with referen
e to N . We de�ne u(t) as a dire
tion ve
tor of N , and v(t) as the ve
torindi
ating the dire
tion from N to M , 
al
ulated as v(t) = rM (t)− rN (t). For simpli
ity, the timeparameter is not shown in the following formulations.
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Figure 6.10: Illustration of the spatial relationship des
ribed by the dire
tionRelation 
onstraint.Consider Figure 6.10. For model M to be related to N a

ording to the dire
tion u, the angle
ǫ should be less than a 
ertain value. This is also phrased in terms of the length of the ve
tor w,whi
h should be less than an amount α, that is ||w|| < α or:

||w||2 < α2

||w||2 − α2 < 0We 
al
ulate w using the proje
tion of v on u: w = v − projuv = v − u

||u||2 (u · v).Let ǫ be the angle between u and v, then α is expressed in terms of ǫ by the trigonometri
relation: sin(ǫ) = α/||v||. The 
onstraint above is rephrased as follows:
||w||2 − α2 < 0

w ·w − (v · v)sin2(ǫ) < 0
(

v||u||2 − u(u · v)
)

·
(

v||u||2 − u(u · v)
)

/||u||4 − (v · v)sin2(ǫ) < 0
(

(v · v)||u||4 − 2||u||2(u · v)2 + ||u||2(u · v)2
)

/||u||4 − (v · v)sin2(ǫ) < 0

(v · v)(1− sin2(ǫ))− (u · v)2/||u||2 < 0

||u||2||v||2cos2(ǫ)− (u · v)2 < 0The referen
e dire
tion of u depends on the type of dire
tional relation being spe
i�ed. Forexample, if an inFrontOf relation is spe
i�ed, then u is the forward fa
ing dire
tion of the model
N . If rN (t) is of a degree greater than zero (dynami
 entity), then the forward dire
tion is thetangent of the traje
tory, 
al
ulated using the derivative of rN (t). If N is a stati
 model, then uis an arbitrary ve
tor (default dire
tion, or spe
i�ed by a human).Constraints of type inFrontOf , behind, toLeftOf , toRightOf , onTopOf , or below are de-�ned using the same formulation of the directionRelation 
onstraint, but varying in the 
hoi
e of
u for determining the referen
e dire
tion.6.3.1.2 Constraint systemsEvery abstra
t 
onstraint for a parti
ular s
ene is 
onverted into an equivalent quanti�ed 
onstraint,the result of whi
h is a system of 
onstraints. The mapping used to 
onvert abstra
t 
onstraints to
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t relation Quanti�ed 
onstraint Parameters
M near N near(rM (t), rN (t), [t0, t1]) α = 1
M inside N near(rM (t), rN (t), [t0, t1]) α = 0
M noCollide N noCollide(rM (t), rN (t), [t0, t1]) -
M inFrontOf N
M behind N
M toRightOf N
M toLeftOf N
M onTopOf N
M below N

directionRelation(rM (t), rN (t), [t0, t1]) ǫ = 45◦

Table 6.1: Dire
t mapping between abstra
t 
onstraints and quanti�ed 
onstraints.quanti�ed 
onstraints depends on the relation �eld of the abstra
t 
onstraint and is summarizedin Table 6.1.We provide an example to illustrate the 
onversion of abstra
t 
onstraints into quanti�ed 
on-straint systems. Consider the following set of abstra
t 
onstraints:CONSTRAINT 1: CONSTRAINT 2: CONSTRAINT 3:Subje
t: JULIAN Subje
t: TABLE Subje
t: CHAIRRelation: NEAR Relation: NOCOLLIDE Relation: INFRONTOFObje
t: TABLE Obje
t: JULIAN Obje
t: TABLEStart-time: 0 Start-time: 0 Start-time: 0End-time: 5 End-time: 5 End-time: 5For the sake of illustration, we assume that entity des
riptors exist for Julian, Table, andChair and that geometri
 models J, T, and C are asso
iated with these respe
tive entities. Ea
hof these entities is assigned a traje
tory, and as des
ribed in Se
tion 6.2.2, the avatar is dynami
(traje
tory of degree greater than 0), while the two obje
ts are stati
 (degree 0):
• rJ (t) = (1− t)pJ

0 + tpJ
1

• rT (t) = pT
0

• rC(t) = pC
0In this example, we assume that the s
ene is de�ned in two dimensions, that is, ea
h 
ontrol pointis of the form pi = (xi, zi). The behaviour for this s
ene is therefore expressed in terms of eightvariables V = {xJ

0 , z
J
0 , x

J
1 , z

J
1 , x

T
0 , z

T
0 , x

C
0 , z

C
0 }. Constraint 1 is phrased in terms of these variablesusing the formulation of the near expression:

c1 : near(rJ (t), rT (t), [0, 5])

⇔ ||rJ (t)− rT (t)||2 − (aJ + aT + α)2 < 0 ∀t ∈ [0, 5]

⇔ ||(1− t)pJ
0 + tpJ

1 − pT
0 ||2 − (aJ + aT + α)2 < 0 ∀t ∈ [0, 5]

⇔ ((1− t)xJ
0 + txJ

1 − xT
0 ))2 + ((1− t)zJ

0 + tzJ
1 − zT

0 ))2 − (aJ + aT + α)2 < 0 ∀t ∈ [0, 5]
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c2 : noCollide(rJ (t), rT (t), [0, 5])

⇔ ||rJ (t)− rT (t)||2 − (aJ + aT )2 > 0 ∀t ∈ [0, 5]

⇔ ||(1− t)pJ
0 + tpJ

1 − pT
0 ||2 − (aJ + aT )2 > 0 ∀t ∈ [0, 5]

⇔ ((1− t)xJ
0 + txJ

1 − xT
0 ))2 + ((1− t)zJ

0 + tzJ
1 − zT

0 ))2 − (aJ + aT )2 > 0 ∀t ∈ [0, 5]Constraint 3 is phrased in terms of the inFrontOf expression. The traje
tories for both Tableand Chair are of degree zero, whi
h means that we 
annot use the derivative of rT (t) for theforward fa
ing dire
tion u. We assume that u = (ux, uz) is a manually assigned default value.
c3 : directionRelation(rT (t), rC(t), [0, 5])

⇔ ||u||2||v||2cos2(ǫ)− (u · v)2 < 0 ∀t ∈ [0, 5]

⇔ ||u||2||rC(t)− rT (t)||2cos2(ǫ)−
(

u · (rC(t)− rT (t))
)2
< 0 ∀t ∈ [0, 5]

⇔ (u2
x + u2

z)||pC
0 − pT

0 ||2cos2(ǫ)−
(

u · (pC
0 − pT

0 )
)2
< 0 ∀t ∈ [0, 5]

⇔ (u2
x + u2

z)
(

(xC
0 − xT

0 )2 + (zC
0 − zT

0 )2
)

cos2(ǫ)−
(

ux(xC
0 − xT

0 ) + uz(z
C
0 − zT

0 )
)2
< 0 ∀t ∈ [0, 5]A system of 
onstraints C is the 
onjun
tion of these 
onstraints:

C ⇔ c1 ∧ c2 ∧ c3Simultaneous solving is required to lo
ate values for the 
ontrol points that verify all three of theseequations, a te
hnique for whi
h is des
ribed in the following se
tion.6.3.2 Constraint system solving and optimizationA me
hanism for solving systems of simultaneous quanti�ed 
onstraints using interval arithmeti
is des
ribed in Chapter 5, namely the interval-based quanti�ed 
onstraint optimizer.Some s
ene-related ben
hmarks evaluated in Chapter 5 
annot be solved using either a solvingor an optimization te
hnique. In this respe
t, the 
apability of the solution �nding te
hniquedi
tates the level of 
omplexity of the automati
ally 
reated 
onstraint systems. In this se
tionwe examine what 
hara
teristi
s a 
onstraint system should exhibit so that its solutions are foundin a feasible time using the optimizer presented in Chapter 5. These 
hara
teristi
s in�uen
e themanner in whi
h 
onstraint systems are 
reated from abstra
t 
onstraints.Solution approximations are provided for ben
hmarks in Chapter 5 when no solutions are found.In 
ases su
h as these, it is useful to have a measure of the quality for the approximate solution.In this se
tion we show how a quality metri
 is obtained during the optimization pro
ess.6.3.2.1 The relaxation 
onstant as a quality metri
The interval-based quanti�ed 
onstraint optimizer uses the 
on
ept of relaxed 
onstraints in sear
h-ing for a solution. Ea
h 
onstraint ci is relaxed by a quantity δi, whi
h we 
all the relaxation
onstant. If the 
onstraint expression is formulated 
orre
tly, then δi indi
ates the level of qualityof the approximate solution.For quality to have meaning, it must be expressed in terms of a unit that is relevant to thes
ene and that is 
ommon a
ross all 
onstraints. Distan
e is an example of su
h a measure, where
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ates how far (for example, in meters) an approximate solution is froman a
tual solution. Our formulation of spatial 
onstraints in Se
tion 6.3.1 is expressed in terms ofdistan
e for this reason:
• near: this 
onstraint is expressed as the squared Eu
lidean distan
e between two entities(see Se
tion 6.3.1.1). A relaxed 
onstraint of this form repla
es the zero on the right handside with a value represented by δ:

||rM (t)− rN (t)||2 − (aM + aN + α)2 < δIn this 
ase, δ is the squared distan
e of the approximate solution from the a
tual solution,and √δ indi
ates the distan
e in whi
hever unit the s
ene is spe
i�ed. The 
loser the valueof √δ is to zero, the 
loser the approximation is to the a
tual solution. Therefore, qualityfor 
onstraints of this type is:
quality =

√
δ

• noCollide: this 
onstraint is also expressed as the squared Eu
lidean distan
e between twoentities (see Se
tion 6.3.1.1), and has a relaxation 
onstant of the same formulation:
||rM (t)− rN (t)||2 − (aM + aN )2 > δQuality for 
onstraints of this type is also de�ned as:

quality =
√
δ

• directionRelation: this 
onstraint restri
ts the spatial distan
e between a model and thedire
tion ve
tor of the referen
e model. A relaxed 
onstraint appears as follows:
||u||2||v||2cos2(ǫ)− (u · v)2 < δThe above 
onstraint was formulated using zero on the right hand side, whi
h allowed mul-tipli
ation throughout by the ||u||2 value. Squared distan
e is expressed by δ/||u||2, whi
hmeans that quality is de�ned as:

quality =

√

δ

||u||2Ea
h of the above quality values measures the distan
e of an approximate solution from an a
tualsolution over a time interval.Quality for all three 
onstraint types is measured in the same unit (distan
e). The quality ofan approximate solution to a system of 
onstraints is evaluated as the sum of the quality for ea
hindividual 
onstraint in the system. The 
loser the total sum is to zero, the better the quality ofthe approximate solution.
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tion-to-animation 
onstraint systemsWe investigate the idea of quality with respe
t to the �
tion-to-animation ben
hmarks used inChapter 5, for answering the following questions:1. Does the quality metri
 re�e
t when an a
tual solution is lo
ated?2. Does quality improve as the optimization progresses?3. What e�e
t does the degree of the traje
tory and the dimensionality of the s
ene have on thequality of an approximate solution?4. What e�e
t does the number of 
onstraints have on the quality of an approximate solution?5. Is there eviden
e to support the hypothesis that quality re�e
ts the 
orre
tness of behaviourin a s
ene?We investigate these questions with respe
t to s
enes that 
ontain stati
 entities as well as s
enes
ontaining dynami
 entities.Quality in s
enes with stati
 entitiesWe use the Front, S
ene, and Layout3 ben
hmarks to determine the relationship betweenquality and exe
ution time for s
enes without motion (tested in Chapter 5 and des
ribed in detailin Appendix D). We re
ord the quality metri
 every ten se
onds and plot it against time, limitingthe total exe
ution time to 90 minutes (5400 se
onds).The quality of intermediate approximate solutions is plotted against the exe
ution time of theoptimizer in Figure 6.11. These ben
hmarks are all 
onsistent, and quality rea
hes zero at thesame point at whi
h a solution is lo
ated for ea
h ben
hmark. The quality re�e
ts the point atwhi
h solutions are lo
ated, that is, when quality rea
hes zero as is expe
ted from the design ofthese 
onstraints.Improvement in quality with the progression of time is observed from the graph in Figure 6.11,indi
ating that approximate solutions get 
loser to a
tual solutions with added optimization time.The greatest improvement in quality o

urs early in the optimization pro
ess for both the Frontand S
ene ben
hmarks. This shows that termination of the optimization pro
ess is possible beforesolutions are lo
ated, resulting in solutions of improved quality in relation to the solutions lo
atedearlier.The solutions to the Front and S
ene ben
hmarks are visualized in Figure 6.12, in whi
h theforward fa
ing dire
tions manually assigned to ea
h model are indi
ated. The visualized layout
orresponds to the 
onstraints spe
ifying ea
h s
ene.The Collision ben
hmark is a 
onstraint system spe
ifying a s
ene that 
ontains an in
reasingnumber of models, where every pair of models is 
onstrained to be near and noCollide. If more thanthree models are in the s
ene, then the 
onstraint system is in
onsistent. We optimize 
onstraintsystems des
ribing s
enes that 
ontain two to eight models, and re
ord the quality at ten se
ondintervals for ea
h system.The quality a
hieved is plotted against optimization time in Figure 6.13 for ea
h Collisionben
hmark. Solutions are qui
kly lo
ated for the two 
onsistent systems (
ontaining two and three
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ene ben
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ted graphi
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onsistent 
onstraint systems as a fun
tion ofexe
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(a) 3 Models (
onsistent):Quality = 0 (b) 4 Models:Quality = 101.23 (
) 6 Models:Quality = 138.71 (d) 8 Models:Quality = 599.04Figure 6.14: Visualization of approximate solutions to in
onsistent 
onstraint systems.models respe
tively). Only approximate solutions 
an be produ
ed for in
onsistent 
onstraintsystems, and the maximum improvement in quality is a
hieved early in the optimization pro
ess.Minor improvements are made given further exe
ution time.Figure 6.14 is a visualization of some of the approximate solutions found for the Collisionben
hmarks. More interpenetration o

urs as models are added to the s
ene, whi
h 
orrespondsto worsening levels of quality for ea
h s
ene. This eviden
e supports the hypothesis that qualityre�e
ts the visual 
orre
tness of behaviour in a s
ene.Quality in s
enes with dynami
 entitiesTo determine the relationship between quality and exe
ution time for s
enes with motion, we usethe Dynami
1Stati
1 and Dynami
2 ben
hmarks tested in Chapter 5 and des
ribed in detailin Appendix D. We use traje
tories of in
reasing degree, and the 
onstraint systems are phrasedin s
enes of in
reasing dimensionality. Every variable in these ben
hmarks begins with the range

[−10, 10]. We re
ord the quality metri
 every ten se
onds and plot it against time, limiting the
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onds (d) 10 se
ondsA inFrontOf B ∀t ∈ [5, 6]A near B ∀t ∈ [5, 6]A noCollide B ∀t ∈ [0, 10]Figure 6.16: Visualization of the solution to the Dynami
1Stati
1 ben
hmark using a traje
toryof degree 1.total exe
ution time to 90 minutes (5400 se
onds). We provide animated �lms that visualize thesolutions found for ea
h ben
hmark in Appendix F.The re
orded quality for the Dynami
1Stati
1 ben
hmark is plotted against time in Figure6.15. No solution is lo
ated for the 
onstraint system phrased over traje
tories of degree 2 ina two-dimensional s
ene. This indi
ates that the larger the system be
omes in terms of degreeand dimension (and 
onsequently the number of variables), the more di�
ult the solution �ndingpro
ess be
omes. In spite of this, a high quality approximate solution is lo
ated for this ben
hmarkearly in the optimization pro
ess.The solution of the Dynami
1Stati
1 ben
hmark using a traje
tory of degree 1 is visualizedin Figure 6.16. The inFrontOf 
onstraint is satis�ed visually at the 
orre
t point in the resultingmotion. An approximate solution of this ben
hmark using a traje
tory of degree 2 is visualized inFigure 6.17. Errors are visible in these s
enes (interpenetration of the obje
ts), re�e
ting the useof approximate solutions (and not a
tual solutions) to 
reate these s
enes. This demonstrates a
orrelation between quality and the visual 
orre
tness of the derived behaviour.
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Object A

Object B

x

z (a) 0 se
onds (b) 5 se
onds (
) 6 se
onds (d) 10 se
ondsA inFrontOf B ∀t ∈ [5, 6]A near B ∀t ∈ [5, 6]A noCollide B ∀t ∈ [0, 10](the forward dire
tion of B is indi
ated in the �rst image)Figure 6.17: Visualization of the approximate solution to the Dynami
1Stati
1 ben
hmark usinga traje
tory of degree 2.
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Figure 6.18: Quality of intermediate solutions to the Dynami
2 ben
hmark as a fun
tion ofexe
ution time.Quality is plotted against time for the Dynami
2 ben
hmark in Figure 6.18. The quality levelsa
hieved for this ben
hmark do not 
ome as 
lose to zero 
ompared to the quality a
hieved with theDynami
1Stati
1 ben
hmark for traje
tories of higher degree and dimension (minimum qualityof 6.86 for Dynami
1Stati
1, 217.10 for Dynami
2). We attribute this to a greater number ofvariables in the Dynami
2 ben
hmark (more traje
tories of a higher degree).Two visualizations of the approximate solutions of di�ering quality are presented in Figure6.19 for the Dynami
2 ben
hmark. The interpenetration is less pronoun
ed in the visualizationprodu
ed from the approximation of better quality. This demonstrates the 
orrelation betweenquality and the visual 
orre
tness of the derived behaviour.The above experiments demonstrate that the number of 
onstraints does not dire
tly in�uen
ethe di�
ulty of the solution �nding problem (as is the 
ase with the number of variables). Thisis demonstrated by the fa
t that the Dynami
2 ben
hmarks 
ontain fewer 
onstraints than the
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Object A

Object B

x

z (a) 0 se
onds (b) 5 se
onds (
) 6 se
onds (d) 10 se
ondsQuality = 161.32
Object A

Object B

x

z (e) 0 se
onds (f) 5 se
onds (g) 6 se
onds (h) 10 se
ondsQuality = 25.08A inFrontOf B ∀t ∈ [5, 6]A near B ∀t ∈ [5, 6]A noCollide B ∀t ∈ [0, 10](the forward dire
tion is the dire
tion of motion of both models, indi
ated in the �rst image)Figure 6.19: Visualization of approximate solutions of in
reasing quality for the Dynami
2 ben
h-mark.Front ben
hmark, but no solution is found for the former be
ause of the greater number ofvariables.Summary of �ndings and suggestionsThe experiments detailed in this se
tion provide eviden
e to support the following 
on
lusions(with respe
t to the questions posed at the beginning of this se
tion):1. The quality metri
 re�e
ts the dis
overy of an a
tual solution, that is, when a quality of zerois en
ountered.2. Quality improves as the optimization progresses.3. Quality re�e
ts the 
orre
tness of visual behaviour in a s
ene.4. The greater the number of variables (as a result of higher degree 
urves or s
enes of higherdimensionality) in a 
onstraint system, the longer the time required for lo
ating a solutionusing the optimizer.5. The number of 
onstraints in a system does not impa
t the solution �nding pro
ess as doesthe number of variables.Con
lusions 1, 2, and 3 support the use of the quality metri
 for evaluating behaviour automati
allyquanti�ed for a s
ene, espe
ially when the optimization pro
ess is terminated prematurely due to



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 166la
k of time. Con
lusions 4 and 5 in�uen
e the manner in whi
h we 
onvert abstra
t 
onstraints into
onstraint systems for solving. Based on these 
on
lusions we formulate the following guidelines:
• Traje
tories of degree no higher than 2 should be used, to maximize the likelihood of �ndinga
tual solutions. Otherwise, we expe
t to terminate the optimization pro
ess prematurelyand make use of an approximate solution.
• S
enes must be spe
i�ed in a maximum of two dimensions, otherwise an approximate solutionis expe
ted.
• No restri
tion is pla
ed on the number of 
onstraints in a system.These guidelines disqualify potential 
onstraint systems that are automati
ally 
reated from ab-stra
t 
onstraints. For example, a model that moves ba
k and forth and between other obje
tsrequires a traje
tory with a very high degree 
urve. It is unlikely that the 
onstraint optimizationpro
ess will �nd a solution to a 
onstraint system over this traje
tory within a feasible time-limit.The following se
tion des
ribes methods for over
oming these short
omings of the optimizationpro
ess, while still enabling 
omplex s
ene behaviour.6.3.3 Constraint system formulation for feasible optimizationSe
tion 6.3.2 indi
ates that 
onstraint systems with a large number of variables require a largeamount of optimization time to lo
ate solutions of good quality. We redu
e the optimization timeby expressing motion as sequen
es of low degree 
urves, and solving 
onstraint systems in anin
remental fashion.6.3.3.1 Sequen
es of low degree traje
toriesWe de�ne 
omplex behaviour to be entity motion that in
ludes a number of way-points in a s
ene.For example, the story �The man entered the room and approa
hed the table. .... He then movedtowards the 
hair.� des
ribes 
omplex behaviour. For illustration, we assume that this story is
onverted into the following abstra
t 
onstraints:man noCollide room ∀t ∈ [0, 5]man inside room ∀t ∈ [5, 30]man near table ∀t ∈ [9, 14]man near 
hair ∀t ∈ [14, 30]man noCollide {table;
hair} ∀t ∈ [5, 30]table noCollide 
hair ∀t ∈ [0, 30]A traje
tory of a high degree must be attributed to the �man� obje
t to ensure that the modelrea
hes all the way-points at the 
orre
t time. As observed in Se
tion 6.3.2, the higher the degreethe more di�
ult the 
onstraint optimization pro
ess be
omes.We avoid using traje
tories of high degree by 
onstru
ting a traje
tory as a 
hain of low degree
urves (Christie et al., 2002). We �nd that there is a satisfa
tory trade-o� between optimizationperforman
e and solution quality using 
hains of �rst degree 
urves. We segment traje
tories by
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Figure 6.20: Illustration of 
onstraint system segmentation.
Room

Man
x

z

Table

Chair

(a) 5 se
onds (b) 8 se
onds (
) 12 se
onds (d) 18 se
ondsFigure 6.21: Visualization of a 
omplex traje
tory as the sequen
e of low degree traje
tories.identifying 
ontiguous segments of time in whi
h the behaviour of an entity is des
ribed by a singlelow-degree traje
tory.A graphi
al illustration of a subset of the abstra
t 
onstraints above is presented in Figure6.20, as well as an illustration of how the 
onstraints are segmented into a 
hain of 7 
onstraintsystems. The duration of the s
ene is divided into 
ontiguous time intervals during whi
h no new
onstraints apply. For ea
h interval a single set of 
onstraints is appli
able over the full duration ofthat interval. A transitional system is inserted between adja
ent intervals allowing a period duringwhi
h both sets of 
onstraints must be satis�ed so that model lo
ations blend smoothly from oneinterval to the next.To fa
ilitate e�
ient 
onstraint solving, the ending lo
ations for ea
h interval are used as start-ing lo
ations for solving the following 
onstraint system. If the solution renders the subsequent
onstraint system in
onsistent, then we use ba
ktra
king to lo
ate alternate solutions to the pre-vious 
onstraint system.Figure 6.21 presents a visualization of a �nal solution found by the optimizer for the set ofsegmented 
onstraint systems derived in Figure 6.20. A solution is lo
ated for every segmented
onstraint system, meaning that quality value zero is obtained in all 
ases.The segmentation method presented in this se
tion is a 
ompromise between 
ontext-free be-haviour quanti�
ation and optimization performan
e. In Chapter 5 we argue that an analyti
alapproa
h to 
onstraint solving provides a non-in
remental method for quantifying s
ene behaviour,whereas the idea of segmentation is inherently in
remental. However, the 
onstraint optimization
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rementally solved 
onstraint systemsFigure 6.22: Illustration of in
remental system optimization.pro
ess o

urs on
e for an entire s
ene. On
e a solution is found for all the 
onstraint systems, the
ontext-free advantage is maintained.6.3.3.2 In
remental system optimizationSome 
onstraint systems 
ontain a large number of variables despite the use of traje
tory 
haining.To improve optimization e�
ien
y, we solve systems in an in
remental fashion by �nding solutionsto only a subset of the 
onstraints at a time.In
remental system optimization is performed by pla
ing stati
 obje
ts �rst, and thereafterquantifying the motion for dynami
 obje
ts. Ea
h entity is assigned a weight based on its traje
torytype, as illustrated in Figure 6.22(a). The setting (room) is assigned weight of 1 (be
ause settingsare assumed to be lo
ated at the origin), while stati
 obje
ts are assigned weight of 2. Dynami
obje
ts (man) are assigned a weight of 3.Ea
h edge in the graph shown in Figure 6.22(a) represents a 
onstraint, and is assigned a weight
al
ulated as the sum of the involved entities' weights. The edge with the lowest weight is sele
tedas the �rst 
onstraint to be solved, as illustrated in Figure 6.22(b), and the edge is removed fromthe graph. In the example, the solution to the �rst 
onstraint de�nes the lo
ation of �table� for theremaining 
onstraint systems, removing its variables from any subsequent optimization pro
ess.The pro
ess 
ontinues iteratively, sele
ting the edge with the lowest weight as the next 
onstraintto be optimized until there are no more edges in the graph. At ea
h iteration a single edge is sele
tedthat identi�es the two entities for whi
h traje
tories will be quanti�ed in the 
urrent iteration. Toavoid in
onsisten
y, any other 
onstraint involving both entities is also added to the 
onstraintsystem to be optimized at the 
urrent iteration. This pro
ess is illustrated in Figure 6.22(b).This method is a 
ompromise between 
ontext-free and in
remental behaviour quanti�
ation.We �nd that ea
h 
onstraint system produ
ed using the in
remental method is solved rapidly usingthe optimizer. On
e all 
onstraints are solved, the overall solution is one that 
an be used to querythe s
ene behaviour in a 
ontext-free manner.6.3.3.3 Combination of segmentation and in
remental optimizationThe restri
tions imposed on the 
omplexity of 
onstrain systems by the interval-based quanti�ed
onstraint optimizer are over
ome using 
onstraint traje
tory 
haining and in
remental optimiza-tion. A set of abstra
t 
onstraints is �rst segmented into a 
hain of 
onstraint systems as des
ribed
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Figure 6.23: Illustration of the pro
ess used to 
reate quanti�ed traje
tories from an abstra
t
onstraint set.in Se
tion 6.3.3.1 and then ea
h segmented 
onstraint system is solved in an in
remental fashionas des
ribed in Se
tion 6.3.3.2. This pro
ess is illustrated in Figure 6.23.In summary, this se
tion demonstrates that the interval-based 
onstraint optimizer is limitedin its ability to �nd solutions to s
ene-related 
onstraint systems. We over
ome these limitationsby formulating and optimizing 
onstraint systems in a 
areful manner, allowing us to exploit thestrengths of the analyti
al formulation of behaviour in a s
ene while maintaining the ability toquantify 
omplex behaviour in a virtual environment.6.4 Population of animated, multi-modal 3D environmentsThis se
tion des
ribes the strategies employed for 
on�guring a three dimensional environmentusing s
ene des
riptions derived from the annotations. We investigate strategies for instantiatingvirtual environments and 
ombining audio and text-based modalities into a �nal multi-modalpresentation.6.4.1 Strategies for instantiating 3D virtual environmentsThe population of a 3D environment for ea
h identi�ed s
ene involves instantiating models inthe environment, pla
ing or animating these models a

ording to their quanti�ed behaviour, andinstantiating ba
kground s
enery in the environment.6.4.1.1 Obje
t modelsEa
h entity that appears in a s
ene (identi�ed using the pro
ess des
ribed in Se
tion 6.2.2) isrepresented visually in the 3D virtual environment using the model spe
i�ed in the entity des
riptor.Models sour
ed from the library are standardized with respe
t to size and orientation, ensuringthat all obje
ts are s
aled to �t within the unit 
ube (using automati
 normalization). All obje
ts
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Figure 6.24: Default humanoid model from the library with orientation, lo
ation and boundingbox illustrated.are oriented to fa
e the positive z-axis, with the up dire
tion fa
ing the positive y-axis. Futureorientations of a model are 
al
ulated based on this fa
t.Ea
h model in the library is asso
iated with a manually de�ned bounding box from whi
h aradius is derived for spe
ifying a bounding sphere in the 
reation of quanti�ed 
onstraints. Thisbounding box need not be the hull of the model, be
ause 
ases exist where the hull produ
es anexaggerated radius. For example, the humanoid model illustrated in Figure 6.24 is asso
iated witha bounding box that is not the hull of the model, but rather approximates the body of the humanoidbe
ause the arms exaggerate the width of the model.All obje
ts in the library are pre-textured. The 
urrent implementation of the library 
ontainsonly a limited number of humanoid models, and we use variations in texturing for visual distin
-tiveness between avatars. Verti
es 
omprising the model are grouped in terms of items of 
lothing,in
luding shirt and trousers. The sele
tion of di�erent materials for these vertex groups providesa simple method for modifying the visual appearan
e of unique avatars. Des
riptors 
ontain theindividual 
olour and s
aling fa
tor for ea
h entity. At present, 
lothing 
olour is 
hosen at randomfor ea
h avatar, as is the s
aling fa
tor.6.4.1.2 Model positioning and arti
ulationSolutions to the quanti�ed 
onstraint systems spe
ify traje
tories for every entity, and pla
ementin a virtual environment 
onsists of ensuring that the models follow the paths di
tated by the
orresponding traje
tories.All models fa
e the positive z-axis by default, and 
urrently no 
onstraints are implementedthat spe
ify the orientation of models in a s
ene. Orientations for dynami
 models are derivedusing the tangent of the traje
tory at ea
h frame in the s
ene, automati
ally ensuring that thesemodels fa
e the dire
tion of motion.Lo
al arti
ulation is applied to human models in the form of motion 
apture for a set of threetypi
al human poses. This requires the following data to be asso
iated with the models extra
tedfrom the library:
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(a) Rest position (b) Stand pose (
) Walk pose (d) Run poseFigure 6.25: Armature 
on�guration and illustration of the default avatar in the three standardposes.
• Skeleton: models are rigged with an appropriate armature, labeled in a standardized mannerso that multiple motion 
apture 
on�gurations 
an be applied. The standard bone stru
tureand labeling system we use is illustrated in Figure 6.25. Currently, ea
h bone is assigned to avertex group on the avatar mesh. If no skeleton is assigned to a model, then no arti
ulationis applied to the model in the s
ene.
• Motion Capture Data: Currently, the library of motion 
apture data 
ontains only threeposes for humanoid models, namely stand, walk, and run, illustrated in Figure 6.25. Theseare listed as optional motion 
apture assignments in the des
ription of a model in the modellibrary. The sele
tion of an appropriate pose for an avatar at a point in the s
ene is basedon the velo
ity of a model at that point. If the velo
ity is above an upper threshold, therun pose is sele
ted. If velo
ity is below a lower threshold, then the stand pose is sele
ted.Otherwise the walk pose is sele
ted.The addition of the three basi
 poses for humanoid models greatly improves the visual ri
hnessof the �nal s
ene, enhan
ing the re
ognition of the humanoid models as representations of people.The �nal result is a s
ene 
ontaining visual obje
ts and arti
ulated avatars, an example of whi
his provided in Figure 6.26. The traje
tory of ea
h entity is represented by a 
oloured 
urve.6.4.1.3 SettingThe Setting annotation is used to 
onstru
t surrounding geometry in the 3D environment. The
hallenge with interpreting the Setting annotation is that only a single token is annotated (futureannotation 
ategories potentially identify des
riptive phrases regarding the setting).
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Figure 6.26: Illustration of a 3D environment 
ontaining models with assigned motion and arti
u-lation.We use pro
edural modeling approa
hes for 
reating ba
kground s
enery be
ause they are ableto 
onstru
t geometry of unlimited size and s
ale. This is opposed to a prede�ned model that is notlarge or detailed enough for every s
ene. Pro
edural methods also 
reate geometry that appearsunique at ea
h invo
ation, allowing for variation in the appearan
e of s
enery between di�erentsettings.Currently, we provide a pro
edural method for three 
ategories of setting, namely terrain,room, and 
ity. The annotated Setting token must be asso
iated with one of these 
ategories forthe invo
ation of the appropriate pro
edure.WordNet (Fellbaum, 1998) provides a me
hanism for 
ategorizing Setting annotations into oneof the three groups. If a Setting annotation is a hyponym of the term �geologi
al formation� or�geologi
al area�, it is 
lassi�ed as a terrain. Any term with the hypernym �urban area� is 
lassi�edas a 
ity, while any term with the hypernym �room� is 
lassi�ed as a room. For example, the word�study� is a hyponym of �room�, while the terms �London� and �
ity� are hyponyms of �urban area�and are 
lassi�ed as 
ities.Entity positioning and lo
omotion is determined before the 
reation of the setting geometry,and so a pro
edural method must adapt to the behaviour of entities in a s
ene.Pro
edural terrain generation Pro
edural terrain generation is inspired by the work of Mus-grave et al. (1989) who pioneered this te
hnique using fra
tional Brownian motion and erosionsimulation te
hniques. Re
ent work by Belhadj (2007) provides alternative methods for the pro
e-dural terrain generation that allows for the pre-de�nition of ridge and peak points, around whi
hterrain is 
onstru
ted automati
ally. This allows terrain to be 
reated at the 
orre
t height to �sup-port� the entities within the s
ene wherever they move, while the rest of the terrain is 
onstru
tedin a natural-looking manner.At present, terrain geometry is textured with a �grass� material, but 
ontinued resear
h in thisarea is underway in terms of populating a terrain with rivers and �ora, and providing high levelsof detail for 
lose-up shots1.1See the resear
h page on this topi
 available at http://delta.ru.a
.za/vrsig/
urrentproje
ts/058pro
eduralterrain/index.html
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(a) Terrain (b) Room (
) CityFigure 6.27: Example settings generated pro
edurally.Pro
edural 
ity generation Pro
edural 
ity generation is inspired by the work of Parish andMuller (2001) and Muller et al. (2006), who des
ribe methods for the automati
 generation of urbanroad networks and buildings. We provide a 
ity generation method that produ
es only a grid-ironroad-network, representing buildings as textured 
ubes. The pro
edure ensures that no buildingsare pla
ed within the radius spe
ifying the dimensions of the s
ene, so that the entities appear tofall within a square in the 
entre of a 
ity. The simple geometry produ
ed by this module providesvisual indi
ation of an urban environment, and 
ontinued resear
h is underway in terms of the
reation of autonomous agents for simulating pedestrians. This potentially adds visual ri
hness toa pro
edurally generated 
ity.Pro
edural room generation A pro
edure for 
reating s
enery indi
ating the inside of a roomis 
onstru
ted by 
reating geometry for four walls that surround the radius of the s
ene. Texturesfor the walls and �oor are 
hosen at random from a library. Entities enter or leave a room throughdoors that are 
reated wherever an avatar 
rosses the boundary of the s
ene. This approa
hfun
tions well in most 
ases be
ause we observe that few transitions o

ur within a single s
ene.In future, 
onstraints 
ould apply to the traje
tory of a model that restri
t entry and exit to asingle point.Future enhan
ements to pro
edural room generation in
lude inserting models into the s
enethat typi
ally would o

ur in a spe
i�
 type of room. For instan
e, a �kit
hen� would generally
ontain a table and some 
hairs, while a �bedroom� might 
ontain a bed and a 
upboard. Thisrequires further resear
h into the use of databases that provide this type of link between terms(Sproat, 2001), although su
h methods would not be 
onsidered knowledge-poor.Visual examples of the three types of pro
edural setting for the 3D visualization system areprovided in Figure 6.27.6.4.2 Strategies for audioTwo options for 
reating audio representations of �
tion text are investigated. The �rst optiongenerates an audio version of the narrative using a text-to-spee
h synthesizer, while the se
ondoption in
ludes sound e�e
ts, or foleys, des
ribed in the text.
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ited yelp and rushed full-tilt at the surprised rabbit.Figure 6.28: Example foley des
ription from the Famous Five 1: Five on a Treasure Island byEnid Blyton (1942).6.4.2.1 Audio narrationsAudio versions of text are generated using standard text-to-spee
h te
hnology, su
h as eSpeak2.However, we observe that the spee
h generated is often monotonous and di�
ult to follow. Whileimprovement in the prosody of the spee
h synthesizer 
an address this to an extent, we believethat this problem is alleviated by 
hoosing voi
es appropriately for ea
h avatar in the story (Zhanget al., 2003). This adds an element of variation to the audio narrative.Fi
tion text 
ontains quoted text representing spee
h emitted by di�erent 
hara
ters in thestory. This information is provided in the form of Quote annotations in the �
tion text, as identi�edin Chapter 4. Ea
h unique avatar identi�ed in the book requires a di�erent voi
e. Most spee
hsynthesizers provide a number of voi
es, usually in
luding a male and female voi
e. While entirelynew voi
es 
an be 
reated for a spee
h-synthesizer, experien
e has shown this to be a tedious andtime 
onsuming pro
ess (Hood, 2004). Instead, a range of voi
es is 
reated by 
hoosing a di�erentpit
h for ea
h avatar, within a range that is still appropriate to the spe
i�ed gender. Ea
h se
tionof quoted spee
h is rendered with the appropriate voi
e, and re
orded to an audio �le. Non-quotedspee
h is rendered using a default narrator voi
e.The use of avatar spe
i�
 voi
es adds valuable variation to the narrated output, and allowsavatars to be identi�ed by the listener even in dialogue where they are not expli
itly named.6.4.2.2 FoleysSound e�e
ts are often des
ribed in �
tion text, as illustrated in Figure 6.28. These des
riptionsare potentially identi�ed using annotations 
reated by the hierar
hi
al rule-based learning systemin Chapter 4. However, we 
urrently 
reate foley annotations using a spe
ially designed knowledge-poor method.We identify nouns su
h as �yelp� automati
ally by examining the hypernym (abstra
tion) treeof the word provided by WordNet (Fellbaum, 1998). Any word related to �sound� is identi�ed as afoley, and a 
orresponding audio �le mat
hing the word is lo
ated from an audio library. We usea foley library stru
tured in the same manner as the model library, where ea
h foley is asso
iatedwith a number of keywords. A query to the library 
ontaining the triggering word is 
omparedagainst foley keywords, returning foleys where positive mat
hes o

ur.Sound e�e
ts further improve the quality of the overall presentation by adding ri
hness to theaudio output.6.4.3 Strategies for subtitlesWe minimize the problem of mispronun
iation in synthesized spee
h by providing 
on
urrent sub-titles. The text for ea
h segment is rendered as an image that is superimposed over the 
urrently2eSpeak: http://espeak.sour
eforge.net/ [a

essed on 10 July 2008℄
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Figure 6.29: Example subtitle with spee
h bubble, representing a quote from talking avatar Julian.displayed graphi
s. The times at whi
h subtitles appear are automati
ally derived from the lo
ationof the 
orresponding audio �les in the presentation time-line.We enhan
e subtitles by wrapping the text in a spee
h-bubble whenever quoted spee
h isen
ountered, an example of whi
h is presented in Figure 6.29. A graphi
al representation of theappropriate avatar provides a visual identi�er unique to the talking 
hara
ter. The use of a visualavatar simpli�es the identi�
ation of the speaking entity, and provides a visual me
hanism fordi�erentiating between narration and spee
h.The visual 
omponent of the subtitles 
ould also serve to bene�t viewers with hearing de�
ien-
ies.6.4.4 Constru
tion of a multi-modal animated �lmVirtual environments are instantiated in the Blender modeling pa
kage 3, whi
h is an open sour
e3D modeling and animation tool that 
ontains a Python s
ripting interfa
e as well as a videosequen
ing editor. The s
ripting interfa
e allows for the automati
 
onversion of annotations andquanti�ed traje
tories into 3D environments. The advantage of using a pa
kage su
h as Blenderis the availability of a number of pre-implemented manipulation tools for 
omputer graphi
s thatare used to automate the s
ene 
reation pro
ess.Positioning and motion within a 3D environment is 
ontrolled using Blender's interpolation(IPO) 
urve stru
ture (Blender Foundation, 2008), whi
h de�nes a model's translation in a s
enein terms of an independent 
urve (
hannel) for ea
h dimension. Ea
h 
hannel 
orresponds toa 
omponent of an entity's traje
tory, and ea
h 
urve is 
onstru
ted by tra
ing the quanti�edtraje
tories for ea
h entity.Blender allows for the 
reation of multiple 3D environments, 
onveniently 
alled s
enes, mat
h-ing our de�nition of the 
on
ept in Se
tion 5.1 on page 106 in Chapter 5. Every s
ene is a separate3D environment in Blender, from whi
h segments are rendered and pla
ed into the video sequen
eralong with subtitles and audio. Timings in the 3D s
enes are all based on the audio rendering ofthe �
tion text. Transitions between di�erent s
enes are realized using a basi
 �
ut� te
hnique.A example sequen
e produ
ed automati
ally from annotated �
tion text is presented in Figure6.30. Rendering the �nal sequen
e results in a multi-modal animated 3D �lm 
orresponding to theannotated �
tion text.3Blender: http://www.blender.org/ [a

essed on 12 July 2008℄
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Figure 6.30: Example sequen
e in Blender 
onstru
ted automati
ally from the Famous Five 1:Five on a Treasure Island by Enid Blyton (1942).6.5 Analysis of the s
ene 
reation pro
essWe investigate whether 
orresponding multi-modal animated 3D virtual environments and �lmsare 
reated using the pro
esses des
ribed in this 
hapter. Eviden
e validating the 
reation pro
essis supported by answers to the following questions:1. Are 
onsistent high-level s
ene des
riptions derived from annotated text?This question determines whether 
onsistent high-level des
riptions of the s
enes, their 
on-tents and behaviour are 
reated using the automated pro
esses we des
ribe.2. Are virtual environments populated 
onsistently using high-level s
ene des
riptions?On
e a virtual environment is populated a human has the opportunity to dire
tly modify as
ene in a 3D modeling pa
kage. We report on the type and quantity of modi�
ations madeby a human as an indi
ation of the 
onsisten
y with whi
h these environments are populated.3. Are the automati
ally populated 3D environments representative of the 
orresponding text?This question 
annot be answered using quanti�ed methods, due to the subje
tivity of lan-guage and visual interpretation. However, we provide examples of automati
ally 
reatedenvironments, and provide a subje
tive evaluation of ea
h, whi
h is guided in terms of thefollowing questions:(a) Is behaviour spe
i�ed by annotations re�e
ted in the visual representation?(b) Can 
omplex behaviour (multiple way-points in a s
ene) be re�e
ted in a visual repre-sentation?(
) Does the pro
ess support sequen
ing of multiple s
enes?(d) Is appropriate media generated for representing the text?(e) Are the 
onversion pro
esses appli
able to �
tion books of di�erent type (author, series,readability)?This se
tion presents a suite of experiments for answering the above questions, and des
ribes test
ases used. Metri
s for measuring su

ess are de�ned, and possible sour
es of experimental errorare identi�ed.
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ription Series: Book Author (year) Fog Flesh1 Cow s
ene Famous Five 1:Five of a Treasure Island Enid Blyton(1942) 5.2 96.22 Rabbit s
ene Famous Five 1:Five of a Treasure Island Enid Blyton(1942) 5.2 96.23 Study s
ene Famous Five 1:Five of a Treasure Island Enid Blyton(1942) 5.2 96.24 Travel sequen
e Famous Five 1:Five of a Treasure Island Enid Blyton(1942) 5.2 96.25 Follow s
ene World of Tiers 7:More than Fire Philip Jose Farmer(1993) 6.6 87.86 House sequen
e Chroni
les of Narnia 2:The Lion, the Wit
h and the Wardrobe C.S. Lewis(1950) 6.9 90.5Table 6.2: Des
riptions of the sour
e books and 
hosen s
enes.6.5.1 Test 
orpusWe use six extra
ts from three �
tion books of di�erent type (a

ording to the de�nition in Chapter4, where books from di�erent series and authors are 
onsidered to be of di�erent type), listed inTable 6.2. We present the a
tual extra
ts with the visual results in Se
tion 6.5.4.Ea
h extra
t is annotated using 
ategories des
ribed in Chapter 4, namely with Avatar, Obje
t,Setting, Transition, and Relation annotations. The annotations are assumed to be 
orre
t a

ordingto one human's per
eption, but need not be 
orre
t a

ording to another's, nor are they guaranteedto be 
onsistent.The suite of extra
ts is 
hosen to illustrate features of the 
onversion pro
ess:
• Extra
ts 1, 2, 3, and 5 demonstrate the automati
 quanti�
ation of behaviour in a virtualworld.
• Extra
t 4 and 6 are extended extra
ts des
ribing a number of di�erent s
enes. We use theseto demonstrate the 
reation of 
orresponding sequen
ed animated �lms with multiple s
enes.
• All the extra
ts are used to demonstrate the automati
 insertion and pla
ement of appropriategeometry and audio material.The obje
tive evaluation of the above pro
esses is a poorly de�ned problem, whi
h we dis
uss inthe next se
tion.6.5.2 Metri
sThe measurement of the su

ess of an automati
ally generated virtual world is a subje
tive pro
essbe
ause of di�erent human interpretations of �
tion text. The results produ
ed by the s
ene
reation pro
esses are visual in nature, and it is un
lear whi
h features in a visual s
ene should bemeasured for quantitative evaluation.The problem of evaluating automati
ally generated s
enes is en
ountered in other resear
h inthe text-to-graphi
s domain. Most related resear
h performs subje
tive evaluations through theuse of visual examples (Coyne and Sproat, 2001; Lu and Zhang, 2002; Zeng et al., 2003; Joshi et al.,
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ases, a small set of example images produ
ed from the original text is provided,leaving evaluation to the dis
retion of the reader.The only other evaluation method we en
ounter in related text-to-graphi
s resear
h is userevaluation, where a group of human subje
ts is asked to rate the visual 
ontent produ
ed by theautomati
 system (Johansson et al., 2005; Ma, 2006). However, Johansson et al. (2005) a
knowledgethat su
h studies do not provide a 
omplete re�e
tion on the 
apabilities of a system, and resultsvary greatly from one human to the next. We believe that this is be
ause su
h studies do notobje
tively evaluate the system. Rather, they evaluate both the human as well as the system.Subje
tivity is involved in 
omprehending natural language and visual images. The pro
esses wedes
ribe are designed to improve in quality given additional time and patien
e of the human. Thesefa
tors introdu
e errors into a user-evaluation that are not ne
essarily 
aused by the automatedpro
ess, and are therefore not measurable.We perform our evaluations using a subje
tive (but quantitative) evaluation of the manualinterventions needed to ensure 
onsisten
y in automati
ally generated 
ontent. The degree to whi
hautomati
ally produ
ed 
ontent mat
hes the text is justi�ed through the use of visual examples.6.5.2.1 Consisten
y of automati
ally generated 
ontentWe evaluate whether the 
ontent generated at ea
h step in the 
onversion pro
ess requires modi�-
ation and 
onsider 
ontent to be 
onsistent if the total amount of generated 
ontent ex
eeds theamount of manual modi�
ations.We 
al
ulate the following metri
 to determine the level of 
onsisten
y a
hieved in the 
reationof high-level s
ene des
riptions:
consistency =

total content items−manualmodifications
total content items

∗ 100The above metri
, while providing numeri
 values, is subje
tive in nature be
ause the manualmodi�
ations are performed at the dis
retion of an individual human.We evaluate the 
onsisten
y of automati
ally produ
ed virtual environments a

ording to thetype of intervention performed. We 
ategorize manual intervention as deletions, modi�
ations,and insertions, ea
h of whi
h vary in terms of manual e�ort. Insertions are 
onsidered the mostdi�
ult operation be
ause they require the most e�ort and expertise in a 3D modeling environ-ment. Modi�
ations are 
onsidered less di�
ult be
ause only attributes of the s
ene are modi�ed,requiring an intermediate level of expertise and e�ort. Deletions are 
onsidered the least di�
ultoperation be
ause little expertise is required for this operation. We present the number of ea
htype of manual operation as an indi
ator of the degree of 
onsisten
y.6.5.2.2 Corre
tness of visual 
ontentWe follow the methods used by WordsEye (Coyne and Sproat, 2001), Swan (Lu and Zhang,2002), and other text-to-graphi
s systems (Zeng et al., 2003; Joshi et al., 2004) in using visualexamples as eviden
e regarding the 
orre
tness of the automated 
ontent. We 
riti
ally evaluateea
h visual example. However, we maintain that the true level of 
orre
tness varies from humanto human, or a

ording to the adage is �in the eye of the beholder�.
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es of experimental errorAs in Chapter 4, we a
knowledge the 
omplexity of the English language and its understanding as asour
e of experimental error. The manual annotations produ
ed for the 
orpus of test data 
annotbe guaranteed to be 
onsistent or 
orre
t, and this potentially produ
es extraneous or surprisingartifa
ts in the automati
ally generated s
enes.The subje
tivity of image and �lm 
omprehension is also a sour
e of experimental error. Similarto language 
omprehension, 
omprehension of the visual and audio modalities is de�ned by humanexperien
e. As su
h, manual modi�
ations and 
riti
al evaluations provided for ea
h result areindependent to the evaluator, and need not 
orrelate with another human's opinion.Our implementation is restri
ted to parti
ular visual features that avoid potentially biasingthe per
eived su

ess of the automation pro
ess. We provide an indi
ation of the extent to whi
h
ertain features are implemented:
• The set of annotation 
ategories we use are restri
ted to Avatar, Obje
t, Setting, Transition,and Relation. Further visual des
riptions in
luding grasping of obje
ts, poses, expressions,and 
olours are not yet implemented. These fa
tors are not 
onsidered during the 
riti
alevaluations of the visual results.
• Following the knowledge-poor theme of this resear
h, 
ertain semanti
 types asso
iated withannotations su
h as Transition and Relation are interpreted literally. For instan
e, the rela-tion type inside is interpreted literally in examples su
h as �in his 
hair� and �in bed�. Theseexamples require detailed world-knowledge for 
orre
t interpretation, and we leave this tothe human.
• Camera 
ontrol is not 
onsidered during the s
ene generation pro
ess, leaving this to futurework whi
h will take into a

ount the work already performed in this �eld (Dru
ker andZeltzer, 1994; He et al., 1996; Christie et al., 2002; Nieuwenhuisen and Overmars, 2003).
• We produ
e graphi
al visualizations that are of intermediate quality in terms of ri
hness,so that the important aspe
ts of the visualizations are not obfus
ated. We avoid the use ofspe
ial e�e
ts and other graphi
al enhan
ements in these evaluations.6.5.4 ResultsWe present experiments that investigate the questions posed at the beginning of this se
tion.6.5.4.1 Consisten
y of high-level s
ene des
riptionsWe investigate the 
onsisten
y with whi
h high-level s
ene des
riptions are 
reated from anno-tations using the pro
ess des
ribed in Se
tion 6.2. In parti
ular, we investigate the followingquestions:
• Is the majority of the s
ene des
riptions 
orre
tly 
reated from interpreted annotations?
• What is the nature of manual intervention in this pro
ess?
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t S
ene segmentation Model des
riptors Co-referen
e Abstra
t 
onstraintsTotal Modi�ed Consisten
y Total Modi�ed Consisten
y Total Modi�ed Consisten
y Total Modi�ed Consisten
y1 1 0 100% 12 1 91.67% 12 2 83.33% 68 1 98.52%2 1 0 100% 8 2 75.0% 52 15 71.5% 41 1 97.56%3 1 1 0% 6 0 100% 40 8 80.0% 45 0 100%4 6 2 66.67% 10 0 100% 23 0 100% 41 9 78.0%5 1 0 100% 2 0 100% 11 0 100% 4 0 100%6 2 0 100% 8 0 100% 28 1 96.43% 44 0 100%Summary 12 3 83.33% 46 3 93.47% 166 26 84.33% 243 11 95.47%Table 6.3: Degree of 
onsisten
y for the automati
 abstra
t 
onstraint 
reation pro
ess over sixextra
ts.We investigate these questions using ea
h of the six annotated extra
ts. We re
ord the amount ofautomati
ally generated 
ontent and 
ompare this with the amount of 
ontent that is modi�ed bya human.The type and degree of manual intervention with respe
t to ea
h step of the abstra
t 
onstraint
reation pro
ess is listed in Table 6.3. Exa
t des
riptions of the modi�
ations are provided inAppendix E.S
ene segmentation is 
onsistent in the majority of 
ases. Extra
ts in whi
h modi�
ations aremade do not expli
itly mention the s
ene, and human dis
retion is used to infer the setting.The 
reation of model des
riptors is 
onsistent in the majority of 
ases, and only 3 of the 46automati
ally 
reated des
riptors are modi�ed manually. The majority of these modi�
ations are
on
erned with assigning a traje
tory of higher degree to obje
ts that are de�ned as stati
 bydefault.Co-referen
e resolution is a
hieved at a high level of a

ura
y. Two s
enarios require manualintervention. The pronoun �it� is not handled by the 
urrent implementation, and must be manuallyresolved. General 
o-referen
es, for example �boy�, are also not handled, and must be manuallymat
hed to the 
orre
t avatar is some 
ases. However, these s
enarios represent only a smallportion of the total 
onsistent 
o-referen
e items 
reated.Only a small number of the automati
ally generated abstra
t 
onstraints require manual mod-i�
ation. The greatest number of modi�
ations are made for extra
t 6. In this 
ase, 
onstraintsare added manually to 
ater for details not expli
itly des
ribed in the �
tion text. For example,in extra
t 6 the 
hara
ter Anne is des
ribed as �sleeping�, an a
tivity that a human asso
iateswith a �bed�. This item of furniture is not expli
itly stated in the extra
t, and no 
orrespondingannotation is 
reated that identi�es it. A human manually inserts an abstra
t 
onstraint: �Anne
inside bed�. This results in the automati
 pla
ement of a bed model in the s
ene. In spite of thesemanual modi�
ations, the majority of automati
ally produ
ed 
onstraints are 
onsistent.S
ene des
riptions are 
reated 
onsistently using the knowledge-poor interpretation pro
essesdes
ribed in Se
tion 6.2. The types of manual intervention 
ater for ex
eptions that require addi-tional world-knowledge from a human.
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ation Deletion1 0 1 32 0 1 03 0 1 14 0 8 15 0 1 06 0 1 2Summary 0 13 7Table 6.4: Summary of manual modi�
ations to automati
ally populated virtual environments.6.5.4.2 Consisten
y of virtual environment populationWe investigate the 
onsisten
y with whi
h the population of virtual environments is a
hieved usingthe pro
ess des
ribed in Se
tion 6.4. We investigate the following questions:
• Do instantiated and populated virtual environments require signi�
ant manual modi�
ation?
• What is the nature of manual intervention in this pro
ess?We investigate these questions by populating virtual environments for ea
h of the six annotatedextra
ts. We indi
ate the number and type of ea
h manual intervention in the virtual environment.The extent of human intervention in 
reating virtual environments for ea
h extra
t is listedin Table 6.4. No insertions are made to any of the virtual environments, but some modi�
ationsand deletions are performed. This indi
ates that our pro
ess is 
apable of produ
ing a minimumamount of visual 
ontent for a s
ene, but in some 
ases it produ
es more visual 
ontent than isne
essary.The majority of the modi�
ations made to the virtual environments are 
on
erned with 
amerapla
ement, a fun
tion not 
atered for by the 
urrent implementation. The other modi�
ations aredis
retionary, su
h as modifying the material of entities in the s
ene.The primary 
ause for deletions in a virtual environment is the 
reation of 
ontent that shouldnot be visually represented. In all these 
ases, extraneous 
ontent is the result of annotations thatare in
onsistent. In this respe
t, the visualization pro
ess is 
orre
tly representing the annotatedtext, but is not 
reating a 
orre
t visualization a

ording to one human's opinion. This point isillustrated by the in
lusion of a model for �
hildren� in the s
ene shown in Figure 6.31(a) and (
).This entity is marked as an avatar in the extra
t, but it does not make sense in the visual s
ene,and is removed by hand. Not all s
enes require deletions, an example of whi
h is illustrated inFigure 6.31(b).Automati
ally populated virtual environments do not require signi�
ant manual modi�
ations,indi
ating that they are 
reated 
onsistently. Manual intervention o

urs only in the form ofmodi�
ations and deletions in the virtual environment.6.5.4.3 Visual representation of behaviourWe 
ondu
t two experiments to determine if behaviour des
ribed by Transition and Relationannotation 
ategories is visualized 
orre
tly in a s
ene. We investigate the following questions:
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(a) Extra
t 1 (b) Extra
t 2 (
) Extra
t 3Figure 6.31: Illustration of automati
ally generated virtual environment without manual interven-tion.

• Is the behaviour des
ribed by Transition and Relation annotations visualized in the virtualenvironment?
• Is quanti�ed behaviour (behaviour de�ned over an interval of time) visualized in a virtualenvironment?We use two extra
ts from di�erent books in the investigation of the above questions.Cow s
ene The 
ow s
ene, drawn from the Famous Five 1: Five on a Treasure Island by EnidBlyton (1942) is annotated as follows:The pi
ni
 was lovely. They had it on the top of a hill, in a sloping �eld that looked down into asunny <setting>valley</setting>. <avatar>Anne</avatar> didn't very mu
h like a big brown <ob-je
t>
ow</obje
t> who <transition type=�INSIDE� subje
t=�
ow�>
ame</transition> up <re-lation type=�near� subje
t=�
ow� obje
t=�her�>
lose<relation> and stared at her, but it <transi-tion type=�OUTSIDE� subje
t=�it�>went</transition> away when <avatar>Daddy</avatar> toldit to. The <avatar>
hildren</avatar> ate enormously, and Mother said that instead of having a tea-pi
ni
at half-past four they would have to go to a tea-house somewhere, be
ause they had eaten all the tea <ob-je
t>sandwi
hes</obje
t> as well as the lun
h ones!"What time shall we be at Aunt Fanny's?" asked <avatar>Julian</avatar>, �nishing up the very last <ob-je
t>sandwi
h</obje
t> and wishing there were more."About six o'
lo
k with lu
k," said <avatar>Daddy</avatar>. "Now who wants to stret
h their legs a bit?We've another long spell in the 
ar, you know." The <obje
t>
ar</obje
t> seemed to eat up the miles as itpurred along.A sequen
e of images taken from the resulting animated �lm is presented in Figure 6.32 (whi
his available for viewing in Appendix F). The 
ow enters and exits the s
ene at the 
orre
t mo-ments a

ording to the 
on
urrent subtitles and audio, indi
ating the su

essful 
onversion of theTransition annotations to visual behaviour. The setting is interpreted 
orre
tly in providing aba
kground suitable for the des
ription �valley�, and the appropriate geometri
 models appear inthe virtual environment.Follow s
ene The following s
ene, taken from the World of Tiers 7: More than Fire by PhilipJose Farmer (1993), provides an example indi
ating the strength of phrasing 
onstraints in terms
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Figure 6.32: Cow s
ene from the Famous Five 1: Five on a Treasure Island by Enid Blyton (1942).
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ontiguous intervals of time:"THIS'LL BE IT!" <avatar>KICKAHA</avatar> SAID. "I KNOW IT, KNOW IT! I CAN feel the for
esshaping themselves into a big funnel pouring us onto the goal! It's just ahead! We've �nally made it!"He wiped the sweat from his forehead. Though breathing heavily, he in
reased his pa
e.<avatar>Anana</avatar> was a few steps <relation type=�BEHIND� subje
t=�Anana� ob-je
t=�him�>behind</relation> and below him on the steep <setting>mountain</setting> trail. Shespoke to herself in a low voi
e. He never paid any attention to her dis
ouraging-that is, realisti
-words, anyway."I'll believe it when I see it."The above extra
t spe
i�es a �following� motion, where the model representing Anana must be
behind the moving Ki
kaha model over a time interval.Snapshots from the �nal animated s
ene are presented in Figure 6.33 (the �lm is available forviewing in Appendix F). When the senten
e �Anana was a few steps behind...� is en
ountered, thebehaviour quanti�ed by the behind Relation is visualized. The Anana avatar moves to a position�behind� the Ki
kaha model. This spatial relation between the two moving entities is maintainedfor the entire time interval, illustrated by the last four snapshots in Figure 6.33.These examples demonstrate that the behaviour spe
i�ed by Transition and Relation annotation
ategories is visualized appropriately. Quanti�ed behaviour is visualized 
orre
tly in a virtualenvironment.6.5.4.4 Complex behaviourThis se
tion investigates the visualization of 
omplex behaviour in a s
ene. We de�ne 
omplexbehaviour as traje
tories that in
lude a number of way-points, spe
i�ed as a 
hain of low degree
urves (des
ribed in Se
tion 6.3.3). We investigate the following question:
• Is the 
omplex behaviour des
ribed by Transition and Relation annotations visualized in avirtual environment?We use two extra
ts in the investigation of the above question.Rabbit s
ene The Rabbit s
ene from the Famous Five 1: Five on a Treasure Island by EnidBlyton (1942) demonstrates 
omplex motion with respe
t to three di�erent entities in the s
ene,namely a rabbit, the avatar Timothy, and the avatar George (we use ellipsis to indi
ate where text
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Figure 6.33: Follow s
ene from the World of Tiers 7: More than Fire by Philip Jose Farmer (1993).
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ried <avatar>Di
k</avatar>, as a big sandy <obje
t>rabbit</obje
t>lolloped slowly a
ross the <setting>yard</setting>. It <transition type=�OUTSIDE� sub-je
t=�It�>disappeared</transition> into a hole on the other side. Then another rabbit <transitiontype=�INSIDE� subje
t=�rabbit�>appeared</transition>, sat up and looked at the 
hildren, and then<transition type=�OUTSIDE� subje
t=�rabbit�>vanished</transition> too. A third rabbit <transi-tion type=�INSIDE� subje
t=�rabbit�>appeared</transition>. It was a small one with absurdly big ears...... But this was too mu
h for <avatar>Timothy</avatar>. ... . He gave an ex
ited <foley>yelp</foley>and rushed full-tilt<relation type=�NEAR� subje
t=�He� obje
t=�rabbit�>at</relation> the surprisedrabbit. ...Then it turned itself about and tore o� at top speed, its white bobtail going up and down as it boundedaway. It disappeared <relation type=�UNDER� subje
t=�It� obje
t=�bush�>under</relation> agorse <obje
t>bush</obje
t> near the 
hildren. <avatar>Timothy</avatar> went after it, vanish-ing <relation type=�UNDER� subje
t=�Timothy� obje
t=�bush�>under</relation> the big <ob-je
t>bush</obje
t> too. ..."Tim! Do you hear me! Come out of there!" shouted <avatar>George</avatar>. "You're not to 
hase therabbits ...... <avatar>George</avatar> went to fet
h him. Just as she got up<relation type=�near� subje
t=�she�obje
t=�bush�>to</relation> the gorse <obje
t>bush</obje
t> the s
raping suddenly stopped.This extra
t 
ontains a number of Transition annotations des
ribing the behaviour of the Rabbitentity. A number of di�erent behaviours are also spe
i�ed by Relation annotations: Timothyrushes towards the Rabbit; the Rabbit moves under a bush; and Timothy follows the rabbit to thebush. The 
ombination of these di�erent behaviour types results in 
omplex motion in the virtualenvironment.Snap-shots of the �rst portion of the Rabbit s
ene are presented in Figure 6.34 
ontainingan outdoor s
ene with rabbits, some avatars, a bush, and the dog Timothy (the animated �lm isavailable for viewing in Appendix F). The rabbit model moves in and out of the s
ene appropriately.The sequen
e of snapshots is 
ontinued in Figure 6.35, illustrating the motion of Timothy towardsthe rabbit and the subsequent motion of the rabbit towards the bush. The images visualize Timothyfollowing the rabbit into the bush, as well as the subsequent movement of George to the bush.Study s
ene The study s
ene from the Famous Five 1: Five on a Treasure Island by EnidBlyton (1942) is an extra
t des
ribing 
omplex behaviour, as well as des
ribing stati
 s
ene layout:He stole <transition type=�INSIDE� subje
t=�He�>in</transition>. His <avatar>un
le</avatar>still snored. He tiptoed by him <relation type=�NEAR� subje
t=�he� obje
t=�table�>to</relation>the <obje
t>table</obje
t> <relation type=�BEHIND� subje
t=�table� ob-je
t=�
hair�>behind</relation> his un
le's <obje
t>
hair</obje
t>. He took hold of the<obje
t>box</obje
t>. And then a bit of the broken wood of the box fell to the �oor witha <foley>thud</foley>! His un
le stirred <relation type=�INSIDE� subje
t=�un
le� ob-je
t=�
hair�>in</relation> his <obje
t>
hair</obje
t> and opened his eyes. Qui
k as lightningthe boy 
rou
hed down <relation type=�BEHIND� subje
t=�boy� obje
t=�
hair�>behind</relation>his un
le's <obje
t>
hair</obje
t>, hardly breathing."What's that?" he heard his un
le say. <avatar>Julian</avatar> didn't move. Then his un
le settled downagain and shut his eyes. Soon there was the sound of his rhythmi
 <foley>snoring</foley>!"Hurrah!" thought <avatar>Julian</avatar>. "He's o� again!" Quietly he stood up, holding thebox. On tiptoe he 
rept to the Fren
h window. He slipped <transition type=�OUTSIDE� sub-je
t=�He�>out</transition> and ran softly down the garden path. He didn't think of hiding the box. Allhe wanted to do was to get to the other <avatar>
hildren</avatar> and show them what he had done!
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Figure 6.34: Rabbit s
ene (1) from the Famous Five 1: Five on a Treasure Island by Enid Blyton(1942).
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Figure 6.35: Rabbit s
ene (2) from the Famous Five 1: Five on a Treasure Island by Enid Blyton(1942).
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t des
ribes the motion of the avatar Julian as he sneaks into his un
le's study,to the table (whi
h is des
ribed as being behind his un
le's 
hair). The boy then exits the s
ene.Snap-shots of the �nal animated �lm are presented in Figure 6.36 and Figure 6.37 (availablefor viewing in Appendix F). The model representing Julian enters the s
ene, moves towards thetable, moves behind the 
hair, and exits the room in a manner that 
orresponds to the 
on
urrentsubtitles. Quentin moves to his 
hair at the appropriate moment. This example demonstrates that
omplex behaviour is visualized in the form of 
orre
t movement through multiple way-points.We identify problems with Figure 6.36, su
h as the fa
t that the box is not pla
ed on thetable. This fa
t is never expli
itly stated in the text however, and the 
reated s
ene is 
orre
ta

ording to the annotations. One �aw is the initial lo
ation of Quentin, who should be in the 
hairthroughout the s
ene. This 
onstraint is only implemented from the point at whi
h the annotationis en
ountered in the text, resulting in the movement of Quentin to his 
hair only midway throughthe s
ene. The visualized s
ene is also missing arti
ulation des
ribed in the text, but we do notevaluate the s
ene on behaviour that in
ludes 
rou
hing, pi
king up the box, dropping it, or takingthe box out of the s
ene. These kinds of des
riptions are not identi�ed using the 
urrent set ofannotation 
ategories.The results presented in this se
tion demonstrate that 
omplex traje
tories are visualized ap-propriately in a virtual environment.6.5.4.5 Conse
utive s
enesThis se
tion investigates whether multiple s
enes are visualized in one 
ontinuous animated pre-sentation:
• Is a presentation 
reated that swit
hes 
orre
tly from one s
ene to the next?We use two extra
ts in the investigation of the above question.House sequen
e The following extra
t from the Narnia series, The Lion, the Wit
h and theWardrobe by C.S. Lewis (1950) des
ribes two di�erent s
enes:They were sent to the <obje
t>house</obje
t> of an old <avatar>Professor</avatar> who lived inthe heart of the <setting>
ountry</setting>, ten miles from the nearest railway station and two milesfrom the nearest post o�
e. He had no wife and he lived in a very large house with a housekeeper 
alled<avatar>Mrs Ma
ready</avatar> and three servants. (Their names were Ivy, Margaret and Betty, butthey do not 
ome into the story mu
h.) He himself was a very old man with shaggy white hair whi
h grewover most of his fa
e as well as on his head, and they liked him almost at on
e; but on the �rst evening whenhe <transition type=�INSIDE� subje
t=�he�>
ame</transition> out to meet them at the front doorhe was so odd-looking that <avatar>Lu
y</avatar> (who was the youngest) was a little afraid of him, and<avatar>Edmund</avatar> (who was the next youngest) wanted to laugh and had to keep on pretending hewas blowing his nose to hide it.As soon as they had said good night to the <avatar>Professor</avatar> and gone upstairs on the �rstnight, the boys <transition type=�INSIDE� subje
t=�boys�>
ame</transition> into the girls' <set-ting>room</setting> and they all talked it over."We've fallen on our feet and no mistake," said <avatar>Peter</avatar>. "This is going to be perfe
tlysplendid. That old 
hap will let us do anything we like.""I think he's an old dear," said <avatar>Susan</avatar>."Oh, 
ome o� it!" said <avatar>Edmund</avatar>, who was tired and pretending not to be tired, whi
halways made him bad-tempered.
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Figure 6.36: Study s
ene (1) from the Famous Five 1: Five on a Treasure Island by Enid Blyton(1942).
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Figure 6.37: Study s
ene (2) from the Famous Five 1: Five on a Treasure Island by Enid Blyton(1942).
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Figure 6.38: House sequen
e from Narnia 2: The Lion, the Wit
h and the Wardrobe by C.S. Lewis(1950).The above extra
t begins by des
ribing the lo
ation of the Professor's house and the initialmeeting of the 
hara
ters outside it. The setting then 
hanges to inside the house, in one of therooms. A unique s
ene should be 
reated for ea
h setting, and ea
h s
ene should be displayed atthe 
orre
t moment in the animated �lm.Snapshots from the �nal animated �lm are presented in Figure 6.38 (available for viewing inAppendix F). The �rst s
ene o

urs in an outdoor setting, with a model representing a house.The 
hange in s
ene is shown from the third snapshot onwards, where the setting is automati
ally
hanged to the room in whi
h the avatars are having a 
onversation.
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e The following extra
t from the Famous Five 1: Five on a Treasure Island byEnid Blyton (1942) des
ribes a number of su

essive s
ene 
hanges:<avatar>Di
k</avatar> and <avatar>Julian</avatar>, who shared a <setting>room</setting>,woke up at about the same moment, and stared out of the nearby window."It's a lovely day, hurrah!" 
ried <avatar>Julian</avatar>, leaping out of <obje
t>bed</obje
t>. "Idon't know why, but it always seems very important that it should be sunny on the �rst day of a holiday. Let'swake Anne."<avatar>Anne</avatar> slept in the next <setting>room</setting>. <avatar>Julian</avatar> ran<transition type=�INSIDE� subje
t=�Julian�>in</transition> and shook her."Wake up! It's Tuesday! And the sun's shining." Anne woke up with a jump and stared at<avatar>Julian</avatar> joyfully. "It's 
ome at last!" she said. "I thought it never would. Oh, isn't itan ex
iting feeling to go away for a holiday!"They started soon after breakfast. Their <obje
t>
ar</obje
t> was a big one, so it held them all very
omfortably. <avatar>Mother</avatar> sat in front with <avatar>Daddy</avatar>, and the three<avatar>
hildren</avatar> sat behind, their feet on two <obje
t>suit
ases</obje
t>. In the luggage-pla
e at the ba
k of the 
ar were all kinds of odds and ends, and one small <obje
t>trunk</obje
t>.<avatar>Mother</avatar> really thought they had remembered everything.Along the 
rowded <setting>London</setting> roads they went, slowly at �rst, and then, asthey left the <setting>town</setting> behind, more qui
kly. Soon they were right intothe open <setting>
ountry</setting>, and the <obje
t>
ar</obje
t> sped along fast. The<avatar>
hildren</avatar> sang songs to themselves, as they always did when they were happy."Are we pi
ni
king soon?" asked <avatar>Anne</avatar>, feeling hungry all of a sudden."Yes," said <avatar>Mother</avatar>.Snap-shots of the automati
ally produ
ed animated �lm are presented in Figure 6.39 (availablefor viewing in Appendix F). Two visually distin
t room settings are produ
ed automati
ally: a 
itysetting representing London; and an outdoor setting representing �
ountry�. Ea
h s
ene appears
orre
tly a

ording to the 
on
urrent subtitles, su

essfully demonstrating the sequen
ing abilityof the 
onversion pro
ess.This results in this se
tion demonstrate that a sequen
e of s
ene des
riptions in �
tion text issu

essfully 
onverted into a 
orresponding presentation that 
ontains appropriate visual 
hanges.6.5.4.6 Appropriate mediaWe investigate whether the automated 
onversion pro
ess 
reates appropriate media for presentingthe story:
• Are geometri
 models sele
ted that adequately visualize the entities and ba
kground s
eneryin an environment?
• Does 
ontent in di�erent modalities (graphi
s, audio) represent the �
tion text and is italigned 
orre
tly in the �nal animated presentation?We do not perform an individual experiment for this investigation, but refer to results from previousexperiments as eviden
e for answering the above questions.All the experiments detailed previously in this se
tion produ
e visual results that depi
t ap-propriate visualizations of the entities des
ribed in the extra
ts. This in
ludes the appropriatevisualization of avatars and obje
ts. Ea
h virtual environment 
reated automati
ally in theseexperiments also 
ontains ba
kground s
enery appropriate to the des
ribed setting. These obser-vations are made with one reservation in mind, namely that the appropriate sele
tion of models isdependent on the variety of models available in the model library.
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Figure 6.39: Travel sequen
e from the Famous Five 1: Five on a Treasure Island by Enid Blyton(1942).
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e in supportof the use of audio narrations, the use of di�erent voi
es for di�erent avatars, as well as the useof visually enhan
ed subtitles. The digital animations available in Appendix F in
lude the audiomodality for ea
h �lm, demonstrating the su

essful syn
hronization between the audio (narrationsand foleys), the subtitles, and the behaviour in the graphi
al s
ene.These examples demonstrate that the automated pro
ess appropriately sele
ts and 
reatesgeometry for visualizing the des
ribed s
enes, and supports the 
reation of presentations that
ontain multiple 
orre
tly aligned modalities.6.5.4.7 Appli
ability to di�erent types of booksEviden
e presented in Chapter 4 suggests that books of di�erent type (di�erent author and read-ability index) impa
t the su

ess of the automated 
onversion pro
ess. We investigate the followingquestion:
• Is the automated pro
ess for 
reating multi-modal animated 3D �lms from annotated �
tiontext appli
able over books of di�erent type?We do not perform an individual experiment for this investigation, but refer to results from previousexperiments.The suite of extra
ts presented in this se
tion are sour
ed from 3 di�erent �
tion books ofdi�erent type. Consistent virtual environments and animated �lms are produ
ed from all threesour
es. This demonstrates that the automated pro
ess is appli
able over books of di�erent type,for the 
ategories of annotation used in these experiments.6.5.5 Summary of �ndingsWe 
on
lude that 
orresponding multi-modal animated 3D virtual environments and �lms are
reated using the pro
esses des
ribed in this 
hapter. This 
on
lusion is supported by the followingobservations from the experiments 
ondu
ted in this se
tion:1. The 
reation of high-level s
ene des
riptions (in
luding the identi�
ation of s
enes, their
ontent, and behaviour) is performed 
onsistently, requiring minimal human modi�
ation.2. Virtual environments are populated in a manner that requires little signi�
ant modi�
ation.3. Automati
ally generated virtual environments are representative of the input text, spe
i�
allywith regards to the following aspe
ts:(a) Behaviour spe
i�ed by annotation 
ategories su
h as Transition and Relation is visual-ized 
orre
tly in a virtual environment.(b) Complex behaviour is visualized 
orre
tly in a virtual environment.(
) Visual sequen
es 
ontaining multiple s
enes are 
reated that 
orre
tly represent des
rip-tions in the input text.(d) Appropriate media is 
hosen for di�erent modalities of representation, in
luding thesele
tion and 
reation of visual geometry, and the insertion of audio narrations andsound e�e
ts.
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ess supports the 
reation of multi-modal animated 3D virtual en-vironments and �lms a
ross di�erent types of books.6.6 Con
lusionThis 
hapter presents a pro
ess that su

essfully interprets annotated �
tion text to 
reate 
orre-sponding multi-modal animated 3D virtual environments and �lms. We summarize this pro
essin terms of three stages, namely the automati
 
reation of high level s
ene des
riptions fromannotated �
tion text, the quanti�
ation of behaviour in virtual environments (using 
onstraintformulation and optimization), and the instantiation and population of the virtual environmentsusing automated te
hniques.We draw the following 
on
lusions with regards to the original problems stated in Se
tion 6.1.1:1. The interpretation of annotations is performed su

essfully in the 
reation of high-level stru
-tured s
ene des
riptions using knowledge-poor approa
hes.(a) The set of annotation 
ategories de�ned in Chapter 4 provide for the automati
 spe
i-�
ation of s
ene detail. Setting annotations 
orre
tly identify the s
enes to portray vi-sually, while Obje
t and Avatar annotations su

essfully identify the entities 
ontainedin ea
h s
ene. Transition and Relation annotations spe
ify the behaviour of entities inea
h s
ene. This shows that the limited set of annotation 
ategories we de�ne providessu�
ient detail to spe
ify s
enes in a stru
tured and 
omplete manner.(b) The de�nition of a s
ene as a �nite spa
e that exists over a 
ontiguous interval of time(provided in Chapter 5, De�nition 5.1 on page 107) is fundamental to the interpreta-tion of a book as a 
olle
tion of independent virtual environments. This justi�es thesegmentation of text a

ording to physi
al lo
ation.(
) Visual 
onsisten
y regarding the representation of entities in di�erent environments isa
hieved using entity des
riptors, whi
h are s
ene-independent instantiations of ea
hentity. These des
riptors provide for the assignment of unique visual attributes to ea
hentity, in
luding a representative visual i
on, 
olouring, and motion type.(d) The link between instantiated entities and the annotations is maintained through theuse of 
o-referen
e. A knowledge-poor method su

essfully 
reates these links (usingthe gender spe
i�
ity of personal pronouns), whi
h are used for attributing behaviourto entities in a s
ene.(e) Abstra
t 
onstraints are fundamental for summarizing time-quanti�ed behaviour in astru
tured manner, while still permitting human review and 
orre
tion. They alsoprovide a means through whi
h impli
it physi
al restri
tions (su
h as gravity and inter-penetration) 
an be de�ned.(f) Time is derived in a knowledge-poor fashion using synthesized audio equivalents of the�
tion text. This method quanti�es behaviour in a manner that translates to visualiza-tions 
orresponding to the des
riptions in the text.
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t 
onstraints are dire
tly translated into analyti
al 
onstraints due to their stru
-tured nature. In this manner, a human need not be 
on
erned with 
omplex low levelbehaviour reasoning. However, manual 
ontrol over behaviour is still provided throughthe human readable abstra
t 
onstraints.(h) The phrasing of 
onstraints in terms of distan
e provides a valuable ability to measurethe quality of the quanti�ed behaviour during the optimization pro
ess (using the opti-mizer des
ribed in Chapter 5). This is parti
ularly useful where the des
ribed behaviouris in
onsistent, or the time permitted for 
onstraint optimization is limited. This pro-vides the designer with an indi
ation of the quality of the 
urrent spe
i�ed behaviour,allowing optimization to be terminated prematurely if quality is su�
iently high for thedesigner's needs.(i) The disadvantage of the use of analyti
al 
onstraints for quantifying s
ene behaviouris the la
k of solving te
hniques 
apable of �nding solutions to 
onstraints 
ontaininglarge numbers of variables. This problem is over
ome by expressing traje
tories assequen
es of low degree 
urves (resulting in redu
ed numbers of variables in ea
h 
on-straint system), and in
remental solving. Complex behaviour is produ
ed e�
iently,while maintaining the bene�ts of environment-independent spatial reasoning (des
ribedin Se
tion 5.2.3 on page 112).2. Virtual environments are su

essfully instantiated and populated from s
ene des
riptionsusing automated te
hniques. There is no need for repetitive 3D modeling and animation,and ri
h virtual environments are 
reated rapidly.(a) Entities in virtual environments exhibit visual 
onsisten
y in relation to size and orien-tation by using 3D models that are standardized in these respe
ts. Entity visualizationis enhan
ed through the use of motion-
apture for realisti
 arti
ulation.(b) Detailed ba
kground s
enery of unlimited size is su

essfully produ
ed using pro
eduralmethods.(
) The derivation of time from audio representations of the text provides an a

uratetime-line against whi
h multiple modalities (visual, audio, and text) are aligned.(d) The automated methods support the 
reation of multiple virtual environments as wellas a 
oherently sequen
ed multi-modal animated �lm presentation.The virtual environments 
reated from automati
ally interpreted text visually 
onvey the envi-ronments and behaviour des
ribed. This is supported by the range of experiments 
ondu
ted inSe
tion 6.5. In summary, multi-modal animated 3D virtual environments and �lms are 
reatedsu

essfully using the te
hniques des
ribed in this 
hapter.The te
hniques presented in this 
hapter 
ontribute novel innovations regarding the text-to-graphi
s task:
• This work presents the �rst use of text sour
ed from popular �
tion books as input for the
reation of animated 3D graphi
s.
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• We use a knowledge-poor approa
h that allows human intervention in the 
onversion pro-
ess. This is di�erent to existing text-to-graphi
s resear
h whi
h fo
uses on providing fullyautomati
 knowledge-
entri
 pro
esses.
• The use of 
orresponding audio �les for deriving temporal information for quantifying be-haviour is innovative in the domain of text-to-graphi
s.
• We present the �rst use of interval-based 
onstraint optimization for determining quanti�eds
ene behaviour. This method is innovative in its ability to measure the quality of derivedbehaviour, and no eviden
e exists in related resear
h regarding similar metri
s.
• The methods des
ribed in this 
hapter 
ontribute to the �eld of virtual reality by providing ame
hanism for automati
ally instantiating and populating virtual environments. Our method
reates virtual environments without the need for extensive manual e�ort in 3D modeling,environment design and motion quanti�
ation.A number of aspe
ts of the automati
 
onversion pro
ess stand to bene�t from future improve-ment. Our primary fo
us is on expanding support for di�erent 
ategories of annotation, in
ludingdes
riptive phrases that spe
ify visual features su
h as 
olour and emotion, as well as arti
ulatedbehaviour that in
ludes posing avatar models.



Chapter 7Con
lusionThis 
hapter summarizes our approa
h for automating the �
tion-to-animation task (Se
tion 7.1).Con
lusions drawn from this resear
h are presented in Se
tion 7.2. We des
ribe signi�
ant 
ontri-butions and innovations in Se
tion 7.3.7.1 SummaryWe view the 
onversion of �
tion text into multi-modal animated virtual environments as two prob-lems: the analysis of the natural language text to 
reate a stru
tured intermediate representation;and the interpretation of this intermediate representation for 
reating a 
orresponding animatedvirtual environment.Text analysis begins with the 
reation of surfa
e annotations, whi
h involves identifying thestru
tural and synta
ti
 properties of �
tion text. We use a 
ustom-built text tokenizer andsenten
e splitter for identifying stru
tural properties. Publi
ly available tools provide synta
ti
information in
luding parts-of-spee
h, synta
ti
 fun
tion, and phrasing. A

ura
ies of greaterthan 95% 
an be expe
ted for every 
ategory of surfa
e annotation.We use annotated �
tion text as the stru
tured intermediate representation of a �
tion book.We 
reate these annotations using a pattern-based ma
hine learning approa
h. Rules are indu
edfrom manually provided examples (supplemented with automati
ally generated surfa
e annota-tions). The result is a model that 
reates annotations spe
i�
 to the style of the human whoprovides the examples. We believe that error potentially introdu
ed by in
orre
t surfa
e anno-tations is a

ommodated by the indu
tion of spe
ial-
ase rules, and has minimal impa
t on the
reation of semanti
 annotations. Models are indu
ed that 
reate 
orre
t annotations in di�erent
ategories, and su

ess varies a

ording to the 
ategory (we report a

ura
y levels ranging be-tween 51.4% and 90.4%). We observe that the greater the number of examples provided, the morea

urate the automati
ally produ
ed annotations be
ome.The interpretation of the annotated �
tion text involves formulating stru
tured s
ene des
rip-tions, quantifying entity behaviour in a virtual environment, and populating 
orresponding virtualenvironments.We use knowledge-poor te
hniques for formulating s
ene des
riptions from annotations. S
enedes
riptions in
lude: a list of the di�erent s
enes to visualize (using the Setting annotation);199
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Figure 7.1: Summary of the problems and automated pro
esses that solve them for the 
omplete�
tion-to-animation task.entities that populate ea
h s
ene (using Avatar and Obje
t annotations and a library of geometri
models); and stru
tured des
riptions of entity behaviour in ea
h s
ene (by translating Transitionand Relation annotations into time-based 
onstraints). Time values that quantify behaviour area
quired from audio representations of the text. We observe that between 83% and 96% of theautomati
ally 
reated s
ene des
riptions (from a set of extra
ts from �
tion text) require no humanmodi�
ation, validating our knowledge-poor te
hniques.Behaviour is quanti�ed in a virtual environment by formulating symboli
 time-quanti�ed 
on-straints, and subsequently sear
hing for solutions. Constraints are produ
ed automati
ally, andare potentially in
onsistent due to ambiguity in the text or erroneous annotations. Interval-basedquanti�ed 
onstraint optimization automates the sear
h for 
onstraint solutions, and providesapproximate solutions for in
onsistent 
onstraints. This method outperforms existing 
onstraintsolving approa
hes for the types of 
onstraints produ
ed by our �
tion-to-animation system.Stru
tured s
ene des
riptions and quanti�ed behaviour are used to automate the populationof virtual environments. One virtual environment is 
reated for ea
h s
ene in a book. We auto-mati
ally sele
t 3D geometri
 models from a library and pro
edurally generate geometry for theba
kground s
enery of ea
h environment. Geometry is animated a

ording to the quanti�ed be-haviour. Additional modalities are automati
ally syn
hronized, in
luding an audio version of thenarration and textual subtitles.Error introdu
ed by in
onsistent semanti
 annotations has little impa
t on the interpretationme
hanisms. We provide opportunities for human intervention where errors potentially o

ur (su
has dire
t modi�
ations to the virtual environment), but pro
esses su
h as quanti�ed optimizationenable s
ene 
reation even where in
onsisten
ies o

ur. We provide a suite of multi-modal animatedexamples to demonstrate that the automati
ally generated presentations 
orrespond to the original�
tion extra
ts.The 
omplete �
tion-to-animation pro
ess is illustrated in Figure 7.1 (�rst presented as Fig-ure 1.7 on page 8 in Chapter 1), and is augmented with the innovative methods we use for a

om-plishing ea
h task.
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lusionsThe 
onversion of �
tion text into 
orresponding virtual environments is automated using thete
hniques we have developed. Automated pro
esses repla
e repetitive manual tasks in text analysisand interpretation, and as a result of this we maintain that:The pro
ess of 
onverting a �
tion book into an animated 3D �lm 
an be automated.With referen
e to the original problem statement in Se
tion 1.2 on page 3, we 
on
lude:1. Text analysis is automated using hierar
hi
al rule-based learning.This method automati
ally 
reates semanti
 annotations that 
omprise the stru
tured in-termediate representation of the �
tion book. This is signi�
ant be
ause we now have anautomated method for identifying di�erent 
ategories of visual des
ription in �
tion text, asour
e previously 
onsidered as too unstru
tured and 
omplex to use in the text-to-graphi
s
ontext. In this manner we repla
e the repetitive tasks of manually reading and 
ompre-hending the text.2. Virtual environments are populated using te
hniques that interpret semanti
 an-notations.Interpretation methods automati
ally derive s
ene des
riptions from semanti
 annotations,quantify behaviour in a virtual environment, and populate virtual environments with ge-ometry. This is signi�
ant be
ause it rapidly and deterministi
ally 
onstru
ts ri
h virtualenvironments that 
ontain both visual detail and dynami
 entity intera
tions. The need forrepetitive tasks su
h as manual s
ene planning, 3D modeling and animation is eliminated.The 
onsequen
e of this work is a system that redu
es the manual e�ort in performing the �
tion-to-animation task, and whi
h 
an be used as a labour saving devi
e in existing animation work-�ows.It 
reates virtual worlds and �lms qui
kly and 
heaply, without requiring spe
ialist expertise.Annotated �
tion textThe 
entral feature of our approa
h to the �
tion-to-animation task is the use of annotated textas the intermediate representation. Annotated �
tion text is bene�
ial in a number of respe
ts:
• The human readable format supports a boot-strapping pro
ess for training the hierar
hi
alrule-based learning system. This fa
ilitates the manual 
reation of examples for the indu
tionpro
ess, and also supports review and 
orre
tion of automati
ally produ
ed annotations.
• Annotations are interpreted using automated pro
esses, as a result of the stru
tured for-mat. This is signi�
ant be
ause it provides the me
hanism that dire
tly enables portions ofunstru
tured free text to be used as parameters for pro
edures that automati
ally produ
e
orresponding visual geometry.
• Annotations maintain a dire
t link between the sour
e text and the resulting interpretation.This is advantageous for deriving timing information (for behaviour) from annotated trig-gers, and providing a me
hanism for syn
hronizing multiple modalities. This link is also
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ant be
ause it exposes the relationship between fragments of text and 
orrespondingvisualizations.
• Multiple 
ategories of visual des
ription are identi�ed using annotations. This provides ari
h array of stru
tured visual des
riptions, whi
h is easily extensible when required.
• Annotations qualify visual des
riptions with other fragments of text, or with semanti
 in-formation. Quali�ers parametrize subsequent interpretation modules, resulting in uniquevisualizations that 
orrespond to individual des
riptions.The signi�
an
e of our work in text-analysis and interpretation is dis
ussed in the following se
tions.7.2.1 Text analysisThe pro
esses we des
ribe 
reate an intermediate representation of the �
tion text:1. Surfa
e annotations are 
reated for natural language with high levels of a

ura
y. This limitsthe error that is introdu
ed into the subsequent automati
 
reation of annotations.2. A

urate models for 
reating annotations are indu
ed from manual examples using hierar-
hi
al rule-based learning. The impli
ation is that our automated me
hanism 
an be re�nedto mat
h to a human's annotation style, and produ
e similar annotations to the examplesprovided.(a) Tree-stru
tures en
apsulate the stru
tural and synta
ti
 properties of text, and gener-alize 
on
epts to make them more appli
able. These provide an e�e
tive me
hanism forexpressing patterns in the English language that identify annotations in �
tion text.(b) A model 
onsists of a set of hierar
hi
al rules, and is 
apable of des
ribing the widerange of s
enarios pe
uliar to a 
ategory of annotation. This is signi�
ant in that both
ommon and rare s
enarios 
an be a

ommodated in a single model. The set is alsoextensible, whi
h provides for future re�nement of the model by adding rules to dealwith spe
ial 
ases if needed.(
) A generalized rule-set 
reates 
orre
t annotations in unseen text. This demonstratesthat the indu
ed patterns model the underlying prin
iples used by humans to representa parti
ular annotation 
ategory.(d) Rule-stru
tures 
an be tailored for di�erent annotation 
ategories, without modifyingthe 
ore learning algorithms. A

urate models are indu
ed for multiple 
ategories ofannotation, resulting in a more des
riptive intermediate representation. This limitsoptimizations to a�e
t only the rule-stru
ture if there is a need to improve the a

ura
yof an indu
ed model in a parti
ular 
ategory.(e) A

urate rule-sets are indu
ed for qualifying annotations with text-referen
es and se-manti
 
on
epts. This strategy provides semanti
 information without the need for anexternal knowledge base.
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hi
al rule-based learning indu
es models that express fundamental rulesin a human's 
ognition of English. The provision of enough examples will result in a model thatis appli
able to general �
tion. However, it is impossible to determine what quantity would besu�
ient for a
hieving this state given the abundan
e of available �
tion titles.7.2.2 InterpretationThe pro
esses we des
ribe 
reate animated virtual environments and �lms from annotated �
tiontext:1. A

urate s
ene des
riptions are derived from annotated �
tion text. This validates our knowl-edge poor approa
hes for interpreting semanti
 annotations, and shows that the limited setof annotation 
ategories we de�ne provides su�
ient detail to spe
ify s
enes. The impli
ationis that visualizations 
an be enhan
ed with the addition of further annotation 
ategories.(a) A book 
an be interpreted as a 
olle
tion of independent virtual environments (s
enes).The 
on
ept of a s
ene provides an elegant method for presenting a 
onsistent orderingof events, be
ause time is one 
ontiguous interval in ea
h s
ene. This eliminates the needto �unravel� the ordering of events (as would be the 
ase if the entire book is interpretedas one virtual universe).(b) Visual 
onsisten
y between di�erent s
enes is maintained using entity des
riptors. Thisis important for the multi-s
ene property of �
tion writing, and ensures that entitieshave the same appearan
e in ea
h virtual environment. This is also signi�
ant from avirtual reality perspe
tive, in that one unique entity is instantiated for representing thatentity in any potential environment.(
) Annotations are linked 
orre
tly to instantiated entities (des
riptors) using a knowledge-poor 
o-referen
e te
hnique. This enables behaviour to be attributed to the 
orre
tentities in ea
h s
ene, regardless of the type of book.(d) Abstra
t 
onstraints summarize time-quanti�ed behaviour in a stru
tured manner, whilestill maintaining a human readable format. This provides opportunity for human re-view and 
orre
tion, while enabling subsequent use of automated te
hniques. Abstra
t
onstraints also provide a means through whi
h impli
it physi
al restri
tions (su
h asgravity and interpenetration) 
an be expressed.(e) Behaviour that 
orresponds to the text is quanti�ed (in terms of time) using synthesizedaudio. This is signi�
ant in that temporal information is provided without the need forknowledge-based reasoning.(f) Abstra
t 
onstraints are dire
tly translated into analyti
al 
onstraints, due to theirstru
tured nature. In this manner, a human need not be 
on
erned with 
omplex lowlevel behaviour reasoning. However, manual 
ontrol over behaviour is still providedthrough the human readable abstra
t 
onstraints.(g) The phrasing of 
onstraints in terms of distan
e provides a valuable ability to measuresolution quality during the optimization pro
ess. This provides the designer with anindi
ation of the quality of the 
urrent spe
i�ed behaviour, allowing optimization to beterminated prematurely if quality is su�
iently high for the designer's needs.
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al 
onstraints is the limited s
alability of solution �ndingmethods with respe
t to the number of variables. Expressing traje
tories as sequen
esof low degree 
urves (redu
ing the number of variables) and in
remental solving over-
omes this limitation. Complex behaviour is produ
ed e�
iently, while maintaining thebene�ts of environment-independent spatial reasoning (des
ribed in Se
tion 5.2.3 onpage 112).2. Interval-based quanti�ed 
onstraint optimization lo
ates solutions that spe
ify time-basedbehaviour in a virtual environment. This means that 
oherent visual behaviour 
an bespe
i�ed between dynami
 bodies in our virtual environments.(a) Constraints formulated over 
ontiguous intervals of time and spa
e are represented ef-fe
tively using interval arithmeti
. This enables dire
t solving of symboli
ally phrased
onstraints, and removes the need to transform systems into dis
rete representationsmore suitable for 
onventional 
omputer-based solving te
hniques.(b) Solutions are guaranteed to be 
onsistent over the 
ontiguous time interval. This ensuresthat no errati
 behaviour is produ
ed in a s
ene that 
ould potentially result fromaliasing when using dis
rete solving methods.(
) Relaxed 
onstraints and iterative tightening narrows the sear
h spa
e in a manner thattends towards a
tual solutions. This is signi�
ant be
ause it redu
es sear
h time (par-ti
ularly for �
tion-to-animation problems), but also establishes a 
orrelation betweensear
h time and the proximity of the pro
ess to an a
tual solution. The 
onsequen
e isthat if a designer has patien
e to wait then a higher quality solution is likely (as opposedto solving methods where this 
orrelation does not apply).(d) There is a trade-o� between lo
ating sound solutions and the amount of available sear
htime. If pressed for time a designer is able to use an approximate solution for subsequents
ene population pro
esses, but is able to in
orporate better quality solutions at a laterstage if the optimization is left to 
ontinue 
on
urrently.(e) The interval-based quanti�ed 
onstraint optimizer ensures a behaviour spe
i�
ation(even for in
onsistent 
onstraint systems) through the provision of approximate solu-tions. The signi�
an
e is that it enables the automati
 
reation of 
onstraints from text,without the need for semanti
 
onsisten
y 
he
king. This provides for the populationof subsequent virtual worlds, regardless of in
onsisten
ies in the text or annotations.3. Multi-modal virtual environments are populated automati
ally. There is no need for repeti-tive 3D modeling and animation, and results in the rapid 
reation of ri
h virtual environments
ontaining both visual and behavioural visualizations.(a) Entities in virtual environments are represented visually in a 
oherent and 
onvin
ingfashion. The automati
ally produ
ed environments 
ontain enough basi
 
ontent tovisually portray 
on
epts in the text.(b) Multiple modalities (visual, audio, and text) are aligned 
orre
tly. We 
an generatealternative 
ombinations of modalities for produ
ing varied presentations of the text,in
luding 
oherently sequen
ed multi-modal animated �lm presentations.
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ed from annotated �
tion text are signi�
ant in that they not only
ontain des
ribed entities, but they also portray plot-line through the animated behaviour. Thisability is further enhan
ed by the in
lusion of other modalities. We believe that this ability bene�tsother appli
ations besides the 
reation of �lms, in
luding populating environments for virtualreality appli
ations su
h as intera
tive storytelling, edu
ation or massive multi-player games.7.3 ContributionsWe make a number of novel 
ontributions in the text-to-graphi
s and asso
iated domains.The use of a knowledge-poor paradigm for solving the text-to-graphi
s problemExisting text-to-graphi
s systems rely on the existen
e of a pre-
onstru
ted knowledge base. Ourresear
h shows that knowledge-poor te
hniques are e�e
tive in produ
ing 
oherent animated graph-i
s, using only minor human intervention to provide world-knowledge. In all existing resear
h hu-man intervention is avoided at all 
osts, usually at the expense of sa
ri�
ing 
ertain s
ene 
reation
apabilities due to limitations in the quantity of en
oded world knowledge (Coyne and Sproat,2001; Lu and Zhang, 2002; Ma, 2006). Our resear
h 
ontributes to the text-to-graphi
s domainby demonstrating that the bulk of repetitive manual e�ort is eliminated. The restri
tions onknowledge-
entri
 approa
hes are removed.The use of text sour
ed from popular �
tion books as a sour
e of inputMost text-to-graphi
s resear
h uses restri
ted or 
ontrived language as input (Lu and Zhang,2002; Zeng et al., 2003; Johansson et al., 2005; Ma, 2006). We sour
e language dire
tly frompopular �
tion books, without simplifying or paraphrasing the text. This represents a signi�
ant
ontribution to the text-to-graphi
s domain.Annotated text as an intermediate representationOur approa
h of using annotated �
tion text as an intermediate representation is novel. Otherexisting intermediate representations (su
h as semanti
 frames (Coyne and Sproat, 2001) or lexi
alvisual semanti
 representations (Ma, 2006)) seldom support automati
 
reation and interpretationwhile simultaneously exhibiting human-readability.Annotated text is signi�
ant in its ability to be extended to di�erent visual 
ategories. Our de�-nition of annotation 
ategories in
luding Avatar, Obje
t, Setting, Transition and Relation providesa starting point for future �
tion-to-animation development.Pattern-based ma
hine learning for performing the text analysis taskExisting text-to-graphi
s systems use widely varying methods for text analysis. The most populartrend is the 
ombination of synta
ti
 analysis with en
oded world knowledge. We use an alter-native te
hnique based on information extra
tion. CarSim (Johansson et al., 2005) is the onlytext-to-graphi
s system that uses information extra
tion, employing a statisti
al ma
hine learning
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h. Our approa
h is innovative be
ause it is the only pattern-based learning me
hanism forperforming text analysis.The hierar
hi
al rule paradigm is novel in the �eld of pattern-based information extra
tion.Our use of tree-stru
tures for representing patterns, and our te
hniques for generalizing thesepatterns by pair-wise 
omparison and insertion of wild-
ards is a novel approa
h to indu
ing rulesregarding the English language. The ability to indu
e patterns for di�erent annotation tasks (su
has identifying text fragments in a 
ategory, identifying relationships between text fragments, andasso
iating semanti
 information) is a signi�
ant 
ontribution.Interval arithmeti
 for quantifying time-based behaviourThe majority of related text-to-graphi
s approa
hes spe
ify behaviour using en
oded world-knowledge(Coyne and Sproat, 2001; Lu and Zhang, 2002; Ma, 2006). Few systems use 
onstraint-basedte
hniques that do not require detailed knowledge bases (Johansson et al., 2005). We develop apreviously unexplored te
hnique that uses interval-based 
onstraint optimization.Our method for optimizing universally quanti�ed 
onstraint systems extends the state of theart in quanti�ed 
onstraint solving. This method is innovative in its ability to provide approximatesolutions to in
onsistent quanti�ed 
onstraint systems, as well as provide a quantitative measureof the quality of these approximations.We develop a novel approa
h that over
omes the limitations of solution �nding me
hanisms(in terms of s
alability with respe
t to the number of variables). This approa
h phrases behaviouras sequen
es of low degree traje
tories and solves 
onstraint systems in an in
remental fashion,thereby ensuring that the number of variables remains small enough for e�
ient solving.A knowledge-poor approa
h to deriving time from �
tion textExisting text-to-graphi
s systems that spe
ify time-based behaviour use knowledge-ri
h analysisof the input text to derive temporal information (Lu and Zhang, 2002; Ma and M
Kevitt, 2003,2004
; Johansson et al., 2005). Our use of audio representations is a 
ontribution in this respe
tbe
ause it avoids 
omplex reasoning and analysis, and also 
reates behaviour that 
orrespondsvisually to the 
on
urrent presentation of the original text.More e�
ient development pro
esses for virtual reality and �lm produ
tionThe �
tion-to-animation system presented in this resear
h demonstrates that the transformationof a �
tion book into an animated �lm is automated using 
omputer te
hnology. Our automatedsystem removes the requirement for repetitive manual e�ort in 
onverting the �
tion text into
orresponding virtual environments. This is signi�
ant be
ause it allows human e�ort to be exertedelsewhere in the 
reative pro
ess, resulting in environments and �lms that 
ontain ri
h visual detailfor less 
ost or e�ort.7.4 Future workA weakness in our 
urrent implementation of the �
tion-to-animation pro
ess is the limited rangeof annotation 
ategories. Fi
tion text 
ontains types of des
riptions beyond the 
ategories used in
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Number of Sentences (1 = single, 2 = less than 20, 3 = greater than 20)
Sentence Complexity (1 = simplified, 2 = contrived, 3 = unrestricted)
Domain Freedom (1 = domain restricted, 2 = knowledge restricted, 3 = no restriction)
Modalities (1 = static graphics, 2 = animated graphics, 3 = animated graphics + other)
Model Articulation (1 = none, 2 = some, 3 = detailed)
Scenes (1 = single unchangeable, 2 = single changeable, 3 = many changeable)
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Figure 7.2: Comparative ratings of 
apabilities for related text-to-graphi
s systems.this exposition, in
luding des
riptions of entity features and emotion, the identi�
ation of posesand a
tions of entities in the s
ene, as well as setting-related detail. Hierar
hi
al rule-based learningis e�e
tive for 
reating di�erent 
ategories of annotation, and will assist in the 
reation of large
orpora of �
tion text 
ontaining additional annotated visual des
riptions.The 
urrent methods for 
reating virtual environments are limited in their ability to add visualdetail. This limitation is deliberate in this exposition so as not to obfus
ate the results produ
edwith irrelevant spe
ial e�e
ts. However, te
hniques stand to be in
luded that add additionalvisual bene�t with minimum human e�ort. We pla
e emphasis on te
hniques that produ
e visualgeometry pro
edurally, and we believe that su
h methods 
ontribute towards solving the problemof limited libraries of visual media. More advan
ed forms of model arti
ulation, spe
ial e�e
ts,texturing, lighting and rendering are 
andidates for adding detail to virtual environments.Future investigations also in
lude appli
ations that bene�t from the te
hnology presented inthis resear
h. We believe that these te
hniques are of use in tea
hing language 
on
epts, as wellas in automati
ally 
reating 
ontent for edu
ational and entertainment purposes.7.5 State of the art in text-to-graphi
s resear
hThe �
tion-to-animation system surpasses existing text-to-graphi
s resear
h in its 
ombined 
apa-bility to handle large quantities of input with little restri
tion on senten
e 
omplexity, and produ
emulti-modal presentations 
onsisting of a number of unique s
enes. Our approa
h is superior toany single related approa
h in terms of the 
ombination of its input and output 
apabilities, il-lustrated using 
omparative ratings in Figure 7.2. In this respe
t our �
tion-to-animation systemrepresents a signi�
ant 
ontribution to the text-to-graphi
s domain.
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Appendix AProperties of raw textWe impose the following requirements regarding the input text:
• Chara
ters that o

ur in the input are sour
ed only from the standard ASCII domain;
• Paragraphs in the text are separated by a blank line;
• Pun
tuation that is not part of a re
ognized set (listed in Table A.1) does not o

ur in thetext;
• Dire
t-spee
h is indi
ated by inverted 
ommas (�...�) only;
• Dire
t-spee
h whi
h spans multiple paragraphs only uses a single set of inverted 
ommas, atthe start of the quote, and after the last token inside the quote.It is a
knowledged that the raw text needs pre-pro
essing to ensure 
onforman
e to the aboverequirements. Pre-pro
essing is a
hieved using existing regular expression and 
ommand-line tools.

Pun
tuation --- -- ... ; : , � # $ % ( ) � � ` ' ~ . ! ? { } [ ℄Apostrophe n't 's 're 'm 've 'd 'll 'Senten
eTerminators ... . ! ?Table A.1: Re
ognised pun
tuation, apostrophe and senten
e termination symbols.226



Appendix BCoarse tag-set and mappings
B.1 Coarse tag-setThe 
oarse tag-set used by the �
tion-to-animation system is listed in Table B.1. It is a derivativeof the Penn tag-set (Mar
us et al., 1994).B.2 Mappings to the 
oarse tag-setMappings between the 
oarse tag-set and the Penn, LOB and SUSANNE tagsets are listed in TableB.2. The * symbol denotes a wild-
ard.

227
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Tag Des
ription1. CC Co-ordinating Conjun
tion2. CD Cardinal Number3. DT Determiner4. EX Existential there5. FW Foreign word6. IN Preposition or subordinating 
onjun
tion7. JJ Adje
tive8. MD Modal9. NN Noun10. NNP Proper Noun11. PRP Pronoun12. RB Adverb13. RP Parti
le14. TO To15. UH Interje
tion16. VB Verb17. VBD Verb, past tense18. VBG Verb, gerund or present parti
iple19. VBN Verb, past parti
iple20. VBZ Verb, third person singular present21. WDT Wh-determiner22. WP Wh-pronoun23. WRB Wh-adverb24. �COPY� Pun
tuationTable B.1: Coarse tag-set, adapted from the Penn tag-set.
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CoarseTag
PennTreeban
kLOB
SUSANNE

CCCC
CC*
CC*

CDCD
CD*;OD*
MC

DTDT
;PDT
AT*;DT*
AT*

EXEX
EX
EX

FWFW
&FO
FW*

ININ
CS*;IN*
I*

JJJJ;
JJR;JJS
AP*;JJ*
J*

MDMD
MD
MD*;VM*

NNNN
;NNS
NN*;NR*;PN
*
NN*

NNPNN
P;NNPS
JNP;NNP*;N
P*
NP*

PRPPR
P;PRP$
PP*
PN*;PP*;AP
P*

RBRB
;RBR;RBS
ABL;Q*;R*
R*

RPRP
RP
FB;RP*

TOTO
TO*
TO;IIt

UHUH
UH
UH*

VBVB
BE;DO;HV;
VB*
VB0;VD0;VV
0*

VBDVB
D
BED;BEDZ;
DOD;HVD;V
BDVBDZ;
VBDR;VDD;
VHD;VVD*

VBGVB
G;VBP
BEG;BEM;B
EP;HVG;VB
GVBG;V
DG;VHG;VV
G*;VBR;VB
M;VH0

VBNVB
N
BEN;HVN;V
BN;
VBN;VDN;V
HN;VVN*

VBZVB
Z
BEZ;DOZ;H
VZ;VBZ
VBZ;VDZ;V
HZ;VVZ*

WDTW
DT
WDT*
DDQ*

WPWP
;WP$
WP*
PNQ*

WRBW
RB
WRB
RRQ*

�COPY�
Pun
tuation
Pun
tuation
Y*;G*

Table B.2: Mappings between the 
oarse tag-set and the Penn, LOB and SUSANNE tag-sets.



Appendix CAlgorithms in quanti�ed 
onstraintsolving
C.1 Methods for 
onstraint propagationConstraint propagation is a
hieved over 
onstraints using interval arithmeti
 and narrowing algo-rithms. Ea
h is based on the �xpoint algorithm.C.1.1 Fixpoint algorithmThe �xpoint algorithm shown in Algorithm C.1 (Benhamou et al., 1994; Benhamou, 1995) imple-ments the pro
ess of 
haoti
 iteration. This pro
ess 
ontinues to apply narrowing operators to aset of 
onstraints until no further narrowing o

urs over the variable domains.The problem with Algorithm C.1 is that it works only with primitive 
onstraints. That is, the
onstraint c : x+y∗z = t needs to be de
omposed into primitive 
onstraints su
h as cdec = {y∗z =

α, x+ α = t}. The introdu
tion of the new variable α leads to poor domain tightening, espe
iallywhen the same variable o

urs multiple times in the same 
onstraint.Algorithm C.1 Fixpoint algorithm.
fixpoint(in: {C1, ..., Cn}; inout: B)begin
Q← {C1, ..., Cn}while size(Q) 6= 0 do
C ← removeF irst(Q) %%pop from sta
k
B′ ← narrow(C,B) %%narrow B with respe
t to Cif B′ 6= B then

B← B′Add all 
onstraints (ex
ept C) 
ontaining variables whosedomains are narrowed in B to Qreturn Bend
230
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Constraint: 2x = z − y2Figure C.1: Forward evaluation of a 
onstraint (as illustrated by Benhamou et al. (1999)).Algorithm C.2 Forward evaluation algorithm (adapted from Benhamou et al. (1999)).
forwardEvaluation(in: node; inout: B)begin
t← type(node)
ase (t) of:

♦: %An operationforea
h 
hild c of node do
forwardEvaluation(c,B)node.r←Interval extension of ♦ operator, usinginterval r of 
hild-nodes as operands

α: %A 
onstantnode.r← [α, α]
Vk: %A variablenode.r← domaink(B)endC.1.2 Hull 
onsisten
yThe algorithm for a
hieving hull 
onsisten
y is named HC4 and is de�ned by Benhamou et al.(1999). The pro
ess is divided into two se
tions, namely forward evaluation and ba
kward propa-gation of the evaluation tree of the 
onstraint expressions.Forward Evaluation The forward evaluation pro
ess is illustrated in Figure C.1, where thetree is traversed from the leaves to the root, evaluating the interval extension of ea
h sub-term. Thealgorithm re
ursively traverses down the tree until the leaves are met, where the initial intervals ofthe variables and 
onstants are loaded into a temporary variable r in ea
h node. On the upwardrun the values for the inner nodes are 
al
ulated using the values from the 
hildren with respe
tto the interval extension of the operator at the 
urrent inner node. Algorithm C.2 implementsforward evaluation.Ba
kward Propagation The pro
ess of ba
kward propagation is illustrated in Figure C.2. Thetree is traversed from the root node downwards. At ea
h inner node the 
hildren are 
al
ulateda

ording to the proje
tion operator of the 
urrent node. The narrowing operation uses the 
urrentvalues of the 
hildren, as well as the value of the 
urrent node (whi
h was modi�ed as a result of
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Constraint: 2x = z − y2Figure C.2: Ba
kward propagation of a 
onstraint (as illustrated by Benhamou et al. (1999)).Algorithm C.3 Ba
kward propagation algorithm (adapted from Benhamou et al. (1999)).
backwardPropogation(in: node; inout: B)begin
t← type(node)
ase t of:

♦: %An operation
D′ ←box 
onstru
ted from r interval of ea
h 
hildforea
h 
hild of node do
hild.r← πi(ρc ∩D′) %% Proje
tion operator for operand of ♦

backwardPropogation(
hild, B)
Vj: %Variable
Bj ← Bj∩node.r %% interse
t domain of variable jendthe propagation of its parent). Eventually, the propagation rea
hes the leaf nodes, where the �nalintervals of the variables are assigned. If the variable o

urs more than on
e, then all intervalsreturned for that variable are interse
ted. Ba
kward propagation is presented in Algorithm C.3.Further details regarding forward and ba
kward propagation are des
ribed by Benhamou et al.(1999).Algorithm HC4Revise The forwardEvaluation and backwardPropogation algorithms �t to-gether into an algorithm 
alled HC4Revise, whi
h is presented in Algorithm C.4. This implementsthe 
onstraint narrowing operator for the HC4 algorithm.Algorithm C.4 HC4Revise (adapted from Benhamou et al. (1999)).

HC4Revise(in: 
onstraint c; inout: box B)begin
forwardEvaluation(root(c),B)
backwardPropagation(root(c),B)return Bend
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ribed by Benhamou et al. (1999)).
HC4(in: {c1, ..., cm}; inout: box B)begin
S ← {c1, ..., cm}while size(S) 6= ∅ and B 6= ∅ do
c←removeF irst(S) %%pop 
onstraint from sta
k
B′ ←HC4Revise(c,B)if (B′ 6= B) then %%box is narrowedAdd all 
onstraints (ex
ept c) 
ontaining variables whosedomains are narrowed in B′ to S

B← B′elseRemove c from Sreturn BendAlgorithm HC4 TheHC4 algorithm presented in Algorithm C.5 is designed by Benhamou et al.(1999) for a
hieving hull 
onsisten
y over a set of 
onstraints. In a set of 
onstraints, a variable
x may o

ur in more than a single 
onstraint at a time (for example, x may o

ur in 
onstraint
c1 and c2). If x's domain is narrowed over 
onstraint c1 then this may lead to further narrowingof other variables in c2. Algorithm C.5 uses 
haoti
 iteration to a
hieve a �xpoint, that is, a boxfor whi
h hull 
onsisten
y is a
hieved over all 
onstraints. A fun
tion HC4Revise is exe
utedthat performs the forward and ba
kward propagation steps. A list of 
onstraints is maintainedwhi
h indi
ates whi
h 
onstraints to use for further narrowing of the input box. Constraints areremoved from the list when idempoten
e is a
hieved after using the HC4Revise operator (that is,no 
hange results from narrowing the 
onstraint). If however, the box is modi�ed by HC4Revise,then all 
onstraints that 
ontain variables whose 
orresponding intervals in the box were modi�edare added to the end of the list.C.1.3 Box 
onsisten
yBox 
onsisten
y was 
reated to over
ome the problem of a 
onstraint 
ontaining more than oneinstan
e of a variable. This is done by forming a set of univariate 
onstraints for an input 
onstraint,where ea
h variable in a univariate 
onstraint is repla
ed with its domain in the input box, ex
eptfor one variable. For box 
onsisten
y, the left-most and right-most roots de�ne the global boundsof all possible roots for the fun
tion (Benhamou et al., 1994).We use the shrinkLeft and shrinkRight algorithms to lo
ate the left-most and right-mostroots of a univariate fun
tion. The former is de�ned as Algorithm C.6. This algorithm evaluatesthe fun
tion over the initial interval, dis
arding it if it 
ontains no roots. If roots are found then theinterval is split, and ea
h sub-division is pushed onto a sta
k for future root 
he
king. The orderin whi
h the subdivisions are pushed onto the sta
k determine whether the left-most or right-mostroot is to be found. If a 
anoni
al interval is found that still 
ontains zero, then this is assumed tobe the left-most (right-most) root, and the algorithm returns su

essfully. This method is di�erentfrom the Newton method for lo
ating roots.
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shrinkLeft(in: univariate fun
tion F; inout: interval I)begin
S ← {I}while size(S) > 0 do
In ← removeF irst(S) %%pop off sta
k
X ← F (In) %%Evaluate univariate fun
tion over Inif [0, 0] ⊂ X then

V ← split(In)if size(V ) > 0 thenPush intervals in V onto sta
k Selsereturn In %%pre
ision rea
hed, root foundreturn FAIL %% No roots are foundendDetermining box 
onsisten
y for a 
onstraint is a matter of �nding the left-most and right-mostroots of ea
h univariate fun
tion. If either one of the methods returns FAIL then no root exists.Algorithm BC3Revise The algorithm that 
reates the set of univariate 
onstraints and exe
utes
shrinkLeft and shrinkRight is 
alled BC3Revise. If this algorithms returns FAIL then box
onsisten
y over the 
onstraint is not possible (Benhamou et al., 1994).Algorithm BC3 Box 
onsisten
y over a set of 
onstraints is a
hieved in a similar manner tohull 
onsisten
y, that is, box-narrowing is repeated until no 
hange o

urs in the box of domains(Benhamou et al., 1994, 1999). Algorithm BC3 is identi
al to HC4, ex
ept that BC3Revise isused instead of HC4Revise.Algorithm BC4 Algorithm C.7 is a more e�
ient method for box 
onsisten
y over a set of
onstraints. Initially hull 
onsisten
y is a
hieved for all the 
onstraints. On
e hull 
onsisten
y isa
hieved over the set, box 
onsisten
y is applied (Benhamou et al., 1999).C.1.4 Inner 
ontra
ting operatorAlgorithm C.8 implements the inner 
ontra
ting operator presented by Benhamou et al. (2004).
ICO2 uses an outer 
ontra
ting operator implemented as the BC3Revise algorithm. The initialbox is narrowed using BC3Revise, and if a universally quanti�ed variable is narrowed, then nosolutions exist. If none are narrowed, then the set of inverted 
onstraints are narrowed using
BC3Revise over B′. The box set di�eren
e between B′ and B′′ forms the solution to the 
onstraintset. If further solutions are required, then B′′ is split and pro
essed re
ursively. If B′′ be
omes
anoni
al the algorithm stops (in this 
ase, if the average width of the box is less than a spe
i�edthreshold α).
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Algorithm C.7 BC4 (adapted from Benhamou et al. (1994)).

BC4(in: set of 
onstraints C; inout: box B)beginrepeat
B′ ← Bdo
notF inished← falseforea
h c ∈ C do

B′′ ← B

HC4Revise(c,B)
notF inished←true if any variables in B′′ that o

ur on
e are narrowed,false if B′′ = FAIL or notF inished already falsewhile notF inishedif (B 6= ∅) then

BC3(C,B)until B′ = B or B = ∅return Bend
Algorithm C.8 Inner 
ontra
ting operator adapted from Benhamou et al. (2004).

ICO2(in: 
onstraint C,box B;out: S 
ontaining solution boxes)begin
B′ ← BC3Revise(C,B)if universally quantified domains not shrunk then

B′′ ← BC3Revise(C,B′)
S ←box set differen
e where no shrinking inuniversally quantified variablesif width(B′′) < α thenreturn Selse

(B1, ...,Bk)← splitk(B′′)apply ICO2(C,Bj) for ea
h split box, add solutions to Sreturn Selsereturn FAILend



Appendix DBen
hmark 
onstraint systems
D.1 Example 
onstraint �leConstraint systems are des
ribed in a 
onstraint �le that symboli
ally represents the 
onstraints:########## Obje
t 1 in front of Obje
t 0 ###############CONSTRAINT{VARS{xo0
p0xo1
p0yo0
p0yo1
p0t1*}EXPR{(0.707*(xo1
p0-xo0
p0))+(-0.707*(yo1
p0-*yo0
p0)))^2 -0.8*(((xo1
p0-xo0
p0)^2 + (yo1
p0-yo0
p0))^2) * (0.707^2+(-0.707)^2)}OPERATOR{>}BOUNDARY{0}}########## Obje
t 1 near Obje
t 0 ###############CONSTRAINT{...}BOX{xo0
p0: -10, 10xo1
p0: -10, 10yo0
p0: -10, 10yo1
p0: -10, 10...t1: 0.5, 0.6} 236
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hmarksThe three ben
hmarks used in Chapter 5 for verifying the underlying algorithms are de�ned asfollows:D.2.1 CLPRevisitedThis ben
hmark is used as a toy example by Benhamou et al. (1994), and is 
on
erned with �ndingthe roots of ea
h of the following fun
tions:
f1(x) = x4 − 12x3 + 47x2 − 60x

f2(x) = x4 − 12x3 + 47x2 − 60x+ 24

f3(x) = x4 − 12x3 + 47x2 − 60x+ 24.1 (in
onsistent)In all three 
ases x is assigned the initial domain [−10, 20].D.2.2 Broyden Banded fun
tionThis example is used as a ben
hmark by Benhamou et al. (1994) and is 
on
erned with �nding theroots of the following fun
tions:
fi(x1, ..., xn) = xi(2 + 5x2

i ) + 1−
∑

j∈Ji

xj(1 + xj) (1 ≤ i ≤ m)where Ji = {j|j 6= i & max(1, i− 5) ≤ j ≤ min(m, i+ 1)}.All domains of xi are initially the interval [−1, 1]. Ben
hmark systems are 
reated for n =

{5, 10, 20, 40, 80}.D.2.3 More-Cosnard exampleThis example is used as a ben
hmark by Benhamou et al. (1994) and is 
on
erned with �nding theroots of the following fun
tions (1 ≤ k ≤ m):
fk(xi, ..., xm) = xk +

1

2



(1− tk)

k
∑

j=1

tj(xj + tj + 1)3 + tk

m
∑

j=k+1

(1− tj)(xj + tj + 1)2



where tj = jh and h = 1/(m + 1). Every xi begins with the initial domain [−4, 5]. Ben
hmarksystems are 
reated for m = {10, 20, 40, 80}.D.3 Quanti�ed ben
hmarksThe following ben
hmarks are used for testing the ability to solve 
onstraint systems 
ontaininguniversally quanti�ed variables.



APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 238D.3.1 Parabola FittingUsed by Jardillier and Languénou (1998) and Benhamou et al. (2004), this ben
hmark is 
on
ernedwith �nding parabolas above a line:
∀t ∈ [0, 2] : at2 + bt+ c ≥ 2t− 1where the initial domains for a, b and c are [0, 1].D.3.2 Cir
leA 
ollision avoidan
e problem de�ned by Benhamou et al. (2004):

∀t ∈ [−π, π] :
√

(r1sint− x)2 + (r1cost− y)2 ≥ d1where the initial domains of x and y are [−5, 5], d1 = 0.5 and r1 = 2.5.D.3.3 SatelliteA 
ollision avoidan
e problem de�ned by Benhamou et al. (2004). If
fi(t) =







xi(t)

yi(t)

zi(t)






=







dicosθisinωit+ φi

di (sinψisinθisin(ωit+ φi) + cosψicos(ωit+ φi))

di (−cosψisinθisin(ωit+ φi) + sinψicos(ωit+ φi))





then the 
onstraint system is de�ned as:
∀t ∈ [−π, π] :































distance (f1(t), fj(t)) ≥ s
distance (f2(t), fj(t)) ≥ s...
distance (fn(t), fj(t)) ≥ swhere s is the minimum distan
e between satellites (we use s = 1). Three satellites are used inthe ben
hmark, so n = 3. Ea
h satellite is parametrized as follows:Parameter Satellite 1 Satellite 2 Satellite 3

di 5.0 5.0 5.0
ωi 1.0 1.0 1.0
φi 0.0 1.0 2.0
θi 0.0 1.0 1.5
ψi 0.0 1.0 1.5The unknowns to be 
omputed are for a fourth satellite j = n+1, where parameters θj , φj ,ψj ,ωjall begin with domain [0, 2π].
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ollision problem de�ned by Benhamou et al. (2004):
∀t ∈ [0, 2] :

√

(x− Px(t))2 + (y − Py(t))2 ≥ dwhere
Px(t) = d1sinα1(t) + d2sin (α1(t) + α2(t)− π) + d3sin (α1(t) + α2(t) + α3(t))

Py(t) = d1cosα1(t) + d2cos (α1(t) + α2(t)− π) + d3cos (α1(t) + α2(t) + α3(t))

α1(t) = t+ π/4

α2(t) = 2t− 1

α3(t) = 0.2t+ 0.1The initial domains for x and y are [0, 5], d = 0.5, d1 = 1.0, d2 = 2.0 and d3 = 1.0.D.3.5 PointPathA motion planning problem used by Jaulin and Walter (1996) and Benhamou et al. (2004):
∀t ∈ [0, 1] :







(x(t)− 4.8)
2

+ (y(t)− 1)
2 ≥ 1

y(t) ≥ sin (x(t))where M(t) =

(

x(t)

y(t)

) and
M(t) = M0B

3
0(t) + P1B

3
1(t) + P2B

3
2(t) +M1B

3
3(t)where Bernstein polynomials are:

B3
0(t) = (1− t)3, B3

1(t) = 3t(1− t)2, B3
2(t) = 3t2(1− t), B3

3(t) = t3Initial domains for P1 and P2 are [−10, 10], M0 = (−1,−0.6)T and M1 = (6, 0)T .D.3.6 Robust 1De�ned by Rats
han (2006, 2008):
∀p ∈ [0, 1] :



















9 + 48p+ 48q + 32pq > 0

1 + p+ q > 0

−16p− 16q + 16p2 + 16q2 + 7 > 0where q has the initial domain [−2, 2].
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tion-to-animation ben
hmarksThe following ben
hmarks are de�ned for evaluation in terms of �
tion-to-animation 
onstraints:
• Near: Four obje
ts, ea
h 
onstrained to appear inFrontOf and near one of the others.
noCollide 
onstraints over all obje
ts.

• S
ene: Six obje
ts arranged with using toRightOf , toLeftOf , inFrontOf , behind, noCollideand near 
onstraints.
• Layout3: Three obje
ts arranged with the noCollide 
onstraint.
• WayPoints: One obje
t 
onstrained to pass through 3 �xed way-points, using the near
onstraint over 3 di�erent time-intervals.
• Dynami
1Stati
1: One obje
t stati
, the other dynami
 having traje
tories of in
reasingdegree in ea
h dimension. near and inFrontOf applied over sub-interval of time, noCollideapplied over entire interval of time.
• Dynami
2: Both obje
ts dynami
, having traje
tory of in
reasing degree in ea
h dimension.
near and inFrontOf applied over sub-interval of time, noCollide applied over entire intervalof time.

• Collision: n obje
ts, ea
h 
onstrained to be near and noCollide with every other obje
t.In
reases in 
omplexity with addition of ea
h obje
t, and for n > 3 no solution exists.The exa
t 
onstraints that 
omprise ea
h ben
hmark are de�ned in the following se
tions. A
tualformulations for ea
h type of 
onstraint (su
h as inFrontOf and near) are presented in Chapter 6.
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ts Dimensions Degree Quanti�ed variables Initial Domains4 4 0 0 [−10, 10]

• Traje
tory A: rA(t) = pA
0 =







x0cp0 (x− dimension)

z0cp0 (z − dimension)

• Traje
tory B: rB(t) = pB
0 =







x1cp0 (x− dimension)

z1cp0 (z − dimension)

• Traje
tory C: rC(t) = pC
0 =







x2cp0 (x− dimension)

z2cp0 (z − dimension)

• Traje
tory D: rD(t) = pD
0 =







x3cp0 (x− dimension)

z3cp0 (z − dimension)Constraints:B InFrontOf A uA = (0.707, 0.707)B Near AC InFrontOf B uB = (0.707,−0.707)C Near BD InFrontOf C uC = (0.707, 0.707)D Near CB NoCollide AC NoCollide AD NoCollide AC NoCollide BD NoCollide BD NoCollide C
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eneObje
ts Dimensions Degree Quanti�ed variables Initial Domains6 2 0 0 [−20, 20]

• Traje
tory A: rA(t) = pA
0 =







x0cp0 (x− dimension)

z0cp0 (z − dimension)

• Traje
tory B: rB(t) = pB
0 =







x1cp0 (x− dimension)

z1cp0 (z − dimension)

• Traje
tory C: rC(t) = pC
0 =







x2cp0 (x− dimension)

z2cp0 (z − dimension)

• Traje
tory D: rD(t) = pD
0 =







x3cp0 (x− dimension)

z3cp0 (z − dimension)

• Traje
tory E: rE(t) = pE
0 =







x4cp0 (x− dimension)

z4cp0 (z − dimension)

• Traje
tory F: rF (t) = pF
0 =







x5cp0 (x− dimension)

z5cp0 (z − dimension)Constraints:A InFrontOf B uB = (1, 0) C NoCollide BA Near B D NoCollide BC Behind B uB = (−1, 0) E NoCollide BC Near B F NoCollide BE ToLeftOf B uB = (0, 1) D NoCollide CE Near B E NoCollide CF ToRightOf D uD = (0,−1) F NoCollide CF Near D E NoCollide DB NoCollide A F NoCollide DC NoCollide A F NoCollide ED NoCollide AE NoCollide AF NoCollide A
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ts Dimensions Degree Quanti�ed variables Initial Domains3 2 0 0 [−20, 20]

• Traje
tory A: rA(t) = pA
0 =







x0cp0 (x− dimension)

z0cp0 (z − dimension)

• Traje
tory B: rB(t) = pB
0 =







x1cp0 (x− dimension)

z1cp0 (z − dimension)

• Traje
tory C: rC(t) = pC
0 =







x2cp0 (x− dimension)

z2cp0 (z − dimension)Constraints:A NoCollide BA NoCollide CB NoCollide CD.4.4 WayPointsObje
ts Dimensions Degree Quanti�ed variables Initial Domains1 2 2 3 [−100, 100]Traje
tory A (degree 2), for the time interval t = [0, 1]:
rA(t) = (1−t)2pA

0 +t(1−t)pA
1 +t2pA

2 =







(

(1− t)2 ∗ x0cp0
)

+ (t ∗ (1− t) ∗ x0cp1) +
(

t2 ∗ x0cp2
)

(

(1− t)2 ∗ z0cp0
)

+ (t ∗ (1− t) ∗ z0cp1) +
(

t2 ∗ z0cp2
)Constraints:A Near B ∀t1 ∈ [0, 0.01] B at (−7.29,−18.98)A Near C ∀t2 ∈ [0.5, 0.51] C at (−17.28, 0.0)A Near D ∀t3 ∈ [0.99, 1.0] D at (10.0,−10.0)



APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 244D.4.5 Dynami
1Stati
1Obje
ts Dimensions Degree Quanti�ed variables Initial Domains2 1 to 2 0 to 2 2 [−10, 10]The following provides the example in 2 dimensions, degree 1 
urves, for the time interval
t = [0, 1]:
• Traje
tory A: rA(t) = (1− t)pA

0 + tpA
1 =







((1− t) ∗ x0cp0) + (t ∗ x0cp1) (x− dimension)

((1− t) ∗ z0cp0) + (t ∗ z0cp1) (z − dimension)

• Traje
tory B: rB(t) = (1− t)pB
0 + tpB

1 =







x1cp0 (x− dimension)

z1cp0 (z − dimension)Constraints:A InFrontOf B ∀t1 ∈ [0.5, 0.6] uB =
d

dt
rB(t1)A Near B ∀t1 ∈ [0.5, 0.6]A NoCollide B ∀t2 ∈ [0, 1]D.4.6 Dynami
2Obje
ts Dimensions Degree Quanti�ed variables Initial Domains2 1 to 2 0 to 2 2 [−10, 10]The following provides the example in 2 dimensions, degree 1 
urves, for the time interval

t = [0, 1]:
• Traje
tory A: rA(t) = (1− t)pA

0 + tpA
1 =







((1− t) ∗ x0cp0) + (t ∗ x0cp1) (x− dimension)

((1− t) ∗ z0cp0) + (t ∗ z0cp1) (z − dimension)

• Traje
tory B: rB(t) = (1− t)pB
0 + tpB

1 =







((1− t) ∗ x1cp0) + (t ∗ x1cp1) (x− dimension)

((1− t) ∗ z1cp0) + (t ∗ z1cp1) (z − dimension)Constraints:A InFrontOf B ∀t1 ∈ [0.5, 0.6] uB =
d

dt
rB(t1)A Near B ∀t1 ∈ [0.5, 0.6]A NoCollide B ∀t2 ∈ [0, 1]
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ts Dimensions Degree Quanti�ed variables Initial Domains2 to 8 2 0 to 1 0 [−10, 10]The following provides an example of 4 stati
 obje
ts, although the experiment ranges from 2to 8 obje
ts, with stati
 or dynami
 traje
tories.
• Traje
tory A: rA(t) = pA

0 =







x0cp0 (x− dimension)

z0cp0 (z − dimension)

• Traje
tory B: rB(t) = pB
0 =







x1cp0 (x− dimension)

z1cp0 (z − dimension)

• Traje
tory C: rC(t) = pC
0 =







x2cp0 (x− dimension)

z2cp0 (z − dimension)

• Traje
tory D: rD(t) = pD
0 =







x3cp0 (x− dimension)

z3cp0 (z − dimension)Constraints:B Near A B NoCollide AC Near A C NoCollide AD Near A D NoCollide AC Near B C NoCollide BD Near B D NoCollide BD Near C D NoCollide C



Appendix EDetails of manual modi�
ationsThe modi�
ations made to the automati
ally produ
ed s
ene des
riptions and virtual environmentsare listed here.E.1 Cow s
ene
• Coreferen
e 
orre
tions (indi
ated in bold):valley. Anne/ANNE did n't very mu
h like a big brown 
ow/COW who 
ame up 
lose and stared ather/ANNE, but it/COW went away when Daddy/DADDY told it/COW to. The 
hildren/CHILDRENate enormously, and Mother/MOTHER said that instead of having a tea-pi
ni
 at half-past four they wouldhave to go to a tea-house somewhere, be
ause they had eaten all the tea sandwi
hes/SANDWICHES aswell as the lun
h ones! "What time shall we be at Aunt Fanny's?" asked Julian/JULIAN, �nishing upthe very last sandwi
h/SANDWICH and wishing there were more. "About six o'
lo
k with lu
k," saidDaddy/DADDY. "Now who wants to stret
h their legs a bit? We've another long spell in the 
ar, youknow." The 
ar/CAR seemed to eat up the miles as it purred along.
• Abstra
t 
onstraint 
reation pro
ess:S
ene detail: Modi�
ations:S
ene segmentation: - NoneModel des
riptors: - Cow traje
tory in
reased to degree 1 (from 0)Coreferen
e: - As shown above.Abstra
t 
onstraints: - None
• Modi�
ations in 3D modeling environment:Modi�
ation Type: Modi�
ations:Insertion - NoneModi�
ation - Camera positioningDeletion - Removal of �sandwi
hes� pla
eholder 
ube;- Removal of �sandwi
h� pla
eholder 
ube;- Removal of �
hildren� model246
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ene
• Coreferen
e 
orre
tions (indi
ated in bold):" Look ! There 's a rabbit ! " 
ried Di
k/DICK , as a big sandy rabbit/RABBIT lollopped slowly a
ross theyard . It/RABBIT disappeared into a hole on the other side . Then another rabbit/RABBIT appeared ,sat up and looked at the 
hildren/CHILDREN , and then vanished too . The 
hildren/CHILDREN werethrilled . They had never seen su
h tame rabbits/RABBITS before . A third rabbit/RABBIT appeared .It/RABBIT was a small one with absurdly big ears , and the tiniest white bob of a tail . It/RABBITdid n't even look at the 
hildren/CHILDREN . It/RABBIT bounded about in a playful way , and then, to the 
hildren/CHILDREN 's enormous delight , it/RABBIT sat up on its/RABBIT hind legs , andbegan to wash its/RABBIT big ears , pulling down �rst one and then another . But this was too mu
hfor Timothy/TIM . He/TIM had wat
hed the other two bound a
ross the yard and then disappear withoutso mu
h as barking at them . But to see this youngster a
tually sitting there washing its/RABBIT earsunder his/TIM very nose was really too mu
h for any dog/TIM . He/TIM gave an ex
ited yelp and rushedfull-tilt at the surprised rabbit/RABBIT . For a moment the little thing did n't move . It/RABBIT hadnever been frightened or 
hased before , and it/RABBIT stared with big eyes at the rushing dog/TIM .Then it/RABBIT turned itself about and tore o� at top speed , its/RABBIT white bobtail going upand down as it/RABBIT bounded away . It/RABBIT disappeared under a gorse bush/BUSH nearthe 
hildren/CHILDREN . Timothy/TIM went after it/RABBIT , vanishing under the big bush too .Then a shower of sand and earth was thrown up as Tim/TIM tried to go down the hole after the rabbitand s
raped and s
rabbled with his/TIM strong front paws as fast as he/TIM 
ould . He/TIM yelpedand whined in ex
itement , not seeming to hear George/GEORGE 's voi
e 
alling to him/TIM . He/TIMmeant to get that rabbit ! He/TIM went almost mad as he/TIM s
raped at the hole , making it bigger andbigger . " Tim/TIM ! Do you hear me ! Come out of there ! " shouted George/GEORGE . " You 're notto 
hase the rabbits here . You know you must n't . You 're very naughty . Come out ! " But Tim/TIMdid n't 
ome out . He/TIM just went on and on s
raping away madly . George/GEORGE went to fet
hhim/TIM . Just as she/GEORGE got up to the gorse bush/BUSH the s
raping suddenly stopped .
• Abstra
t 
onstraint 
reation pro
ess:S
ene detail: Modi�
ations:S
ene segmentation: - NoneModel des
riptors: - Rabbit traje
tory in
reased to 1 (from 0);- Timothy assigned �dog� model (from humanoid model)Coreferen
e: - As shown above.Abstra
t 
onstraint
orre
tions: - 1 
orre
ted 
onstraint - TIM NEAR RABBIT, end time redu
eduntil start of RABBIT UNDER BUSH 
onstraint.
• Modi�
ations in 3D modeling environment:Modi�
ation Type: Modi�
ations:Insertion - NoneModi�
ation - Camera positioningDeletion - None
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ene
• Coreferen
e 
orre
tions (indi
ated in bold):He/JULIAN stole in . His/JULIAN un
le/QUENTIN still snored . He/JULIAN tiptoedby him/QUENTIN to the table/TABLE behind his/JULIAN un
le/QUENTIN 's 
hair/CHAIR .He/JULIAN took hold of the box/BOX . And then a bit of the broken wood[Remove℄ of the box/BOXfell to the �oor with a thud ! His/JULIAN un
le/QUENTIN stirred in his/QUENTIN 
hair/CHAIR andopened his/QUENTIN eyes . Qui
k as lightning the boy/JULIAN 
rou
hed down behind his/JULIANun
le/QUENTIN 's 
hair/CHAIR , hardly breathing . " What 's that ? " he/JULIAN heard his/JULIANun
le/QUENTIN say . Julian/JULIAN did n't move . Then his/JULIAN un
le/QUENTIN settled downagain and shut his/QUENTIN eyes . Soon there was the sound of his/QUENTIN rhythmi
 snoring ! "Hurrah ! " thought Julian/JULIAN . " He/JULIAN 's o� again ! " Quietly he/JULIAN stood up , holdingthe box/BOX . On tiptoe he/JULIAN 
rept to the Fren
h window . He/JULIAN slipped out and ransoftly down the garden path . He/JULIAN did n't think of hiding the box/BOX . All he/JULIAN wantedto do was to get to the other 
hildren/CHILDREN and show them what he/JULIAN had done !
• Abstra
t 
onstraint 
reation pro
ess:S
ene detail: Modi�
ations:S
ene segmentation: - Manual delimitation of this s
ene, sin
e no expli
it indi
ator existsModel des
riptors: - NoneCoreferen
e: - As shown above.Abstra
t 
onstraint
orre
tions: - None
• Modi�
ations in 3D modeling environment:Modi�
ation Type: Modi�
ations:Insertion - NoneModi�
ation - Camera positioningDeletion - Deletion of �Children� model
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e
• Coreferen
e 
orre
tions (indi
ated in bold):Di
k/DICK and Julian/JULIAN , who shared a room , woke up at about the same moment , and staredout of the nearby window . " It 's a lovely day , hurrah ! " 
ried Julian/JULIAN , leaping out of bed/BED. " I do n't know why , but it always seems very important that it should be sunny on the �rst day of aholiday . Let 's wake Anne/ANNE . " Anne/ANNE slept in the next room . Julian/JULIAN ran in andshook her/ANNE . " Wake up ! It 's Tuesday ! And the sun 's shining . " Anne/ANNE woke up witha jump and stared at Julian/JULIAN joyfully . " It 's 
ome at last ! " she/ANNE said . " I thoughtit never would . Oh , is n't it an ex
iting feeling to go away for a holiday ! " They started soon afterbreakfast . Their 
ar/CAR was a big one , so it held them all very 
omfortably . Mother/MOTHERsat in front with Daddy/DADDY , and the three 
hildren/CHILDREN sat behind , their feet on twosuit
ases/SUITCASES . In the luggage-pla
e at the ba
k of the 
ar/CAR were all kinds of odds and ends, and one small trunk/TRUNK . Mother/MOTHER really thought they had remembered everything .Along the 
rowded London roads they went , slowly at �rst , and then , as they left the town behind, more qui
kly . Soon they were right into the open 
ountry , and the 
ar/CAR sped along fast . The
hildren/CHILDREN sang songs to themselves , as they always did when they were happy . " Are wepi
ni
king soon ? " asked Anne/ANNE , feeling hungry all of a sudden . " Yes , " said Mother/MOTHER.
• Abstra
t 
onstraint 
reation pro
ess:S
ene detail: Modi�
ations:S
ene segmentation: - Manual delimitation for setting ANNES_ROOM and OUTSIDE(s
ene dire
tly after)Model des
riptors: - NoneCoreferen
e: - As shown above.Abstra
t 
onstraint
orre
tions: - Insertion of JULIAN INSIDE BED; JULIAN NO_COLLIDE BEDto a
hieve motion of Julian getting out of bed.- Insertion of BED INSIDE ANNES_ROOM; ANNE_INSIDE BEDto a
hieve the idea of Anne being in bed (not expli
itly state)- Insertion of JULIAN NO_COLLIDE BED; JULIAN NEAR BEDto 
ater for implied 
onstraints required for the addition of the newBED obje
t to the s
ene.- Change MOTHER NO_COLLIDE_CAR; DADDYNO_COLLIDE CAR; CHILDREN NO_COLLIDE CAR toMOTHER INSIDE CAR; DADDY INSIDE CAR; CHILDRENINSIDE CAR to ensure avatars inside 
ar, sin
e it is not expli
itlystated in a simple manner in the text.
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• Modi�
ations in 3D modeling environment:Modi�
ation Type: Modi�
ations:Insertion - NoneModi�
ation - Camera positioning in 6 s
enes (modi�
ation)- Removal of �BOYS� obje
t (deletion)- Material adjustments in 2 s
enes (modi�
tion)Deletion - Deletion of �Children� modelE.5 Follow s
ene
• Coreferen
e 
orre
tions (indi
ated in bold):" THIS'LL BE IT ! " KICKAHA/KICKAHA SAID . " I KNOW IT , KNOW IT ! I CAN feel the for
esshaping themselves into a big funnel pouring us onto the goal ! It 's just ahead ! We 've �nally made it ! "He/KICKAHA wiped the sweat from his/KICKAHA forehead . Though breathing heavily , he/KICKAHAin
reased his/KICKAHA pa
e . Anana/ANANA was a few steps behind and below him/KICKAHA onthe steep mountain trail . She/ANANA spoke to herself/ANANA in a low voi
e . He/KICKAHA neverpaid any attention to her/ANANA dis
ouraging-that is , realisti
-words , anyway . " I 'll believe it whenI see it . "
• Abstra
t 
onstraint 
reation pro
ess:S
ene detail: Modi�
ations:S
ene segmentation: - NoneModel des
riptors: - NoneCoreferen
e: - As shown above.Abstra
t 
onstraint
orre
tions: - None
• Modi�
ations in 3D modeling environment:Modi�
ation Type: Modi�
ations:Insertion - NoneModi�
ation - Camera positioningDeletion - None
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e
• Coreferen
e 
orre
tions (indi
ated in bold):They were sent to the house/HOUSE of an old Professor/PROFESSOR who lived in the heart of the 
ountry, ten miles from the nearest railway station and two miles from the nearest post o�
e . He/PROFESSORhad no wife/MRS BEAVER and he/PROFESSOR lived in a very large house/HOUSE with a house-keeper 
alled Mrs/MRS MACREADY Ma
ready/MRS MACREADY and three servants . ( Their nameswere Ivy , Margaret and Betty , but they do not 
ome into the story mu
h . ) He/PROFESSOR him-self/PROFESSOR was a very old man with shaggy white hair whi
h grew over most of his/PROFESSORfa
e as well as on his/PROFESSOR head , and they liked him/PROFESSOR almost at on
e ; but onthe �rst evening when he/PROFESSOR 
ame out to meet them at the front door he/PROFESSOR wasso odd-looking that Lu
y/LUCY ( who was the youngest ) was a little afraid of him/PROFESSOR ,and Edmund/EDMUND ( who was the next youngest ) wanted to laugh and had to keep on pretendinghe/EDMUND was blowing his/EDMUND nose to hide it . As soon as they had said good night to the Pro-fessor/PROFESSOR and gone upstairs on the �rst night , the boys/PETER 
ame into the girls/GIRLS 'room and they all talked it over . " We 've fallen on our feet and no mistake , " said Peter/PETER . " Thisis going to be perfe
tly splendid . That old 
hap will let us do anything we like . " " I think he/PETER 'san old dear , " said Susan/SUSAN . " Oh , 
ome o� it ! " said Edmund/EDMUND , who was tired andpretending not to be tired , whi
h always made him/EDMUND bad-tempered .
• Abstra
t 
onstraint 
reation pro
ess:S
ene detail: Modi�
ations:S
ene segmentation: - NoneModel des
riptors: - NoneCoreferen
e: - As shown above.Abstra
t 
onstraint
orre
tions: - None
• Modi�
ations in 3D modeling environment:Modi�
ation Type: Modi�
ations:Insertion - NoneModi�
ation - Camera positioningDeletion - Removal of �Girls� model and �Professor� model



Appendix FMulti-modal animated �lmsThe a

ompanying DVD 
ontains rendered �lms.Behaviour QualityThe following videos are provided as des
ribed in Chapter 6, Se
tion 6.3.2.2:
• Dynami
1Stati
1, degree 1
• Dynami
1Stati
1, degree 2
• Dynami
2, degree 2 (Quality = 25.08)
• Dynami
2, degree 2 (Quality = 161.32)Animated �lmsThe following videos are provided as des
ribed in Chapter 6, Se
tion 6.5.4:1. Cow s
ene2. Rabbit s
ene3. Study s
ene4. Travel sequen
e5. Follow s
ene6. House sequen
eVideos and snapshots are also available at the proje
t web-site:http://www.
s.ru.a
.za/resear
h/g05g1909/
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