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iAbstratPopular �tion books desribe rih visual environments that ontain haraters, objets, and be-haviour. This researh develops automated proesses for onverting text soured from �tion booksinto animated virtual environments and multi-modal �lms. This involves the analysis of unre-strited natural language �tion to identify appropriate visual desriptions, and the interpretationof the identi�ed desriptions for onstruting animated 3D virtual environments.The goal of the text analysis stage is the reation of annotated �tion text, whih identi�esvisual desriptions in a strutured manner. A hierarhial rule-based learning system is reated thatindues patterns from example annotations provided by a human, and uses these for the reationof additional annotations. Patterns are expressed as tree strutures that abstrat the input text ondi�erent levels aording to strutural (token, sentene) and syntati (parts-of-speeh, syntatifuntion) ategories. Patterns are generalized using pair-wise merging, where dissimilar sub-treesare replaed with wild-ards. The result is a small set of generalized patterns that are able toreate orret annotations. A set of generalized patterns represents a model of an annotator'smental proess regarding a partiular annotation ategory.Annotated text is interpreted automatially for onstruting detailed sene desriptions. Thisinludes identifying whih senes to visualize, and identifying the ontents and behaviour in eahsene. Entity behaviour in a 3D virtual environment is formulated using time-based onstraintsthat are automatially derived from annotations. Constraints are expressed as non-linear sym-boli funtions that restrit the trajetories of a pair of entities over a ontinuous interval of time.Solutions to these onstraints speify preise behaviour. We reate an innovative quanti�ed on-straint optimizer for loating sound solutions, whih uses interval arithmeti for treating time andspae as ontiguous quantities. This optimization method uses a tehnique of onstraint relaxationand tightening that allows solution approximations to be loated where onstraint systems areinonsistent (an ability not previously explored in interval-based quanti�ed onstraint solving).3D virtual environments are populated by automatially seleting geometri models or proe-dural geometry-reation methods from a library. 3D models are animated aording to trajetoriesderived from onstraint solutions. The �nal animated �lm is sequened using a range of modalitiesinluding animated 3D graphis, textual subtitles, audio narrations, and foleys.Hierarhial rule-based learning is evaluated over a range of annotation ategories. Modelsare indued for di�erent ategories of annotation without modifying the ore learning algorithms,and these models are shown to be appliable to di�erent types of books. Models are induedautomatially with auraies ranging between 51.4% and 90.4%, depending on the ategory. Weshow that models are re�ned if further examples are provided, and this supports a boot-strappingproess for training the learning mehanism.The task of interpreting annotated �tion text and populating 3D virtual environments is su-essfully automated using our desribed tehniques. Detailed sene desriptions are reated au-rately, where between 83% and 96% of the automatially generated desriptions require no manualmodi�ation (depending on the type of desription). The interval-based quanti�ed onstraint opti-mizer fully automates the behaviour spei�ation proess. Sample animated multi-modal 3D �lmsare reated using extrats from �tion books that are unrestrited in terms of omplexity or subjetmatter (unlike existing text-to-graphis systems). These examples demonstrate that: behaviour



iiis visualized that orresponds to the desriptions in the original text; appropriate geometry isseleted (or reated) for visualizing entities in eah sene; sequenes of senes are reated for a�lm-like presentation of the story; and that multiple modalities are ombined to reate a oherentmulti-modal representation of the �tion text.This researh demonstrates that visual desriptions in �tion text an be automatially iden-ti�ed, and that these desriptions an be onverted into orresponding animated virtual envi-ronments. Unlike existing text-to-graphis systems, we desribe tehniques that funtion overunrestrited natural language text and perform the onversion proess without the need for man-ually onstruted repositories of world knowledge. This enables the rapid prodution of animated3D virtual environments, allowing the human designer to fous on reative aspets.
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Chapter 1IntrodutionCreating an animated �lm from a �tion book is a task that requires a number of repetitive ativi-ties. These inlude reading and omprehending the original text for reating detailed desriptions ofthe �lm, planning the arrangement and behaviour of entities in eah sene, onstruting geometryfor representing entities visually, and quantifying behaviour for models in the virtual environment.This researh redues the manual e�ort required for the �lm-reation task by replaing repetitiveativities with automated proesses.Fition books are popular soures of inspiration for the reation of �lms beause they ontainrih visual desriptions regarding bakground senery, the layout of people and objets in a sene,and their interations. A well known example is J.R.R. Tolkien's The Lord of the Rings that wasadapted to a series of live-ation �lms1. This �lm series is notable in the use of omputer graphis,making possible the visualization of fantastial senes that would have required large quantities ofe�ort and expense to reprodue in reality. In spite of this, the reation of this �lm series requiredextensive human e�ort in adapting the original book to a suitable sreen-play, in onstruting thegeometri models, and in editing and sequening the �nal �lms (as evident by the list of reditsfollowing any �lm in the series).Many tasks in the proess of transforming a �tion book into an animated �lm have the potentialto be automated using omputer tehnology. Tehnologies already exist that redue the e�ort inthe reation of animated graphis, inluding key-frame animation, inverse-kinematis, motion-apture, and �uid and loth simulations. We speulate that additional tasks stand to bene�tfrom automation, inluding the analysis and interpretation of language and the population oforresponding virtual environments.We use the term �tion-to-animation to olletively desribe the task of onverting �tion textto orresponding virtual environments. The term �tion refers spei�ally to text soured froma �tion book. The term animation refers to the reation of moving three-dimensional graphisin a virtual environment, and the reation of other modalities inluding audio. We use the termvisualize to desribe the reation of graphis that orrespond to the original text, but this termalso refers to the reation of ontent in other modalities.1Written between 1937 and 1945, �lm premiers between 2001 and 2003.
1



CHAPTER 1. INTRODUCTION 2
Figure 1.1: Generalization of the �lm-reation ativities when using �tion text as a soure.1.1 BakgroundThe proess of reating an animated �lm is guided by a human diretor's disretion and reativity,but this proess often inludes two generi stages, namely the development of a sreen-play andthe development of story-boards. The sreen-play is a doument that expliitly desribes (in astrutured format) the senes that omprise a �lm and the harater interations within eahsene (Hauge, 1988). Story-boards are onstruted from an original sreen-play, serving as a planfor bakground senery, positioning of ators and objets in eah sene, as well as speifying howsenes are sequened to make up a �lm (Cantor and Valenia, 2004). The subsequent onstrutionand �lming of senes follows from the story-boards.In the ontext of the �tion-to-animation task, the reation of a sreen-play and story-boardsrequires repetitive manual e�ort. The onstrution of a sreen-play involves a detailed analysis ofthe original text to derive a strutured intermediate representation of the story. This proess allsfor frequent re-examination and multiple readings of the original text. The task of reating story-boards from the sreen-play involves reative interpretation of the desribed senes, with regardsto speifying layout and behaviour of objets and haraters in a setting. If the �nal presentationis an animated 3D �lm, then the prodution inludes extensive repetitive e�ort in onstruting 3Dmodels for eah harater, setting up 3D virtual environments, and expliitly de�ning motion andartiulation in eah sene.We generalize the �tion-to-animation task in terms of two major ativities, the text-analysisativity and the interpretation ativity, illustrated in Figure 1.1. The task of reating a sreen-playis an example of a text-analysis ativity, while the tasks of reating story-boards and onstrutingthe 3D environments represent interpretation ativities. The sreen-play forms the link betweenthese two ativities, and is an example of an intermediate representation of the original story. Wehoose an intermediate representation that is expressed in a format more suitable for omputer-based representation (as opposed to a sreen-play), and automate the text analysis task usingnatural language proessing tehnology. This intermediate representation also allows for automatedplanning of virtual environments, from whih multi-modal animated 3D �lms are produed.The methods we selet for automating eah task are haraterized by a entral theme, namelythe use of knowledge-poor tehniques for performing the onversion proess. Knowledge-poortehniques are haraterized by the absene of omputer enoded world-knowledge in the form of aspeial purpose, manually onstruted knowledge-database. The use of a knowledge-base limits theapability of an automated system to the detail provided by the enoded information. Populatingsuh a database requires extensive human e�ort, and we believe that no existing knowledge-base



CHAPTER 1. INTRODUCTION 3aters for the range of onepts potentially posed by �tion text. We believe that the small amountof knowledge required an be provided by a human without losing the bene�t of automation.1.2 Problem statementWe investigate the automati onversion of text soured from a �tion book into a orrespond-ing multi-modal, animated 3D presentation. We rephrase this problem in terms of the followinghypothesis:The proess of onverting a �tion book into an animated 3D �lm an be automated.To show that automation is supported in the �tion-to-animation proess, evidene of automa-tion is required in the text analysis and interpretation ativities illustrated in Figure 1.1. Therefore,the problems to be investigated in this researh are as follows:Problem 1 (text analysis): Can a suitable intermediate representation be generated from a �-tion book?This problem requires the identi�ation and ategorization of visual desriptions in �tiontext and their representation in a strutured manner.Problem 2 (interpretation): Can we reate virtual environments that orrespond to the inter-mediate representation?This problem is onerned with interpreting the intermediate representation for produingorresponding multi-modal presentations that re�et the ontent of the original �tion text.The worst-ase senario is that the human manually reates an intermediate representation froman original �tion book, and manually transforms this representation into an animated �lm. Thisorresponds to the urrent �lm-reation proess desribed in Setion 1.1. We remove the need formanual repetitive tasks by automating majority of the text-analysis and interpretation proesses.The above problems are de�ned only in the presene of an intermediate representation that isstrutured enough for automati reation and interpretation by a omputer.Intermediate representationWe use annotated �tion text as an intermediate representation for the �tion-to-animation task.Desriptions of visual information in the �tion text are marked up in di�erent ategories. We referto marked up desriptions as semanti annotations, beause they identify semanti informationregarding the visual senes in the story. Figure 1.2 presents an example of original �tion text thatis annotated with semanti annotations (using XML2), and we highlight the following advantagesof this hoie of intermediate representation with referene to this example:
• Annotated �tion text identi�es visual properties desribed in text, as required by problem1. For example, the avatars that appear in the sene, the nature of the setting, as well asspatial relations between entities are marked up in the example in Figure 1.2.2Extensible Markup Language



CHAPTER 1. INTRODUCTION 4<avatar>Anne</avatar> didn't very muh like a big brown <objet>ow</objet> who <transi-tion type=�INSIDE� subjet=�ow�>ame</transition> up <relation type=�near� subjet=�ow�objet=�her�>lose<relation> and stared at her, but it <transition type=�OUTSIDE� sub-jet=�it�>went</transition> away when <avatar>Daddy</avatar> told it to.Figure 1.2: Example annotated �tion text, from the Famous Five 1: Five on a Treasure Islandby Enid Blyton (1942).
• Annotations identify di�erent ategories of interpretation ativities to be performed, inlud-ing speifying the appearane of the setting, what avatars require visual depition, and howthey are to be plaed or moved in a sene. This satis�es the requirement posed by problem2 above.
• The strutured format of the annotations is onduive to automati reation and interpreta-tion while remaining losely assoiated with the original �tion text.We re�ne the two �tion-to-animation problems in the following setions, where re�nements arebased on our hoie of annotated text as an intermediate representation.1.2.1 Text analysisThe text analysis problem is onerned with reating semanti annotations over original �tiontext.Manually reating annotations requires deisions to be made by a human annotator that arebased on experiene with natural language and personal disretion. As a result, we do not expetidential annotations to be reated by two di�erent humans. We believe that two fators in�uenethe manual reation of annotations, namely linguisti indiators and world-knowledge. Linguistiindiators, inluding the struture of the text and the funtion of individual words, are used toonvey linguisti onepts to the human. Meaning is derived by ombining these onepts withinternal world-knowledge to formulate deisions about how to reate annotations. Exatly hownatural language is interpreted and ombined with world knowledge is as yet unertain, and manyon�iting theories exist regarding this proess (Shank, 1972; Minsky, 1975; Mandler and Johnson,1977; Eysenk and Keane, 2000).Linguisti indiators within natural language are desribed by ommonly aepted theoriesof language struture (suh as the sentene or the phrase) and syntax (suh as verb or noun).World-knowledge annot be de�ned in suh onrete terms, partiularly beause eah human'sworld-knowledge and deision proess is determined by individual experienes. We do not attemptto reate a generi world-knowledge representation, but phrase the problem to allow individualhuman experiene to be aptured in the automated proess.We phrase the text analysis problem in terms of the following two sub-problems:1. Automatially deriving linguisti indiators that identify strutural and syntati propertiesof �tion text.2. Creating semanti annotations using a proess that onforms to rules derived from humanreated examples (where rules are phrased in terms of strutural and syntati properties oftext).



CHAPTER 1. INTRODUCTION 51.2.2 InterpretationThe interpretation problem enompasses all ativities required to translate the intermediate rep-resentation into an animated 3D environment. We identify three ativities in this proess.The �rst ativity requires a review of the intermediate representation, and the formulation of ahigh-level plan regarding the ontents and layout of eah sene. This orresponds to the reationof an initial draft of a story-board, whih uses artisti and reative disretion on the part of ahuman diretor.As the story-boards are progressively re�ned, human experiene and reativity are used to planthe layout of eah sene, and to ensure that various entities are plaed orretly aording to eitherexpliit textual desriptions or ommon-sense onstraints (suh as gravity).The �nal detailed plan is subsequently implemented in a 3D virtual environment, involving anumber of repetitive tasks, suh as 3D objet modeling, plaing and posing models, and key-framede�nition (tasks vary aording to the modeling failities used). These tasks are ompliated byurrent tehnology that is restrited to two-dimensional interfaes for designing 3D virtual worlds.This requires multiple views to plae objets orretly, as well as a number of interfaes for de�ningmotion, ations, and poses.The interpretation problem is therefore phrased in terms of three sub-problems:1. Interpreting semanti annotations to identify whih senes to visualize, the ontents of eahsene, and the behaviour of entities in eah sene.2. Planning the exat behaviour in a sene in an automati manner. This problem is hara-terized by the inlusion of a temporal dimension beause the onept of behaviour impliestime-based ativity.3. Automating the population of a 3D virtual environment with appropriate visual ions, vi-sualizing the desribed behaviour, and onstruting oherent multi-modal representations ofthe �tion text.1.3 StrategyWe use a olletion of automated knowledge-poor tehniques for automating the �tion-to-animationproess. The following setions desribe our strategies for performing text analysis and interpre-tation.1.3.1 Automation of text-analysisAutomating text analysis requires a proess that is able to learn about how to reate annotations ina similar manner that would be used by one spei� human annotator. We automate text analysisusing mahine-learning, whih models a human's thought proesses regarding the annotation taskusing examples reated by that human. An automatially generated model is used to produefurther annotations.



CHAPTER 1. INTRODUCTION 6{They/PRP had/VBD it/PRP on/IN the/DT top/NN of/IN a/DT hill/NN ,/�COPY in/IN a/DT sloping/JJ�eld/NN that/WDT looked/VBD down/RP into/IN a/DT sunny/JJ valley/NN ./�COPY} {Anne/NNP did/VBDn't/RB very/RB muh/JJ like/IN a/DT big/JJ brown/JJ ow/NN who/WP ame/VBD up/RP lose/VB and/CCstared/VBD at/IN her/PRP ,/�COPY but/CC it/PRP went/VBD away/RB when/WRB Daddy/NNP told/VBDit/PRP to/TO ./�COPY}Figure 1.3: Example �tion text with surfae annotations (tokens, sentenes and parts-of-speeh),from the Famous Five 1: Five on a Treasure Island by Enid Blyton (1942).We propose the following mehanisms for ahieving a mahine learning approah in automatingthe text-analysis problem:1. Strutural and syntati properties of text are automatially identi�ed in the form of surfaeannotations. Strutural properties inlude tokens, sentenes, and quotes. Syntati prop-erties inlude parts-of-speeh, phrases, and syntati funtion (example surfae annotationsare provided in Figure 1.3). Surfae annotations are reated using general natural languageproessing tools ranging from automati tokenizers and sentene splitters to parts-of-speehtaggers and syntati parsers.2. We develop a hierarhial rule-based learning mehanism for automating the reation ofsemanti annotations. This mehanism indues patterns from manually annotated �tiontext (supplemented with surfae annotations) and uses these patterns for the reation of newannotations.1.3.2 Automation of interpretationWe automate the interpretation of annotated �tion text in three stages: by interpreting theannotations to formalize whih senes to portray and identify the ontents and behaviour in eahsene; by alulating values that visually re�et this behaviour in a virtual environment; and bypopulating 3D environments with visual geometry.1. Annotations are interpreted automatially to speify sene detail in a strutured mannerusing knowledge-poor tehniques. The set of senes to visualize is derived by segmenting thetext into fragments that desribe a single physial loation (using annotations that identifyphysial settings in �tion text). The entities that our in eah sene are identi�ed usingannotations that indiate referenes to avatars and objets, and are instantiated visually byseleting geometri models from a library. Behaviour of entities in eah sene is expressedusing strutured time-quanti�ed onstraints (derived from annotations) that desribe thespatial relationships between entities in a sene over intervals of time.2. We plan behaviour through the reation of symboli analytial onstraints that desribe thebehaviour of entities in a virtual environment (examples of whih are provided in Figure 1.4).The solutions to these onstraints onsist of preise numerial values that represent behaviourin a virtual environment. We represent the time aspet using interval arithmeti, allowingbehaviour to be spei�ed over ontiguous intervals of time. We �nd solutions to onstraintsusing an interval based quanti�ed onstraint optimizer. This approah is bene�ial beause
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• Entity M has a trajetory de�ned as rM (t) = (1− t)pM

0 + tpM
1

• Entity N has a trajetory de�ned as rN (t) = pN
0Example system of onstraints over the two trajetories:

M near N : ||rM (t)− rN (t)||2 − (aM + aN + α)2 < 0∀t ∈ [tstart, tend]
M noCollide N : ||rM (t)− rN (t)||2 − (aM + aN )2 > 0∀t ∈ [tstart, tend]...Figure 1.4: Example set of symboli analytial onstraints that speify behaviour in a virtualenvironment.

Figure 1.5: Example behaviour visualized in a virtual environment.it is apable of �nding approximate solutions even where automatially generated onstraintsare inonsistent.3. We populate a 3D virtual environment by automatially instantiating models for eah entityin a 3D environment, and generating geometry for bakground senery. Position and motionare automatially assigned to a model in a sene using the quanti�ed trajetories produedfrom the onstraint optimization proess (illustrated in Figure 1.5).The result of these proesses are multi-modal animated 3D virtual environments, from whih�lms are rendered. Example snap-shots from the �lms reated using our automated proesses areillustrated in Figure 1.6.1.4 OverviewThis dissertation desribes the methods we use for automating �tion-to-animation in terms ofthe orresponding problems de�ned in Setion 1.2. These problems and the manner in whih theyare related are illustrated in Figure 1.7. The strategies we use for solving eah problem are alsoillustrated, as are points for human intervention in the proess.
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Figure 1.6: Multi-modal presentations produed using our strategy for interpreting annotated�tion text.
Fiction book

Problem 1: Text Analysis

  1.1) Linguistic indicators

  1.2) Annotation creation

Problem 2: Interpretation

   2.1) Interpretation of annotations

    2.2) Specification of behaviour

           in a virtual environment

    2.3) Populating 3D environments

Intermediate 

representation

Animated 3D environment

Animated f i lm

Annotated f ict ion text

Automatic creation

of surface annotations

Machine-learning for

automating creat ion

of semantic 

annotat ions

Create structured 

scene descriptions

Automatic constraint

solving/optimization

Automatic populat ion

of 3D vir tual environment

Human knowledge:

- Manual examples

Human knowledge:

- Clarify l inguistic ambiguity

- Implied scene layout

- Creative ideas

Human knowledge:

- Creative enhancements

Figure 1.7: Illustration of the �tion-to-animation problems with proposed solution strategies.This exposition is strutured aording to the identi�ed sub-problems as follows:
• Chapter 2 reviews related text-to-graphis researh, highlighting the unique harateristisof the �tion-to-animation problem. It also motivates the strategies shown in Figure 1.7 forautomating the �tion-to-animation proess.
• Chapter 3 desribes our strategies for automating the reation of surfae annotations over�tion text (relating to problem 1.1 in Figure 1.7).
• Chapter 4 develops the hierarhial rule-based learning approah for reating semanti anno-tations in �tion text. This system uses surfae annotations resulting from methods developedin Chapter 3, and automates the reation of the intermediate representation (illustrated asproblem 1.2 in Figure 1.7).
• Chapter 5 develops the method for �nding solutions to systems of time-based symboli on-straints. This mehanism is used in the derivation of preise values that represent behaviourin virtual environments, orresponding to problem 2.2 in Figure 1.7. The apabilities ofthis mehanism in�uene the manner in whih onstraint systems are derived from anno-tated text, explaining why we present this mehanism before the automated derivation ofonstraint systems (problem 2.1).
• Chapter 6 desribes tehniques for deriving sene detail from annotations, orresponding toproblem 2.1 in Figure 1.7. This inludes our strategy for reating strutured desriptions



CHAPTER 1. INTRODUCTION 9of behaviour from annotated text, their onversion into time-based analytial onstraints,and the manner in whih the solution-�nding proess (desribed in Chapter 5) is used forquantifying behaviour. Chapter 6 also develops strategies for instantiating 3D virtual envi-ronments ontaining geometri models and bakground senery (orresponding to problem2.3 in Figure 1.7). The reation of multi-modal animated �lms is also overed in this hapter.
• Chapter 7 summarizes the overall strategy for automating the �tion-to-animation task, andpresents the onlusions and ontributions resulting from this researh.



Chapter 2Tehniques for onverting text tographis
2.1 IntrodutionThe problem of automatially onverting natural language to graphial representations has beenexamined from a number of di�erent perspetives in related researh. Tehniques vary aording tothe style and omplexity of language used as input, and aording to the type of output required.This hapter positions the �tion-to-animation problem in relation to existing text-to-graphisresearh in these respets.2.1.1 Categorization of text-to-graphis systemsA text-to-graphis system is an automated omputer program that takes a sequene of textualsymbols as input and produes orresponding graphial representations. Text-to-graphis systemsare ategorized aording to the level of omplexity of the input text in relation to its resemblaneto natural language. At the lowest level are systems for whih input text is strutured formallyaording to well de�ned grammars (an example of whih is VRML1) allowing unambiguous inter-pretation by a omputer. At the highest level are systems that interpret atual natural language toreate orresponding graphis, but require omplex tehniques for resolving ambiguities inherentin natural language. Between these levels of input are systems that take input that is language-similar, where input bears resemblane to natural language but is strutured for interpretation bya omputer.Low level text-to-graphis systems are of little interest in this researh beause the inputlaks resemblane to �tion text. Instead, we examine two ategories of text-to-graphis sys-tems: language-similar methods, beause these are preursors to high-level systems; and high-levellanguage-to-graphis systems that suessfully transform natural language input into graphial rep-resentations.Systems within eah ategory are further distinguished aording to the type of output theyprodue. A range of di�erent options exists for visualizing text, inluding modi�ations to existing1Virtual Reality Modeling Language: http://www.w3.org/MarkUp/VRML/10
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Figure 2.2: Overview of related text-to-graphis systems.graphial environments in response to ommands, the reation of line drawings and 3D images,and the reation of multi-modal 3D animated graphis.This review highlights the fat that all text-to-graphis systems exhibit similarities with re-gards to the struture of the proess used for onversion. This generi text-to-graphis proess issummarized in Figure 2.1. A text-to-graphis system requires a text-analysis proess that onvertsthe input text into some omputer-readable intermediate representation. This representation isthen interpreted to onstrut or modify a graphial environment, requiring a reasoning proessregarding the layout of a graphial environment. Stati images or animated graphis are renderedfrom the �nal graphial environment. The design of our �tion-to-animation system onforms tothis generi proess, while di�ering in the tehniques used to aomplish eah task.2.1.2 OverviewThis review ategorizes existing text-to-graphis systems aording to the level of the input requiredby eah system, as summarized in Figure 2.2. Setion 2.2 desribes language-similar systems, whileSetion 2.3 desribes systems that take natural language as input. Systems are further ategorizedaording to the type of graphial output produed. Thereafter, the �tion-to-animation systemis disussed in relation to the previously desribed text-to-graphis systems (Setion 2.4).2.2 Language-similar graphis-generation systemsSystems that produe graphis automatially from language-similar instrutions bene�t from theability to parse input text in a reliable manner. Various onstituents of the input text are reog-



CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 12nized using a formally de�ned grammar. In spite of this, ommands that resemble natural languageintrodue ambiguity even though the struture of the input is stritly de�ned. Language-similarinput text is used primarily in early tehniques for text-based graphis prodution. Due to limita-tions in hardware, graphis in the form of line drawings were produed at the time of developmentof many of these systems. Even with this restrition in output quality, systems exist that reateboth stati images as well as animated graphis from the language-similar input.2.2.1 Output as a stati imageEarly language-similar graphis-generation systems produe stati line drawings in response toommands issued by a human user. Examples of suh systems inlude the following:
• The Env I system (Boberg, 1972) aepts input suh as:(CREATE A BRICK); (PUT PHOBJ1 ON PHOBJ2); (MAKE PHOBJ1 LONGER)
• The Clowns miroworld (Simmons, 1975) aepts instrutions suh as:(BOAT ABOVE WATER); (ATTACH BOAT WATER); (DOCK ABOVE WATER)
• The Nalig system (Adorni et al., 1984) requires input nearer to genuine natural languagein the form of:<subjet> <preposition> <objet>
• The Put system (Clay and Wilhelms, 1996) aepts ommands of the form:put {�table� on �floor�}In eah of the above ases the system provides a �nite voabulary and grammar for speifyingommands in the task of ontrolling the positioning of objets in a sene. The restrition of thegrammar redues a large amount of ambiguity in the interpretation of the ommands beause thefuntion of eah token in the input is expliitly de�ned for the omputer. However, the use ofnatural language terms still presents ases of ambiguity. For example, ambiguous terms suh as�LONGER� in the Env I example (Boberg, 1972), or �on� in the Put system (Clay and Wilhelms,1996), are interpreted di�erently depending on the objets involved.All the above systems have the ommon mehanism of mapping units of input diretly tomodules in whih hand-oded deision making proesses are exeuted for resolving ambiguity. Forexample, Put (Clay and Wilhelms, 1996) interprets ommands using image shemas, whih aredouments that de�ne how relations are realized in a 3D environment with respet to properties ofthe involved entities. For eah preposition suh as �on� or �at�, a shema enodes world-knowledgeregarding how to handle di�erent ases, for example in plaing an item �on the wall� as opposed to�on the table�. Equivalent reasoning modules are used in Nalig in the form of hand oded rules(Adorni et al., 1984), or theorems in Env I (Boberg, 1972).Eah of the above systems has the objetive of providing an alternative interfae for arranginga graphial environment. In partiular, Env I (Boberg, 1972) is onerned with reating andarranging ubes and wedges in a 3D environment, while Nalig (Adorni et al., 1984) and Put(Clay and Wilhelms, 1996) are onerned with arranging more general 3D objets annotated withspatial properties (suh as whih surfae of a geometri objet represents the �top�). In ontrast, the



CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 13
Text Analysis

Language-similar

commands
Interpretat ion

Intermediate 

representation
Graphical environment

Static graphics OR

Animated graphics

Using knowledge encoded as:

- Case-frames (PUT)

- Theorems (ENV I)
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- Suggestions (ANI)Figure 2.3: Language-similar input for the generi text-to-graphis proess.Clowns miroworld (Simmons, 1975) is only onerned with arranging a graphial environmentontaining a �nite set of pre-de�ned objets.In all ases, the input is a ommand that expliitly desribes how a sene must be modi�ed.This is di�erent to a narrative, whih is a olletion of desriptions (only some of whih refer tovisual aspets), and whih is potentially haraterized by a temporal aspet.2.2.2 Output as animated graphisEarly systems exist that onvert sequenes of language-similar instrutions to animated graph-is, inluding the Ani system (Kahn, 1979) and the primitives-based story visualization system(Narayanan et al., 1995). Sequenes of language-similar instrutions are provided that speify howthe graphial environments hange:
• The Ani system (Kahn, 1979) takes ommands as follows:(CONVEY (wants inderella (meets inderella prine)))(CONVEY (prevents stepmother (meets inderella prine)))(�inderella� and �stepmother� are entities delared previously, and keywords suh as �meets�and �prevents� are assoiated with spei� routines)
• The primitives-based story visualization system (Narayanan et al., 1995) takes input in whihverbs are manually replaed with one of Shank's fourteen primitive ations (Shank, 1973).The sentene �John entered the restaurant� is expressed as:John PTRANS restaurantGraphial models are animated by invoking eah primitive ation in sequential order, althoughreasoning is used in the Ani system regarding how to order the visualizations. For instane, the twoCONVEY ommands in the above example are exeuted simultaneously rather than sequentially.As with language systems that produe stati graphis, the restrition on the input languageallows for expliit mapping of natural language keywords to modules that interpret the instrutionsgraphially. Simple animated graphis are the result in both systems, for example onsisting ofapplying motion to two-dimensional symbols in Ani.All language-similar graphis generation systems map units of input to modules in whih hand-oded deision making proesses are exeuted for resolving ambiguity. Beause of the struturedform of the input, text analysis is not required. World-knowledge is enoded in various forms forthe interpretation of the intermediate representation, as indiated in Figure 2.3. The mappingfrom input symbols to interpretation modules is done diretly, a luxury not available when truenatural language is used as input.
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Figure 2.4: Sene modi�ation using natural language input illustrated with respet to the text-to-graphis proess.2.3 Natural language graphis-generation systemsNatural language poses a di�ult problem in terms of the text-to-graphis problem beause om-mands or narratives are expressed in a variety of ways, with varying degrees of ambiguity. Insome systems ommands are provided as input in order to modify a pre-onstruted graphial en-vironment or assign behaviours to entities within the environment. Alternatively, natural languagenarrative desribing a �titious environment is used as input, from whih a graphial representationmust be reated and possibly animated if the input narrative desribes ations and events.2.3.1 Output as a modi�ation on a pre-existing environmentOne of the �rst examples of language-based manipulation of a 3D environment is the Shrdlusystem (Winograd, 1972), in whih English ommands are used to ontrol a virtual robot-arm in a3D environment. Shrdlu is signi�ant in that it is one of the earliest systems to use grammatiallyorret English as input to a graphis-based system, requiring omplex syntati analysis of theinput text. Part of the suess of the ambiguity resolution is the restrition to a limited domain,whih ontains only a �nite number of entities and permissible ations.Natural language is often used as the modality for ommuniation between a human operatorand entities within a pre-built virtual environment. In partiular, tehniques exist that allow fornatural language ommands to be issued to agents in a virtual environment (Webber et al., 1995;Badler et al., 2000; Bindiganavale et al., 2000; Shinyama et al., 2000). Example ommands handledby these systems inlude:Walk around the room. (Badler et al., 2000)Chiken, push the sphere from the left. (Shinyama et al., 2000)Agents are designed to perform a ertain range of ations, and the task of the system is todetermine whih ation is being desribed in the input ommand, and to determine whih entities inthe sene are to take part in the ation. This proess is simpli�ed by the fat that the environmentsare pre-onstruted, and so data is available regarding every entity in the sene for resolvingambiguity.Most systems make use of an intermediate template representation that enodes both knowledgeon how to extrat relevant details from the input text, as well as interpret the information forvisualizing ations in the graphial environment, illustrated in Figure 2.4. Information derived



CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 15using syntati parsing is used to determine whih template (shema (Webber et al., 1995), PAR(Badler et al., 2000) or ase frame (Shinyama et al., 2000)) is appliable to a ertain input word orphrase. The hosen template ontains instrutions regarding how to derive additional informationfrom the text to parametrize the desribed ation, as well as how to visualize the ation graphially(for instane, by sending the appropriate ommand to an agent).Natural language is also used as an interfae for navigation in virtual environments, spei�-ally ontrolling the amera providing the view (Bersot et al., 1998). More distantly related isvirtual-storytelling, in whih input text is interpreted in terms of emotional ontent, using thisinformation to automatially assign the orret faial expressions to a story-telling avatar (Pieskand Trogemann, 1997).Input to systems in this ategory is provided in the form of ommands that are exeutedimmediately in order to update the graphial environment. The aspet of time is handled byimpliation, in that no reasoning is performed regarding when an ation should our or how longit should take to exeute. Animation ours in response to an input ommand, after whih theissuer of the ommand must wait until the ation is ompleted. Ambiguity is avoided beauseommands are direted to entities that already exist in a sene. This is indiated in Figure 2.4 bythe feedbak loop between the graphial environment and the intermediate representation. Thisallows the interpretation to be guided based on the urrent state of the environment. A moreomplex formulation of the text-to-graphis problem is the ase in whih both the environmentand the entities must be reated.2.3.2 Output as instantiated graphisA number of alternatives exist for reating graphial representations from natural language input,inluding produing output as a sequene of photographs, onstruting a stati 3D environment,or onstruting an animated 3D environment from whih animated �lms are rendered.2.3.2.1 Output as sequenes of photographsAn alternative to visualizing natural language text using 3D environments is the use of photographsorretly mathed to onepts in input text (Joshi et al., 2004; Zhu et al., 2007). These approahesextrat keywords from input text that are used as queries into a database of annotated images or anInternet-based image searh engine. One advantage of the text-to-piture approah is that semantiinterpretation of the input text is avoided, rather making use of keywords to visualize the text.This allows for large portions of unrestrited text to be visualized as sequenes of orrespondingimages. The problem with this approah is that images (espeially returned from an image searhengine) tend to be poorly annotated, and the lak of syntati reasoning potentially results ininappropriate images for a partiular keyword (Glass et al., 2007).2.3.2.2 Output as instantiated 3D environmentsUnlike systems that respond to individual natural language ommands, some systems reate en-tirely new graphial environments from a narrative desribing a sene. This requires both reogni-tion and reation of new entities, as well as interpretation of the entire disourse to determine the
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- Depiction rules (WordsEye)Figure 2.5: Sene instantiation from natural language narrative illustrated in terms of the generitext-to-graphis proess.global layout of the environment (rather than implement instrutions one at a time). Examples ofsuh narratives inlude:John uses the rossbow. He rides the horse by the store. The store is under thelarge willow. (Coyne and Sproat, 2001)A brik wall is right of a room. A red rug is in the room. A wooden table is onthe rug. (Zeng et al., 2005)As illustrated in Figure 2.5, a omputer-readable intermediate representation must be reatedfrom the input text. This is done using a database of interpretation modules, whih are dou-ments that ontain instrutions regarding how to interpret the text in ertain senarios. Surfaeannotations of the input text are used to perform a look-up in a database that ontains di�erentategories of interpretation modules. For instane, words annotated as nouns result in a look-upin the database for a module ontaining instrutions that instantiate an entity in the 3D sene(Yamada et al., 1992; Zeng et al., 2003, 2005; Seversky and Yin, 2006). Di�erent ategories of in-terpretation modules exist for di�erent types of semantis, inluding ategories for handling nouns,spatial prepositions, and verbs (Coyne and Sproat, 2001). Eah ategory has a number of de�nedmodules, handling instanes that potentially our within that ategory. For example, the token�on� is reognised as a preposition by the parser, and onsequently a preposition module is invokedthat determines how to loate the subjet entity and the referene entity of the relation from thetext.The intermediate representation reated by the text analysis modules is a translation of theinput language into omputer-readable format. For example, WordsEye (Coyne and Sproat,2001) reates a representation in the following format (ellipsis indiates unquoted portions):(...(�node5� (:ENTITY:3D-OBJECTS (�at-vp2842�)))(�node6� (:STATIVE-RELATION �on�:FIGURE �node5�:GROUND �node7�))(�node7� (:ENTITY:3D-OBJECTS (�pool_table-vp8359�...)))...)The above representation instantiates two entities, and spei�es an �ON� relation between them.This representation must be interpreted in the visual ontext, whih is done using world knowledgeassoiated with geometri models and using a number of hand-oded spatial reasoning modules.



CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 17Geometri models are annotated with detailed spatial tags, information that desribes thevarious regions semantially assoiated with an objet. For instane, tags suh as �front� and�behind� are desribed for eah model, as well as more semantially relevant terms suh as �at� and�in�. For instane, the spatial tag �in� would be de�ned to indiate the top surfae of a geometrimodel of a �bed�, while it would be interpreted as full ontainment for an model representinga �bedroom�. Other data is also assoiated with models inluding parts, skeletons and funtionproperties (Coyne and Sproat, 2001).Spatial tags are used to position objets in the sene. The �ON� example quoted above isrealized by aligning the �top� surfae of the �pool_table� objet with the �bottom� surfae of the�at� objet (Coyne and Sproat, 2001; Zeng et al., 2005; Seversky and Yin, 2006). Some senelayout instrutions require further world knowledge with regards to spatial representation, suh asthe �He rides the horse� example mentioned previously. Additional world knowledge is requiredto determine that �rides� must be translated into an �on� relation when referring to a �horse�, butmust be interpreted as an �in� relation if the entity were riding a �ar�. WordsEye makes use ofreasoning modules alled depition-rules to perform suh reasoning (Coyne and Sproat, 2001).Alternatives to knowledge-guided interpretation exist for the task of performing sene layout.The Spatial Representation Interpreter (Sprint) system (Yamada et al., 1992) formulates thelayout problem as a set of onstraints, the solutions to whih speify the layout of a sene. Analternative to expliitly annotated objet models is presented by Seversky and Yin (2006), in whih3D objets are automatially assigned spatial tags using an automati proess that reates voxelrepresentations of the geometri models, and then deides whih voxels represent the anonialspatial ategories (for example �top� or �bottom�).The de�ning feature of the above-mentioned systems is the requirement for three ategoriesof world knowledge. World knowledge must be enoded into the linguisti interpretation modulesso that the intermediate representation is parametrized to the required level. In addition, worldknowledge must be enoded with eah geometri model in the database, so that various relationsare realized orretly. World knowledge is also required for reasoning about di�erent types ofspatial relationship. The suess of these systems depends on a su�ient quantity of enodedworld knowledge, whih requires a large amount of manual e�ort to reate.2.3.2.3 Output as animated graphisThe reation of animated graphis from natural language is the most omplex language-to-graphisappliation in terms of the requirement to derive temporal information from text. Not only mustambiguities in text be resolved, but onepts suh as events or ations must be reognised withinthe text and translated into time-based graphial visualizations. Example story narratives providedas input to suh systems inlude:
• CarSim (Johansson et al., 2005) (equivalent Swedish text):The bus was on its way from Kandahar towards the apital Kabul when it left theroad while overtaking and overturned, said general Salim Kahn ...
• Confuius (Ma, 2006) (eah entered separately):John put a up on the table.John left the gym.
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• Swan (Lu and Zhang, 2002) (equivalent Chinese text):The new queen killed the beautiful priness Snow White with a poisonous apple.A prine made Snow White alive again. The prine married priness Snow Whitein a hurh.Eah of the above examples are onverted into orresponding animated 3D environments. TheCarSim system (Johansson et al., 2005) reates animations spei� to the �ar aident� domain,and so the variety of objets and ations are limited aordingly. Confuius (Ma, 2006) animatesan ation desribed in a single sentene, while Swan (Lu and Zhang, 2002) animates a storyexpressed as simpli�ed Chinese. Other systems not listed above inlude the Story Driven AnimationSystem (SDAS) (Takashima et al., 1987) that onverts simple hildren's stories written in Japaneseinto animated graphis (in whih the primary fous is seleting the orret ation with whih toanimate a model), and the Virtual Diretor system (Mukerjee et al., 2000) that makes use ofagents that are programmed to perform ertain ations and interations desribed in a limited�urban parks� domain.We divide methods for the onstrution of 3D animations from story narratives into two distintgroups with respet to the text-analysis task, as indiated in Figure 2.6. Knowledge-based textanalysis for reating animations is similar to WordsEye (Coyne and Sproat, 2001) in that adatabase of interpretation modules is used to onvert input text into a semanti representation.This database is extended to ontain ategories for ations or events. Systems that make use ofhand-oded interpretation modules inlude Confuius (Ma, 2006), Swan (Lu and Zhang, 2002),SDAS (Takashima et al., 1987) and the Virtual Diretor (Mukerjee et al., 2000). An alternative tothe knowledge-based method is the use of information extration tehniques to extrat fragmentsof text that desribe visual aspets of a sene, an example of whih is the CarSim system (Nugueset al., 2003; Johansson et al., 2005). The result in both ases is an intermediate representation thatexpresses the ontents of the input text in a omputer-readable format, with the added ability tospeify time-based events (suh as the LVSR representation proposed by Ma and MKevitt (2003)).Spatial layout reasoning is performed using one of two methods in the reation of animationsfrom the intermediate representation, namely knowledge-based reasoning, and onstraint-based



CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 19planning. As with WordsEye (Coyne and Sproat, 2001), knowledge-based reasoning requiresgeometri models that are annotated with spatial tags and other types of semanti information(Takashima et al., 1987; Lu and Zhang, 2002; Ma, 2006), as well as modules for interpretingdi�erent kinds of relations and ations (Ma and MKevitt, 2004b). The alternative is the use ofonstraints to speify the layout and motion of entities, the solutions to whih are used to onstrutthe graphial environment. Example systems that use this method inlude CarSim (Egges et al.,2001) and the Virtual Diretor (Mukerjee et al., 2000).The above-mentioned tehniques result in animated graphis, whih implies that the aspet oftime is relevant in all ases. The Story Driven Animation System (SDAS) (Takashima et al., 1987)and the Virtual Diretor (Mukerjee et al., 2000) arrange the visualization of ations aording tothe order in whih the token (from whih ations are derived) appears in the text, and eah ationis manually assoiated a �nite portion of time for exeution. Alternatively, spei� tokens are usedto determine the order of events (for example, �before�, �after� or �during�) using reasoning thatrequires data from an external knowledge-base (Lu and Zhang, 2002; Johansson et al., 2005; Ma,2006).Of the existing text-to-animation systems desribed in this setion, Confuius, Swan andCarSim produe results most similar to those required by a �tion-to-animation system, in thateah produes animated 3D graphis from natural language input. We believe that Confuius andSwan are impressive in their ability to reate animated graphis with highly artiulated models,while CarSim is impressive in its ability to proess large quantities of unsimpli�ed text withminimal use of a manually reated knowledge-base.2.4 Fition-to-animation in ontextRelated text-to-graphis systems are summarized in Table 2.1 aording to the type of inputand output. Language omplexity refers to the level of restrition of the input text (in termsof sentene length, sentene omplexity, or subjet domain). Output type distinguishes betweensystems that modify pre-existing environments, or reate new graphial environments. We inludeour �tion-to-animation system in this table for omparison. Few systems reate 3D animations(rather than modify) from natural language, and of these only two systems reate multi-modalanimated graphis. The �tion-to-animation system is the only example in whih unrestritednatural language is onverted to multi-modal animated graphis.2.4.1 Trends in text-to-graphis onversionCommon trends exist in text-to-graphis researh, haraterized aording to the method used fortext analysis and layout interpretation.A ommon trend for text analysis is the use of a semantis based approah, whih is onernedwith the task of �understanding� the text to the maximum extent possible. This requires syntatiparsing as well as enoded world-knowledge (Coyne and Sproat, 2001; Lu and Zhang, 2002; Ma,2006). A ontrasting approah is to avoid semanti understanding and rather extrat only itemsfrom the input text that are required for reating graphial representations (Johansson et al., 2005).
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Env I (Boberg, 1972) 3 3 3 3Shrdlu (Winograd, 1972) 3 3 3 3 3Clowns (Simmons, 1975) 3 3 3 3Ani (Kahn, 1979) 3 3 3 3Nalig (Adorni et al., 1984) 3 3 3 3SDAS (Takashima et al., 1987) 3 3 3 3 3Sprint (Yamada et al., 1992) 3 3 3 3Primitives-based (Narayanan et al., 1995) 3 3 3 3AnimNL (Webber et al., 1995) 3 3 3 3Put (Clay and Wilhelms, 1996) 3 3 3 3PAR (Badler et al., 2000) 3 3 3 3Karai (Shinyama et al., 2000) 3 3 3 3Virtual Diretor (Mukerjee et al., 2000) 3 3 3 3WordsEye (Coyne and Sproat, 2001) 3 3 3 3Swan (Lu and Zhang, 2002) 3 3 3 33DSV (Zeng et al., 2003) 3 3 3 3Story Pituring Engine (Joshi et al., 2004) 3 3 3CarSim (Johansson et al., 2005) 3 3 3 3Voxel-based (Seversky and Yin, 2006) 3 3 3 3Confuius (Ma, 2006) 3 3 3 3Text-to-Piture (Zhu et al., 2007) 3 3 3Fition-to-animation 3 3 3 3Table 2.1: Categorization of related text-to-graphis systems aording to input and output.



CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 21We observe that systems using the latter approah have less stringent restritions regarding theomplexity of the input text.Spatial reasoning is performed using either one of two methods. The most popular methodfor positioning objets in a sene is the use of detailed world knowledge in the form of geometrimodels annotated with spatial and funtional harateristis (Coyne and Sproat, 2001; Zeng et al.,2003; Ma, 2006). This inludes knowledge in the form of interpretation mehanisms for applyingspei� types of relations or ations to models. An alternative to this approah is the formulationof onstraints that restrit the layout of a sene or trajetory of an objet. Solutions to these on-straints, obtained either as a result of numerial methods (Yamada et al., 1992) or disrete solvingtehniques (Johansson et al., 2005), are then transformed into atual graphial representations.Text-to-graphis systems that require the use of a knowledge-base tend to use ustom-builtversions that provide the required data spei� to the purpose of the individual system (Coyneand Sproat, 2001; Lu and Zhang, 2002; Ma, 2006). No single formulation exists for the strutureor ontent of a generalized knowledge base for the text-to-graphis problem.Existing text-to-graphis tehniques aim to automate the entire onversion proess, and thereis a strong requirement for external knowledge beause natural language is inherently ambiguous.Rather than inlude a human element in the onversion proess to resolve ambiguity, omplexreasoning systems are implemented to retain full automation. Beause of the labour required inthe onstrution of a knowledge-base, existing systems generally limit the input in some respet.For instane, WordsEye is limited to short sentenes, Confuius allows only a single senteneto be used as input at a time, while Swan limits the grammar omplexity. CarSim does not limitthe omplexity of the input text, but does restrit the subjet of the text to a single domain. Onlytext-to-piture systems do not limit the text omplexity beause no knowledge-based reasoning isrequired.2.4.2 Motivation for the design of the �tion-to-animation systemEnhaned representations for �tion books range from digital visualizations of physial books(Chu et al., 2003) and providing ambient sounds e�ets (Bak et al., 1999), to virtual interativerepresentations (Billinghurst et al., 2001). In all of these approahes the non-textual representationsare generated manually, while interation with the book is the primary fous. Alternatively, weaddress the problem of onverting text as it is found in popular �tion books into orrespondinganimated graphis, a problem that is an extension to the many text-to-graphis systems presentedin previous setions. Text soured from popular �tion is an example of a natural language narrativewithout any restritions on omplexity or domain.We design the �tion-to-animation system to inlude the same generi stages that exist inother text-to-graphis systems. The automated proess onsists of a text analysis omponent andan interpretation omponent, both illustrated in Figure 2.7. Eah omponent is onstruted usinga set of sub-omponents that olletively solve the text analysis and interpretation problems.Text analysisThe text analysis omponent is designed to automate the reation of semanti annotations in amanner that adapts to individual human thought proesses. We adopt a mahine learning approah
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constraint optimizerFigure 2.7: Fition-to-animation proess in terms of the generi text-to-graphis proess.to aomplish this, motivated by the use of similar tehnology in the CarSim system (Johanssonet al., 2005). This approah indues models (from human reated examples) regarding how toidentify portions of text as belonging in a partiular ategory. This is in ontrast to the majorityof text-to-graphis systems that attempt deep �understanding� of the text through the use ofomplex knowledge-bases. The bene�t of the mahine-learning approah is that the omplexity ofinput text is not limited to the ability of any one syntati parser, nor is there a dependene ona ustom-built knowledge base. This bene�t is demonstrated by the CarSim system in its abilityto handle large quantities of non-simpli�ed language.We believe that models indued by a mahine learning mehanism are more desriptive if theyare supplemented with linguisti information that desribes the struture and syntati featuresof the input text. We use the term surfae annotations to desribe this type of information, andobtain it using a suite of general purpose natural language proessing tools. Existing text-to-graphis systems generally derive similar information in this manner (Coyne and Sproat, 2001; Luand Zhang, 2002; Ma, 2006).Intermediate representationThe �tion-to-animation system uses annotated �tion text as an intermediate representation.This is motivated by the mahine-learning approah to text analysis, beause text an be manuallyannotated by humans and used as example data for training. Intermediate representations used byrelated systems do not exhibit this property (Coyne and Sproat, 2001; Lu and Zhang, 2002; Ma,2006).InterpretationThe interpretation omponent is responsible for onverting the annotated text into orrespondinganimated 3D virtual environments. We divide the interpretation omponent into three modules,eah of whih is guided by a onstraint-based formulation of behaviour in the virtual environment.The �rst module is onerned with interpreting annotations to form spatial onstraints that de-sribe behaviour. The seond module is onerned with �nding solutions to these onstraints. Thethird module uses these solutions to instantiate and populate the virtual environment.



CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 23The use of onstraint-based formulations of behaviour is motivated by existing systems suhas Sprint (Yamada et al., 1992) and CarSim (Johansson et al., 2005). Both these systemsuse onstraints to speify behaviour without requiring detailed knowledge to be assoiated withindividual objet models (as opposed to systems like Confuius (Ma, 2006) and Swan (Lu andZhang, 2002)).The manner in whih onstraints are formed from annotations is dependent on the apabilitiesof the onstraint solving mehanism used to loate solutions. Behaviour implies a relation withtime, and solving onstraints with respet to time is a hallenging task. One method is demon-strated by CarSim (Johansson et al., 2005), whih disretizes time into a sequene of instanes,solving onstraint systems at eah disrete point. We use interval-arithmeti to represent time asontiguous intervals (preventing disretization), and develop a interval-based onstraint optimiza-tion strategy that is able to �nd solutions to time-based onstraints. The interval-based onstraintoptimizer represents the seond module of the interpretation omponent.The �rst module of the interpretation omponent is onerned with formulating strutureddesriptions of the senes to be visualized. This inludes identifying whih senes to portray,whih entities to visualize in eah sene, and deiding how to portray these entities visually. Thismodules also derives time-based onstraints that desribe entity behaviour from the annotated textthat an be solved using the interval-based onstraint optimizer. We use a suite of knowledge-poormethods for deriving sene desriptions and formulating onstraints.The third module of the interpretation omponent involves instantiating and populating virtualenvironments that orrespond to the annotated �tion text. This involves methods for plainggeometry in a virtual environment (where we prefer 3D geometry for omparability with stateof the art text-to-graphis systems like Swan (Lu and Zhang, 2002), Confuius (Ma, 2006)and WordsEye (Coyne and Sproat, 2001)), for onstruting geometry the represents bakgroundsenery, and animating entities so that they perform the spei�ed behaviour.2.4.3 Fition-to-animation in relation to other systemsFour existing text-to-graphis systems are notable with respet to their ability to reate 3D graphisfrom natural language input, namely WordsEye (Coyne and Sproat, 2001), Confuius (Ma,2006), CarSim (Johansson et al., 2005) and Swan (Lu and Zhang, 2002). Eah of these systemsexhibit strengths and weaknesses with respet to their apabilities in terms of input and output.We rate these systems aording to the quantity, omplexity, and domain freedom of the allowedinput, and also aording to the output quality.Some systems restrit the quantity of input severely, suh as Confuius, whih handles onlya single input sentene at a time. Systems suh as WordsEye and Swan do not plae an upperlimit on the number of sentenes, but neither of these present examples that extend beyond 20sentenes. CarSim displays the ability to handle unlimited sentene length in its use of a orpusof 200 newspaper reports. The �tion-to-animation system is most omparable to CarSim in itsability to handle extrats of inreased length.Sentene omplexity is expliitly restrited for the Swan system. We observe that input exam-ples provided forWordsEye and Confuius are ontrived for illustration purposes. In ontrast,CarSim system uses examples soured from publi-domain literature. The �tion-to-animation
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Number of Sentences (1 = single, 2 = less than 20, 3 = greater than 20)
Sentence Complexity (1 = simplified, 2 = contrived, 3 = unrestricted)
Domain Freedom (1 = domain restricted, 2 = knowledge restricted, 3 = no restriction)
Modalities (1 = static graphics, 2 = animated graphics, 3 = animated graphics + other)
Model Articulation (1 = none, 2 = some, 3 = detailed)
Scenes (1 = single unchangeable, 2 = single changeable, 3 = many changeable)
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Figure 2.8: Summary of apabilities of related text-to-graphis systems.system does not use ontrived examples, but rather uses text soured diretly from popular �tionbooks.CarSim is the only system that expressly restrits the subjet domain of the input text (tothat of �ar aidents�), however, all other systems are limited in their ability to handle a generaldomain by the extent of the knowledge available to the system. WordsEye, Confuius andSwan are limited by the level of detail of the knowledge-base, a limitation that is redued if theknowledge-bases are improved. The �tion-to-animation system is also limited in this respet.Only Swan and Confuius have the ability to reate multi-modal presentations of the inputtext. The �tion-to-animation system also exhibits this apability.The level of artiulation of models (that is, in animating poses and ations) is impressive inWordsEye, Confuius and Swan. This feature is not exhibited in CarSim, whih is onlyonerned with translating models of ars or truks, without model-level artiulation. The �tion-to-animation system artiulates models to a ertain extent, but not the the level of detail exhibitedin other systems.The output produed by the CarSim system is always depited in the same visual sene.WordsEye and Confuius have the ability to visualize only a single sene at a time, generallyusing a textured plane in whih objets are plaed. Swan has the ability to produe multiplesenes of this struture. The �tion-to-animation system, however, is able to produe a number ofsenes from a single fragment of input text, where bakground geometry is proedurally generatedaording to the type of sene.We rate the apabilities of eah text-to-graphis system based on the above disussions (eahapability is rated on a sale between 1 and 3). A omparative plot suh as the one presented inFigure 2.8 indiates that the �tion-to-animation system is superior to existing systems, partiu-larly in its ability to simultaneously handle large quantities of input text of unrestrited omplexity,and produe multi-modal animations that our in a number of senes.



CHAPTER 2. TECHNIQUES FOR CONVERTING TEXT TO GRAPHICS 252.5 ConlusionThis hapter indiates that a variety of methods exist for onverting text to graphis, eah of whihonforms to a ommon struture. We show that, espeially in the ase of natural language input,knowledge-bases are generally used to assist in interpreting the input text to aid in the onstrutionof intermediate representations from whih graphial outputs are produed. Alternative onversionproesses exist, inluding the use of information extration and onstraint-based methods thatredue the reliane on knowledge-bases. The �tion-to-annotation proess is based on the lattertehniques, avoiding the requirement for a omplex knowledge base.The �tion-to-animation system is unique in the ontext of existing text-to-graphis researh.It is the �rst to onvert unrestrited text soured from popular �tion books into multi-modal3D animations. In addition, the ombination of the various omponents, inluding an informationextration module for reating annotations and the interval-based quanti�ed onstraint optimizer,represent new methods in solving the text-to-graphis onversion problem.This hapter ontributes to the text-to-graphis domain in the following respets:
• The ommon struture that we derive from related tehniques ontributes to the understand-ing of the general text-to-graphis problem, and onsists of two primary tasks: text analysisand interpretation. We use this struture for solving the �tion-to-animation problem.
• We identify a gap in text-to-graphis researh regarding the onversion of �tion text tomulti-modal animated 3D environments and �lms.
• We provide an innovative lassi�ation sheme for related text-to-graphis researh, basedon the input and output of eah system (Table 2.1 on page 20). This ontributes to the �eldby providing a suint summary of existing tehnology in a domain where the approahesare signi�antly varied.



Chapter 3Surfae annotations for �tion textThis hapter desribes automati tehniques for identifying the strutural and syntati propertiesof digitized natural language text (olletively named surfae annotations). Strutural propertiesindiate whih portions of the input text are tokens, sentenes and quotes. Tehniques for derivingthese properties are presented in Setion 3.2. Syntati properties indiate the funtion of struturalunits in onveying the meaning of the text, and inlude parts-of-speeh, syntax and phrasing.Tehniques for deriving syntati properties are presented in Setion 3.3. We demonstrate the useof strutural and syntati properties in the reation of semanti annotations over �tion text inSetion 3.4. Conlusions regarding the automated tehniques are presented in Setion 3.5.3.1 Introdution3.1.1 Problem statementWe believe that human ognition of natural language is assisted by strutural and syntati proper-ties of the text. We investigate the identi�ation of these properties in �tion text in the followingrespets:1. Digital �tion text is represented on a omputer as a stream of haraters, from whihstruture must be derived. Strutural elements inlude tokens, sentenes, and quotes.2. Strutures in digital �tion text an be lassi�ed aording to their funtion or use. Weinvestigate the derivation of these funtional lassi�ations, inluding the identi�ation ofparts-of-speeh, syntax, and phrasing.3. Tasks in the �tion-to-animation proess use strutural and syntati properties to aid inreating semanti annotations. We investigate the levels of auray expeted in the identi-�ation of these properties, so that any error produed is quanti�ed for future experimentsthat use these properties.We demonstrate the use of strutural and syntati properties in reating semanti annotationsover �tion text, as a motivation for our belief that these properties assist in the ognition ofnatural language. 26



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 27Tokens Number of soures Range of ContentSUSANNE 130 000 64 soures from 4 genreategories(extrats from Brown Corpus). Press reportage, letters,biographies, memoirs, tehnialwriting, adventure and Western�tion (Sampson, 2007).WSJ 1 288 623 2499 stories from the 1989 WallStreet Journal. Press reportage(Marus et al., 1994).Brown 1 170 775 500 soures, approx. 2000 wordseah, from 15 genre ategories. Informative and imaginativeprose (Amerian English)(Franis and Kuera, 1979).LOB 1 157 220 500 soures, approx. 2000 wordseah, from 15 genre ategories. Informative and imaginativeprose (British English)(Johansson et al., 1978).Table 3.1: Size and ontent of the four annotated orpora.3.1.2 Problem formulationStrutural and syntati properties of natural language assist in identifying portions of text thatdesribe visual harateristis of a sene. For instane, tokens (strutural property) in the inputtext that are lassi�ed as nouns (syntati property) potentially identify tangible objets in asene. This hapter identi�es methods for identifying strutural and syntati properties of naturallanguage, in the reation of what we term surfae annotations.Strutural properties re�et the struture of the written language, and in this ategory weinvestigate automati methods for tokenizing �tion text, identifying sentene boundaries andidentifying quoted speeh. Syntati properties re�et the funtion of units of text in writtenlanguage, and in this ategory we investigate methods for identifying the parts-of-speeh of tokens,the syntati funtion of tokens, and the identi�ation and lassi�ation of phrases in the text.Chapter 4 desribes a mahine learning approah for reating semanti annotations in �tiontext. This mahine learning approah ombines human reated example annotations with surfaeannotations to derive a model of the human's mental proesses. This means that the surfaeannotations must be provided in an aurate manner so that onsistent models are reated bythe learning system. We investigate the auray with whih surfae annotations are reated overnatural language text using automated proesses.The evaluation of surfae annotations requires test data against whih the automatially derivedproperties an be ompared, desribed in the following setion.Evaluation dataEvaluation data for verifying the orretness of strutural and syntati properties of text is foundin a resoure known as an annotated orpus. This is a olletion of natural language texts that aremanually labeled to indiate strutural or syntati properties. We use four orpora in this hapter,namely the Wall Street Journal (WSJ) setion of the Penn Treebank (Marus et al., 1994), theBrown orpus setion of the Penn Treebank (Franis and Kuera, 1979; Marus et al., 1994), theLanaster-Oslo/Bergen (LOB) orpus (Johansson et al., 1978, 1986), and the SUSANNE orpus(Sampson, 2007). These orpora are widely used in the �eld of natural language proessing forevaluation purposes, and their size and ontents are listed in Table 3.1.



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 28Element Gold Standard Automati Label
e1 A A
e2 B A
e3 A A
e4 C A
e5 A DTable 3.2: Example of manual and automati labeling.The following setion provides a brief explanation of popular metris for performing evaluationof natural language proessing tasks.Suess metrisGeneral natural language proessing is onerned with assigning labels of a ertain ategory to theoriginal text, as is the ase with the reation of surfae annotations. The auray of an automatedlabel-reation proess is evaluated by heking the orretness of the automatially produed labels.Example labeling is illustrated in Table 3.2, where eah element ei is labeled as either A, B, Cor D. The gold standard refers to the orret labeling of these elements, veri�ed by hand. Theautomati label is assigned to eah element using an automati proess.There are two metris ommonly used for evaluating automati labeling mehanisms, namelypreision and reall. Preision, as it relates to the example in Table 3.2, measures the auray ofthe labeler's output:

precision =
number of labels correct

number of labels automatically assignedThe preision for labeling an element as �A� in the automated output in Table 3.2 is 2
4 , beause 2of the 4 assigned �A� labels orrespond to the gold standard. Reall is a metri that measures theability of the automati proess to orretly label eah element:

recall =
number of labels correct

number of labels in gold standardThe reall for labeling an element as �A� in the automated output in Table 3.2 is 2
3 beause twoof the three elements labeled �A� in the gold standard are labeled �A� automatially.In some ases, there is no di�erene between preision and reall. If only the overall suess ofthe automated proess is required (that is, not for any spei� label type), then preision equalsreall beause the number of labels assigned is equal to the number of labels in the gold standard.In this ase, both metris measure the auray of the automated proess. Auray is 2

5 for theexample in Table 3.2.All the above metris are presented as perentages in subsequent setions. The remainderof this hapter desribes automated methods for identifying strutural and syntati propertiesof natural language text, and evaluates these methods over large natural language orpora usingpreision, reall and auray.
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Figure 3.1: Context of the surfae annotation reation proess with respet to the �tion-to-animation problem.3.1.3 ContextThe researh presented in this hapter examines the automation of the �rst part of the text-analysisproblem in �tion-to-animation onversion (Figure 3.1). We desribe a method for automatiallyidentifying surfae annotations over �tion text. The input to this proess is unaltered digitized�tion text. Surfae annotations that are reated using automated tehniques are used in themahine learning proess for identifying semanti annotations desribed in Chapter 4.3.2 Strutural propertiesThe following setions present and evaluate tehniques for identifying strutural omponents ofnatural language text, inluding tokens, sentenes, and quotes. We assume ertain onventions areused in formatting the digitized input text, whih are desribed in Appendix A.3.2.1 TokensTokenization is the proess of separating sequenes of haraters into units that resemble words.The struture of English requires a white spae between words, but white-spae does not alwaysseparate words and puntuation marks. Examples inlude sentene-terminating full-stops (Grefen-stette and Tapanainen, 1994; Mikheev, 2002), abbreviations, and aronyms. Puntuation suh asommas, brakets, and semi-olons also exhibit this feature, as do possessive su�xes and ontra-tions suh as 's, n't and 'll.Our tokenization strategy is based on the assumption that English words are separated usingwhite-spae. The input stream of haraters is tokenized using white-spae as a delimiter. Eahtoken is ompared against a lexion ontaining 87 309 English words, soured from the 12ditsolletion (Atkinson, 2003). If a token is a member of this lexion, then it is reognized as anEnglish word and is not tokenized any further. Tokens that do not our in the 12dits lexionare potentially aronyms or abbreviations. The token is heked for membership within a lexionof abbreviations and aronyms, soured from the ANNIE omponent of the GATE arhiteture(GATE, 2005). If a math is found, no further tokenization ours. If a token is neither anEnglish word nor an abbreviation, then the token has one or more puntuation marks attahed.



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 30Tokens in Brown Tokens found Tokens orret Preision ReallBrown Corpus 1170775 1180170 1165852 98.79% 99.58%Table 3.3: Preision and reall of our tokenization tehnique over the Brown orpus.The token is split into sub-tokens using puntuation marks, and apostrophe su�xes as delimiters(identi�ed using manually onstruted lists shown in Appendix A). The resulting sub-tokens arethen reproessed using the above methods until all tokens are lassi�ed.We evaluate our approah using the Brown orpus omponent of the Penn Treebank (Maruset al., 1994). A plain-text version of the orpus is reated by re-binding puntuation to words. Theplain-text version is tokenized and the result is ompared with the original Brown orpus. Eahtoken in the Brown orpus is mathed with the automatially generated output.In total, 99.58% of the automatially generated tokens math the original, as listed in Table3.3. This means that less than 0.5% of the original tokens are inorretly tokenized.Our method is an alternative to existing tokenization tehnology that uses mahine learningmethods (Grover et al., 2000; Clark, 2003). The minimal gains in auray ahieved using thesemethods are made at the ost of dramatially inreasing the omplexity of the tokenization proess.3.2.2 SentenesDeteting how tokens group together to form sentenes is known as sentene boundary disam-biguation and is dependent on an aurate tokenization proess (Mikheev, 2002). This is beauseperiods used to indiate abbreviations must be orretly di�erentiated from periods used as sen-tene terminators (full-stops).We use a ustom built sentene boundary disambiguator based on the tokenization approahdesribed in Setion 3.2.1. The proess identi�es sentene boundaries based on three senteneterminating symbols, namely the full-stop, the exlamation mark, and the question mark, eahof whih is presumed to be orretly tokenized. If losing quotation marks fall after a senteneterminator then the last suh token enountered beomes the sentene terminating token.We evaluate this sentene boundary detetion algorithm by measuring the auray with whihsentene terminators are identi�ed (Mikheev, 2002). We perform this evaluation using the Brownorpus beause it ontains sentene termination labels. A plain-text version is reated by removingall sentene boundary information, and this version is passed through our sentene boundarydisambiguator. Two plain-text versions are reated: one using orret tokenization as found in theBrown orpus, and the other tokenized using the method desribed in Setion 3.2.1. The formerevaluates auray where no errors our in the tokenization, while the latter tests the e�et thattokenization errors have on the identi�ation of sentene terminators.The resulting auraies of the implemented sentene boundary disambiguator are listed inTable 3.4, showing that the use of this method for identifying sentenes produes a small degreeof error. We explain the error in these results by the inorret tokenization of the portion of theBrown orpus ontaining sienti� douments, where aronyms and speial symbols onfound ourtokenization method. We do not believe that �tion text exhibits this type of prose. Errors intokenization negatively a�et the identi�ation of sentene boundaries, but reall is redued byless than 1%.



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 31Sentenes Automati Corret Preision ReallCorret Tokens 52108 53560 50166 93.66% 96.27%Automati Tokens 52108 56709 49947 88.08% 95.85%Table 3.4: Auray of our sentene boundary detetion proess.As with tokenization, more omplex tehniques based on mahine learning produe more au-rate results, at the ost of inreased algorithmi omplexity (Palmer and Hearst, 1994).3.2.3 QuotesOne feature de�ning �tion text is the presene of quoted text, the funtion of whih is to indiatethe speeh of haraters in the sene. Quoted speeh begins and ends with quotation marks, andwe annotate portions of text between double inverted ommas as quotes. We do not investigatethe auray with whih quoted text is identi�ed beause of the straight-forward nature of thistehnique.3.3 Syntati propertiesThis setion desribes methods for deriving syntati properties of natural language text. Weinvestigate three di�erent ategories: the parts-of-speeh of a token; the syntati funtion of atoken; and the lassi�ation of phrases.3.3.1 Parts-of-speehA parts-of-speeh tagger automatially assigns labels (tags) to tokens that indiate the word-lass(inluding noun, verb, adjetive). This setion investigates a number of publily available parts-of-speeh taggers. The part-of-speeh of a word is dependent on the ontext in whih it is used. Forinstane, the word �man� an be plaed into two word-lasses: noun, in the sentene, �The manwas walking�; and verb in, �He will man the lifeboat�. Autonomous parts-of-speeh taggers employa mahine learning mehanism that formulates a model regarding how to lassify a word given itsontext. Publily available parts-of-speeh taggers are distributed with ustomized, pre-trainedmodels.This investigation determines the levels of auray to be expeted from taggers in their pre-trained form, over di�erent types and genres of text. This work di�ers from previous evaluationsin whih eah tagger is provided with the same training data before testing (Teufel et al., 1996).Given the availability of many di�erent types of tagging systems, this setion also investigates theresult of ombining these taggers into voting ensembles (Glass and Bangay, 2005, 2007b).3.3.1.1 Parts-of-speeh tagging tehniquesWe identify di�erent lasses of freely available parts-of-speeh taggers. These are listed in Table3.5, along with the reported auray of eah1. The reported auraies listed in Table 3.5 annot1At time of writing, the Assoiation of Computational Linguistis list the POS Tagger, Stanford Tagger andSVMTool as the top three parts-of-speeh taggers available. Soure: http://alweb.org/alwiki/ [aessed on 26September 2007℄.



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 32Name Type Test Corpus Reported AurayQTag Probabilisti Romanian orpus 98.39%TreeTagger Deision Tree WSJ 96.36%Brill Tagger Rule-based WSJ 97.20%Stanford Tagger Maximum Entropy WSJ 97.24%SVMTool Support Vetor Mahine WSJ 97.20%POS Tagger Bidiretional Pereptron WSJ 97.33%Table 3.5: Freely available parts-of-speeh taggers, and the auray reported for eah.be fairly ompared beause taggers are evaluated using di�erent orpora. The following setionsprovide an overview of eah tagging mehanism.Probabilisti taggerConventional parts-of-speeh taggers, otherwise known as n-gram taggers, are probabilisti taggersthat examine the previous n − 1 words of the urrent word to establish its word-lass. TheQTag tool2 (Tu�s and Mason, 1998) implements a window of three words (trigram), where theprobability of eah possible tag for a urrent word is ombined with the likelihood that the tag ispreeded by the two previously assigned tags. The tag with the highest probability is seleted. Theinitial probabilities are alulated from a training orpus. QTag has only undergone one de�nitiveevaluation over a Romanian orpus onsisting of approximately 250 000 words. Auraies ofbetween 95.63% and 98.39% are reported (Tu�s and Mason, 1998). The version used in our testingis trained for English.Deision tree-based taggerThe TreeTagger3 (Shmid, 1994) is a probabilisti tagger that uses a binary deision tree to estimatethe probability of a tag being appropriate for a spei� word. The TreeTagger was tested on
100 000 words from the Wall Street Journal orpus (soured from di�erent portions to those usedfor training), ahieving an auray of 96.36%.Rule-based taggerThe Brill tagger4 uses a rule-based approah (Brill, 1994), where a set of rules for determining wordtags is reated as follows (during training): tags are randomly assigned to the orpus of words,after whih transition rules are learned by orreting the falsely identi�ed word-tags. During thetagging proess, these rules are applied to identify the orret word tag. The Brill tagger wastrained on 600 000 words from the Wall Street Journal orpus, and tested using a separate portionof the same orpus (ontaining 150 000 words), ahieving an auray of 97.2%. The rule-basedtagger is the only non-statistially based tagger in this olletion.2QTag: http://www.english.bham.a.uk/staff/omason/software/qtag.html [aessed on 25 September 2007℄3TreeTagger: http://www.ims.uni-stuttgart.de/projekte/orplex/TreeTagger/ [aessed on 25 September 2007℄4Brill Tagger: http://www.s.jhu.edu/~brill/RBT1_14.tar.Z [aessed on 25 September 2007℄



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 33Maximum entropy taggerA maximum entropy approah (Toutanova and Manning, 2000; Toutanova et al., 2003) is used forthe tagging tool developed at Stanford University5. For a given word and its ontext, every tagin the tag-set is assigned a probability based on data derived during training. The probability ofa tag sequene is alulated for a sequene of words, resulting in a probability distribution. Thetag assoiated with the distribution exhibiting the highest entropy, or information gain (Shwartz,1963), is hosen. This tagger was tested on the Wall Street Journal orpus with reported aurayrates of up to 97.24%.Support vetor mahine taggerA learning tehnique based on support vetor mahines6 (SVM) is also used for parts-of-speehtagging (Giménez and Marquez, 2003). A ditionary is extrated from a training orpus with allpossible tags for eah word. Eah word tagged as τ in the training orpus provides a positiveexample for tag τ and a negative example for all other tags. A binary SVM is trained for a spei�tag τ using these positive and negative examples. When deiding whih tag to assign to a word,the most on�dent tag aording to the preditions of all the binary SVMs is seleted. A enteredwindow of seven tokens is used, whih is larger than the ommon window of three tokens in atrigram tagger. The auray of this tagger is reported to be 97.2% over the Wall Street Journalorpus.Bidiretional sequene lassi�ation taggerShen et al. (2007) propose a learning and inferene tehnique alled guided learning to ater forproblems inherent in left-to-right lassi�ation shemes (suh as the maximum entropy and proba-bilisti approahes). A bidiretional approah is used but this introdues a new problem of seletingthe order in whih to ondut the inferene proess. Guided learning integrates lassi�ation oftokens and inferene diretion into a single learning task. This tagger7 is tested on the Wall StreetJournal orpus yielding auray rates of up to 97.33%.Combination of parts-of-speeh taggersEnsembles of parts-of-speeh tagging systems are onstruted based on the premise that, althougheah tagger uses the same ontextual information regarding the urrent word to de�ne its tag,eah one makes use of it in a di�erent manner. The ombination of parts-of-speeh taggers isdemonstrated by van Halteren et al. (1998) where ombination tehniques range from simple voting,to the use of seond level learners (mahine learning tehniques that learn whih tag to selet fromthe options presented by the ensemble) (Brill and Wu, 1998; Màrquez et al., 1999; van Halterenet al., 2001).Related work in ombining taggers ensures that the omponent taggers are all trained usingidential training data (Teufel et al., 1996; van Halteren et al., 2001). While providing omparableresults, this does not provide a useful indiation of �o�-the-shelf� value of eah parts-of-speeh5Stanford tagger: http://nlp.stanford.edu/software/tagger.shtml [aessed on 25 September 2007℄6SVMTool: http://www.lsi.up.edu/~nlp/SVMTool/ [aessed on 25 September 2007℄7POS Tagger: http://www.is.upenn.edu/~xtag/spinal/ [aessed on 25 September 2007℄



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 34Tokens Tokens(exluding puntuation) FullTag-set Tag-set(exluding puntuation)SUSANNE 50 325 42 889 353 -WSJ 1 288 623 1 114 957 48 36Brown 1 170 775 1 015 425 48 36LOB 1 157 220 997 906 153 141Table 3.6: Number of tokens and tag-set size of the four test orpora.tagger within the ensemble. This study di�ers from existing researh by avoiding the pre-trainingof eah tagger, under the assumption that the trained tagger provided with eah tool is the besttrained model for that tool.3.3.1.2 Tagger aurayWe evaluate publily available parts-of-speeh taggers with the aim of answering the followingquestions:
• Whih parts-of-speeh tagger produes the most aurate tags over varied natural languagesoures?Majority of parts-of-speeh tagging tehniques are trained using the Wall Street Journalorpus. We believe that this orpus is not representative of the style of language used in�tion. This validation is performed over other orpora inluding the Brown, LOB andSUSANNE orpora, all of whih ontain extrats from �tion books.
• Is a higher auray ahieved by ombining parts-of-speeh taggers into a voting sheme?The use of a voting system potentially improves the auray of the produed tags, and weinvestigate whih ombinations of tagging tools, as well as whih types of voting methodsprodue the best auray.We use the orpora listed in Table 3.6 to answer the above questions. Eah orpus uses a di�erentset of tags to indiate parts-of-speeh. For example, the Penn tag-set used for the WSJ orpusindiates a preposition using the symbol PRP while the tag-set used by the LOB orpus indiates apreposition using the tag PP. The WSJ uses 48 di�erent tag ategories (36 exluding puntuation),while the LOB orpus uses a set of 153 tags, and the SUSANNE 353. All of the tagging toolsdesribed in Setion 3.3.1.1 use the Penn tag-set, making diret omparison over orpora like theLOB or SUSANNE impossible.We use an independent oarse tag-set for evaluation to whih other tag-sets are mapped. Thistag-set is a simpli�ed version of the Penn tag-set (Marus et al., 1994). Mapping between tag-sets is not always diret (Atwell et al., 1994; Teufel, 1995; Atwell et al., 2000; Déjean, 2000). Forinstane, mappings of type 1:n our, where a single tag type in one sheme maps to n tag types inthe oarse tag-set. Avoiding these ases is impossible beause of the de�nitions of the tag-sets, andwhere suh mappings are identi�ed, any sentene in the orpus ontaining suh a tag is removedfrom the test orpus (whih explains why the SUSANNE orpus is reported as having 50 325 tokensin Table 3.6, as against its atual 130 000 tokens). The oarse tag-set and the mappings we usefrom tag-sets of di�erent orpora are listed in Appendix B.



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 35Reported WSJ LOB Brown SUSANNEStatistial (QTag) 98.39 70.40 72.87 72.51 76.077Tree (TreeTagger) 96.36 96.94 91.67 94.45 91.15Rule-based (Brill Tagger) 97.20 93.10 88.67 92.55 88.45Maximum Entropy (Stanford) 97.24 91.53 80.21 89.89 85.92Support Vetor Mahine (SVMTool) 97.20 98.17 92.17 95.10 90.19Bidiretional (POS) 97.33 83.36 82.59 84.74 83.02Table 3.7: Auray results of various taggers over the di�erent orpora.ValidationThis experiment validates the auray of eah of the parts-of-speeh taggers listed in Setion 3.3.1.1over the di�erent annotated orpora, with the purpose of answering the following questions:
• Whih parts-of-speeh tagger produes the highest auray over majority of the orpora?
• What is the nature of the errors produed by the parts-of-speeh taggers?We use the pre-trained models distributed with eah tagger in this evaluation. Eah orpus isstripped of tags, and the stripped orpus is tagged by eah parts-of-speeh tagger. A gold standardis reated by mapping the original tags in eah orpus to the oarse tag-set. The output of eahtagger is also mapped to the oarse tag-set. Eah tag in the automatially tagged orpus isompared to the orresponding tag in the gold standard, and we measure the perentage of orrettags with regard to the total number of tokens in the orpus (to alulate auray). We do notinlude puntuation in this evaluation.The auray of eah parts-of-speeh tagger over eah orpus is listed in Table 3.7. The au-raies observed do not orrespond to those reported for eah tagger in related work, and this isexplained as follows:
• Di�erent test data: majority of the taggers are trained and tested over the WSJ setionof the Penn Treebank, spei�ally tested over only one �fth of this orpus. Results areexpeted to derease as a result of larger test-beds, di�erenes in style, genre, and origin ofthe language (British versus Amerian).
• Di�erent tag-sets: we expet that a redued tag-set makes the tagging task simpler. Inthe ase of the SVM tagger, a higher auray than reported in related work is observedbeause the oarse tag-set is a diret simpli�ation of the Penn Tag-set. However, mappingfrom other tag-sets suh as LOB and SUSANNE introdues error, whih explains why alltaggers produe lower auray sores over these orpora.The �gures in Table 3.7 re�et very high auraies in spite of the above problems. The reduedauraies over the LOB orpus are explained by the di�erenes between the Amerian and Britishlexions. The SVM tagger produes the most aurate results over the greatest number of orpora.The top three ontributors of error for eah tagger are listed in Table 3.8. Eah tagger hasdi�ulties with ertain tags aross the di�erent orpora. For example, 15.79% of the total errorenountered by QTag over the WSJ orpus is aused by the inorret assignment of NN insteadof NNP. Many of the errors ourring onfuse similar lasses of tag. For example, NNP and NN



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 36WSJ LOB Brown SUSANNEQTag NNP/NN 15.79% IN/CD 7.71% NNP/NN 9.21% IN/CD 8.71%IN/CD 6.96% PRP/NN 7.67% IN/CD 7.54% VBN/JJ 6.68%VBD/JJ 5.07% NNP/NN 6.59% PRP/NN 5.99% PRP/NN 6.31%Tree NN/JJ 8.31% IN/TO 13.56% NNP/NN 8.12% NN/NNP 23.67%JJ/NN 7.23% VB/VBG 7.25% NN/JJ 4.84% MD/JJ 4.93%IN/RB 5.90% NNP/JJ 3.95% NN/NNP 4.82% JJ/NNP 4.80%Brill IN/DT 8.69% IN/TO 10.00% IN/DT 8.92% NN/NNP 21.28%VBD/VBN 7.83% IN/DT 6.85% VBD/VBN 7.67% VBD/VBN 7.35%VB/NN 7.50% RP/IN 5.90% VB/NN 6.57% RP/IN 6.74%Stanford VBD/VBN 14.98% NN/�COPY� 9.88% VBD/VBN 14.02% VBD/VBN 16.23%VB/NN 10.56% IN/�COPY� 6.39% VB/NN 8.86% NN/NNP 14.81%JJ/RB 6.29% VBD/VBN 6.21% JJ/RB 5.44% VB/NN 6.92%SVM NN/JJ 9.71% IN/TO 14.43% NN/NNP 8.34% NN/NNP 26.40%NN/NNP 6.78% VB/VBG 7.49% NN/JJ 7.66% JJ/NNP 5.51%JJ/NN 5.60% NN/JJ 4.58% JJ/NN 4.64% VB/VBG 4.61%POS NNP/NN 38.67% NNP/NN 21.14% NNP/NN 27.02% NNP/NN 23.14%VBD/VBN 7.24% VBD/VBN 7.50% VBD/VBN 9.05% VBD/VBN 13.02%VB/NN 5.96% VB/NN 6.67% VB/NN 6.48% VB/NN 6.41%Table 3.8: Top three ontributors to error for eah tagger.both represent nouns, but the former indiates proper nouns as opposed to ommon nouns. Thesame is true for VBD and VBN whih both signify di�erent types of verb. This demonstratesthat the type of error enountered is on a very �ne level of detail. If subsequent proesses areonly onerned with oarse parts-of-speeh detail (for instane, di�erentiating between nouns andverbs, regardless of �ner lassi�ation) then these errors are of no onsequene.In onlusion the SVM tagger most onsistently produes the highest auray. The majorityof the errors produed are the result of the inability of eah tagger to di�erentiate between similartag ategories, and are of no onsequene if only broad tag ategories are used.Ensembles of tagging tehniquesThe purpose of this experiment is to determine if more aurate tagging an be ahieved byombining the di�erent parts-of-speeh taggers. This experiment is designed to answer the followingquestions:
• Whih voting sheme produes the highest auray and redution in error?
• Whih ensemble of taggers produes the highest auray and redution in error?
• What is the nature of the erroneous tags produed by the ensemble of taggers that produe thehighest auray?We investigate di�erent types of voting when ombining parts-of-speeh taggers:1. Simple Vote: the tag that is seleted by majority of the taggers is hosen. In the ase of atie, a random tag between the tied parties is hosen.



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 372. Weighted Vote: eah tagger ontributes a spei�ed weighting for a partiular tag. The tagwith the highest umulative sore is the tag hosen. The following weighting shemes aretested:(a) TotAuray: eah tagger has a weighting equivalent to its overall auray, aordingto the results listed in Table 3.7.(b) TagPreision: aording to the weighting sheme de�ned by van Halteren et al. (2001),a tag-spei� weighting sheme is employed that uses the preision of the spei� taggerwith regards to any partiular tag. Preision for any tag χ is the perentage of tokenstagged χ by the tagger that are also tagged thus in the gold standard:
precision =

number χ tags correct

number χ tags assigned by tagger() Preision-Reall: aording to the weighting sheme de�ned by van Halteren et al.(2001), a tag-spei� weighting sheme is used that not only takes into aount howsuessful a partiular tagger is at tagging a ertain tag of type χ, but also the errorthat the other taggers in the ensemble experiene when assigned a tag of type χ. Erroris derived from a tagger's reall rate, where reall for any tag χ is the perentage oftokens tagged χ in the gold standard that are also tagged χ by the tagger:
recall =

number χ tags correct

number χ tags in gold standardError is alulated as (1− recall), and measures how often a tagger fails to reognize aspei� tag. The weighting assigned by tagger τ for tag χ in this sheme is thereforealulated as follows (where S is the set of taggers in the ensemble):
weightτχ = precisionτ

χ +
∑

∀λ∈S/τ

errorλ
χwhere the set S/τ is the set of taggers, exluding tagger τ .3. Ranked Vote: eah of the taggers is given a rank (between 1 and 5) based on the aurayresults listed in Table 3.7, with the best soring tagger assigned a rank of 5. Tag sores arealulated by adding the ranks of the taggers that voted for eah spei� tag. The tag withthe highest sore is hosen.An alternative to voting is the use of a seond level learner for deiding on whih tag to hoose fora spei� word. However, van Halteren et al. (2001) show that these tehniques do not performwell when there is a lak of training data. We do not train the taggers, whih means that a seondlevel learner annot be trained for this experiment.We tag eah orpus individually using eah parts-of-speeh tagger. The tag assigned to aspei� token by eah tagger is used in the voting shemes desribed above to determine the mostsuitable tag for the token. We expet that some ensembles of taggers perform better than others,and we test every possible ombination of taggers. We measure the auray of eah tagged orpus



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 38and alulate the redution in error experiened when using a ombination of taggers (based onthe metri de�ned by van Halteren et al. (2001)):
error reduction =

correctensemble − correctbest

total − correctbest
∗ 100This metri indiates the redution in error (as a perentage) ahieved using an ensemble fromthe error produed using the best performing tagger in the ensemble (using the auraies listedin Table 3.7). For instane, if an ensemble ontains two taggers where the best auray of thetwo is 99.0%, then assuming the ensemble results in an auray of 99.5%, the perentage errorredution is 50%.The ensembles resulting in the highest auray and largest redution in error over eah orpusare listed in Table 3.9. In the ase of the Brown orpus, the same ensemble ahieves the highestauray and the largest redution in error, and we also show the srpt ensemble as the seondbest ensemble over this orpus.Not all ensembles produe an improvement. Many results listed in Table 3.9 are reduedfrom the highest individual auray of the omponent taggers. This is always the ase for thesimple voting sheme. The Preision-Reall voting sheme suggested by van Halteren et al. (2001)produes the most redution in error, and an inrease in auray over all the omponent taggers.The ensemble ontaining the SVMTool, the Rule-based tagger, the Probabilisti tagger, andthe Tree tagger (srpt) provide the largest redution in error over more orpora than any otherensemble.We examine the preision and reall results obtained for eah tag using the Preision-Reallvoting sheme with the srpt ensemble. The mean preision and reall value for eah tag in theoarse tag-set is graphed in Figure 3.2. The maximum and minimum values (over the set of orpora)are also indiated using error-bars. High levels of preision and reall are observed over majorityof the tags. However, the ensemble produes poor results over foreign words (FW), partiles (RP),and interjetions (UH). However, these lasses are unlikely to indiate sene-related informationand are therefore unlikely to ontribute to experimental error in subsequent tasks.This setion demonstrates that the error produed by individual parts-of-speeh taggers isredued using the srpt ensemble with the Preision-Reall voting sheme de�ned by van Halterenet al. (2001). The majority of the errors produed by this ensemble inlude tags that are unlikelyto ontribute to future sene related, annotation tasks.3.3.1.3 Summary of �ndingsPublily available parts-of-speeh taggers produe high levels of auray without requiring furthertraining beyond what is provided with eah tool. We onlude the following with regards to thequestions posed at the beginning of this setion:

• The SVMTool produes the most aurate parts-of-speeh tags over di�erent types and stylesof text.
• An ensemble of taggers produes higher auraies than individual taggers, and the ensembleonsisting of the pre-trained SVMTool, Brill Tagger, QTag, and TreeTagger produes thelargest redution in error using the Preision-Reall voting sheme.
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Precision RecallFigure 3.2: Preision and reall value for eah tag using the srpt ensemble over the LOB orpus.
Small birds sing loud songs(a) Dependeny Grammar phrase

phrasephrase

Small birds sing loud songs

phrase(b) Phrase Struture GrammarFigure 3.3: Dependeny Grammar versus Phrase Struture Grammar (as illustrated by Hudson(2005)).3.3.2 SyntaxSyntati information indiates the funtion of tokens in a sentene. This information is also usefulfor identifying sene-related desriptions in �tion text. For example, a token identi�ed as a main-verb potentially identi�es the primary ation desribed in the sentene, while the token identi�edas the subjet of the main-verb refers to the entity that performs this ation.Information regarding the funtion of tokens in a sentene is provided by a syntati parser.Two theories exist for automati parsing, namely phrase struture grammar (PSG) and dependenygrammar (DG) (Hudson, 2005). The two are di�erentiated based on whether the basi unit ofsentene struture is the phrase (PSG), or whether the basi unit of struture is the dependenybetween two words (DG). This di�erene is illustrated in Figure 3.3, where dependeny grammaris onerned with �nding the dependenies between words in the sentene and the nature of thedependeny (suh as subjet or objet). In ontrast, phrase-struture grammar is onerned withforming groups of words eah with a spei� funtion, suh as noun-phrase or verb-phrase.We reognize the validity of both syntati parsing paradigms. However, we hoose dependenygrammar as the parsing mehanism for reating surfae annotations, implemented as the Funtional



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 41Dependeny Grammar (FDG) parser from Connexor8 (Järvinen and Tapanainen, 1998). Thereasons for the hoie of the FDG parser are summarized as follows:
• The FDG parser indiates funtion on a token level (for example subjet and objet), whihorresponds to the strutural properties identi�ed in this setion.
• The parsing tool is designed for running text (Tapanainen and Järvinen, 1997), and is notintended to maintain the grammatiality of the input sentene (Tapanainen, 1999). Thismeans that ungrammatial sentenes are also parsed, whih is onvenient for �tion booksin whih text is not guaranteed to adhere to a formal grammar.
• Dependeny strutures are suessfully used in other text-to-sene onversion systems (Coyneand Sproat, 2001) in addition to other natural language proessing tasks inluding anaphora-resolution (Kennedy and Boguraev, 1996; Mitkov et al., 2002).We do not perform a quantitative evaluation of Connexor parser beause of the absene of stan-dardized orpora ontaining information indiating funtional dependeny.3.3.3 PhrasingIn addition to parts-of-speeh and syntax, tokens are grouped into phrases of a spei� type,inluding noun-phrases or verb-phrases. As disussed in Setion 3.3.2, phrase struture grammarso�er the ability to reate these groupings, but we use tools that rely on a simpler method alledphrase hunking (Kudo and Matsumoto, 2001).Phrase hunking is aomplished using similar methods to parts-of-speeh tagging, employingmahine learning methods suh as statistial methods (Xun et al., 2000), support vetor mahines(Kudo and Matsumoto, 2001), or rule-based learning (Ramshaw and Marus, 1995) to induemodels that identify and annotate phrases in natural language text. We use the LTChunk9 tool,reated by the Language Tehnology Group in Edinburgh, beause of its ability to make useof already omputed parts-of-speeh annotations. This tool takes text tagged using the srptensemble as input, and produes text annotated with noun-phrases and verb-phrases.We do not perform a quantitative evaluation of the phrase hunker due to the lak of standard-ized test data for this task.3.4 Case study: the use of surfae annotations in identifyingAvatarsThis setion illustrates the use of surfae annotations in the reation of semanti annotations.One ategory of semanti annotation identi�es avatars that take part in the desribed story. Anexample of an avatar annotation is presented in Figure 3.4.The identi�ation of avatars in �tion text is a speialization of the more general naturallanguage proessing problem of identifying named-entities (MDonald, 1996; Bennett et al., 1997;8Connexor Mahinese Syntax: http://www.onexor.fi/ [aessed on 25 September 2007℄9Language Tehnology Group, Edinburgh: http://www.ltg.ed.a.uk/software/posdemo.html [aessed on 10August 2005℄



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 42"Hurrah!" thought <avatar>Julian</avatar>. "He's o� again!" Quietly he stood up, holdingthe box.Figure 3.4: Example text annotated in the Avatar ategory, from the Famous Five 1: Five on aTreasure Island by Enid Blyton (1942).Total Automati Corret Preision Reall GenderBook 1 17 25 11 44.0% 64.71% 100.0%Book 2 25 55 15 27.27% 60.0% 60.0%Book 3 18 53 15 28.30% 83.33% 80.0%Table 3.10: Suess metris for the automati identi�ation of avatars in �tion text.Borthwik et al., 1998; Cohen and Sarawagi, 2004). This task is onerned with loating fragmentsof text that refer to avatars, and determining the gender of eah identi�ed avatar.We make use of surfae annotations to identify avatars and determine gender. We traverse everytoken in the text (identi�ed using methods in Setion 3.2.1), and onsider eah token annotatedas a proper noun (using the ensemble of parts-of-speeh taggers desribed in Setion 3.3.1) as aandidate avatar. We maintain a list of unique andidates, and maintain a ount of the number oftimes eah andidate is mentioned. Every andidate with a ount higher than a ertain thresholdis seleted as an avatar. All tokens orresponding to a seleted avatar are annotated.We make further use of token and parts-of-speeh information to determine the gender of anavatar. Personal pronouns indiate gender (�he� indiates a masuline referene, �she� indiates afeminine referene), and we ount the number of masuline and feminine personal pronouns withinthe immediate viinity of an avatar annotation (30 tokens to either side of the referene). Thegender with the greatest perentage of personal pronouns in the viinity of eah referene is hosenas the gender for the spei� avatar.We evaluate the suess of the avatar and gender identi�ation proesses by evaluating thelist of unique avatars identi�ed by the automati proess with respet to a manually reated list.The suess with whih a set of avatars is automatially derived is listed in Table 3.10 for threedi�erent �tion books. The perentage of orretly identi�ed avatars exeeds 60% in all ases(reall). The lower preision values indiate that additional avatars are identi�ed erroneously, andthese andidates must be manually deleted from the list by a human. The auray with whihgender information is identi�ed is also listed in Table 3.10 for eah book, and indiates a high levelof suess for the pronoun-based approah.The avatar identi�ation proess is suessful in the ontext of �tion-to-animation onversion,and demonstrates the use of surfae annotations in the identi�ation of sene-related desriptions.3.5 ConlusionStrutural and syntati indiators are identi�ed in digitized natural language text using automatedtehniques. We onlude the following with respet to the problems identi�ed in Setion 3.1:1. Strutural properties of digitized text are identi�ed with a high level of auray usingustom-built, knowledge-poor methods.



CHAPTER 3. SURFACE ANNOTATIONS FOR FICTION TEXT 432. Syntati properties are identi�ed automatially with high levels of auray:(a) Parts-of-speeh are identi�ed aurately using publily available taggers, even over textthat is di�erent in style and genre to the original training data. Auray is improvedusing an ensemble ontaining the SVMTool, Brill tagger, QTag and TreeTagger. ThePreision-Reall voting sheme (van Halteren et al., 2001) produes the largest redutionin error.(b) Syntati funtion of tokens in the input text are identi�ed automatially using theConnexor FDG parser.() Phrases are identi�ed in the input text using the LTChunk tool.3. High levels of auray (greater than 95% in all quanti�ed results) are expeted in the reationof surfae annotations over �tion text.We believe that the errors produed by these automated proesses have minimal impat on futuretext-analysis tasks. This belief is motivated by the fat that visual desriptions in �tion text areintermittent (that is, sattered throughout the text), and the few inonsistenies in the surfaeannotations potentially have no relation to these desriptions.This hapter ontributes to the text-to-graphis domain and the automated parts-of-speehtagging domain in the following respets:
• Text-to-graphis researh often regards the reation of surfae annotations as a �blak-box�proess, and does not examine methods for improving the results of these methods. The workpresented in this hapter studies these problems in detail, allowing future enhanements tothese omponents to be quanti�ed if required.
• The work we present is the �rst study of automated tehniques that evaluate the �o�-the-shelf� usefulness of parts-of-speeh taggers over large orpora. This researh also ontributesa redued tag-set and orresponding maps to permit tagging and validation over a numberof orpora using di�erent tag shemes.Future work inludes the identi�ation of further ategories of surfae annotation that aid insubsequent reation of semanti annotations. Categories inlude the reognition and lassi�ationof named-entities in text, the automati resolution of ambiguity in the form of pronominal anaphoraand o-referene (a task brie�y examined in Chapter 6).



Chapter 4Creation of annotated �tion textThis hapter presents hierarhial rule-based learning for automating the reation of annotated�tion text. We de�ne the onept of an annotation as a mehanism for marking up portions oftext in a partiular semanti ategory (Setion 4.1). Related strategies for automatially reatingannotations are investigated in Setion 4.2, where we motivate the use of a pattern-based mahinelearning tehnique. This mahine learning tehnique onstruts generalized patterns from manuallyreated example annotations in a partiular ategory, and these patterns are used for produingannotations (desribed in Setions 4.3 and 4.4). A range of semanti annotation ategories forthe �tion-to-animation task are developed in Setion 4.5, and we investigate the properties ofhierarhial rule-based learning in terms of these ategories in Setion 4.6 using a suite of exper-iments. Conlusions and ontributions of the researh presented in this hapter are presented inSetion 4.7.4.1 Introdution4.1.1 Problem statementPopular �tion books onsist of natural language desriptions of rih visual environments thatdesribe haraters, objets, and behaviour. We investigate the identi�ation and ategorizationof visual desriptions using annotations. This problem is haraterized as follows:1. Fition text is interpreted di�erently based on an individual human's knowledge and expe-riene. We investigate the modeling of individual human knowledge and experiene in orderto reate annotations.2. Fition text ontains di�erent ategories of visual information, a number of whih must beidenti�ed for reating an intermediate representation (de�ned in Chapter 1 as the stru-tured, visual representation of the �tion book). We investigate the indution of models thatautomate the reation of di�erent ategories of annotation.3. Categories of visual information are parametrized in �tion text using other portions of textor by assoiating semanti information during human interpretation. We investigate methodsfor automatially identifying these additional parameters for an annotation.44



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 45So her mother handed her some hoolate, and she and the boys munhed happily, wathing thehills, woods and �elds as the ar sped by.The pini was lovely. They had it on the top of a hill, in a sloping �eld that looked down into asunny valley. Anne didn't very muh like a big brown ow who ame up lose and stared at her,but it went away when Daddy told it to.Figure 4.1: Fition text from the Famous Five 1: Five on a Treasure Island by Enid Blyton (1942).The automati reation of annotations is a problem de�ned in the ontext of �tion-to-animation.A solutions to the above problems should be veri�ed aording to its ability to handle di�erent typesof �tion text (for example di�erent authors, genres and target audienes). A solution should alsobe apable of reduing the amount of e�ort required in reating the intermediate representation.4.1.2 Problem formulationFition books ontain many types of visual desriptions, examples of whih our in the extratin Figure 4.1. The setting is established using words suh as �hill� and �valley�, while the ontentsof the sene are established using referenes to avatars (for example �Anne�, �Daddy�) and theobjets (�hoolate�, �ar�, and �ow�). Spatial relations are indiated between entities (�the owwho ame up lose�), and transitions are desribed that speify an entity's arrival or departure(�but it went away�). Visual attributes are spei�ed (�big brown ow�) for entities, emotionalexpressions (�happily�), and individual ations (�handed her some hoolate�).We annotate desriptions in �tion text to identify a partiular fragment of text as a visualdesription, and also to speify the ategory to whih the desription belongs. Identifying theategory assists in future interpretation of a desription. For example, if the token �ow� is identi�edas belonging to the objet ategory, then an automated proess an be exeuted for loating a ow-shaped geometri model and plaing it in a 3D environment (desribed further in Chapter 6).An annotation in its simplest form is a marker that identi�es a fragment of text (for example, aset of tokens) as belonging to a ertain ategory. The following example ontains two annotationsin the objet ategory:The <objet>box</objet> was on the <objet>table</objet>.The above example also ontains a desription of a spatial relation, indiated by the token �on�.Spatial relations are parametrized in terms of the involved entities, in this ase the subjet of therelation (the entity a�eted by the relation: �box�), and the objet of the relation (the referenepoint of the relation: �table�), both of whih ontribute to the meaning. In this respet, multipletext fragments an form a single annotation, where eah fragment plays a spei� role. The aboveexample is extended as follows:The <objet>box</objet> was <relation subjet=�box� objet=�table�>on</relation>the <objet>table</objet>.
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cowTrigger:

OBJECT:

like a big brown cow who came

...  very much l ike a big brown <object>cow</object> who came up close . . .

Trigger

(a) Objet annotation
behindTrigger:

Type:

Subject:

BEHIND

table

RELATION:

Object: chair

the table behind his uncle’s chair

. . .  the table <relat ion type="BEHIND" subject="table" object="chair">behind</relat ion> his uncle’s chair  . . .

Text referencesSemantic concept Trigger(b) Relation annotationFigure 4.2: Illustration of Objet and Relation annotations.Annotations also speify semanti details regarding the fragment of text they identify. For in-stane, the token �on� identi�ed in the above example is linked with the semanti onept onTopOf ,providing for subsequent reasoning regarding the layout of these objets in a virtual environment.This is spei�ed as another �eld in the annotation:The <objet>box</objet> was <relation subjet=�box� objet=�table�type=�onTopOf�>on</relation> the <objet>table</objet>.The above examples represent annotations using XML1 syntax. Regardless of representation,we de�ne an annotation as follows:De�nition 4.1. An annotation is a portion of text marked up in a partiular ategory. Annotationsde�ne the following type of information:
• Trigger : the fragment of text identi�ed as belonging to the ategory. Every annotationontains one trigger.
• Text-referenes: an annotation is quali�ed by zero or more referenes to other fragments oftext that have a relationship with the trigger.
• Semanti-onepts: an annotation is quali�ed by zero or more semanti-onepts that areassoiated with the trigger.Eah ategory of annotation is parametrized using assoiated text-referenes and semanti-onepts. We use the term quali�er to olletively desribe these parameters. Categories suh asobjet have no assoiated text-referenes or semanti-onepts, only identifying a trigger that refersto an objet. A relation annotation identi�es a trigger desribing a spatial relation, and is quali�edby two text-referenes (subjet and objet), and a semanti type indiated by the annotation. Thesetwo ategories of annotation are illustrated in Figure 4.2.Annotated text is onduive to manual reation. We use a graphial interfae that allows ahuman to selet portions of text that belong in a partiular ategory. Annotated text is alsoe�etive for human readability, allowing annotations to be viewed or edited in the ontext of thesurrounding text.1Extensible Markup Language
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Fiction book

Problem 1: Text Analysis

  1.1) Linguistic indicators

  1.2) Annotation creation

Problem 2: Interpretation

   2.1) Interpretation of annotations

    2.2) Specification of behaviour

           in a virtual environment

    2.3) Populating 3D environments

Intermediate 

representation

Animated 3D environment

Animated f i lm

Annotated f ict ion text

Automatic creation

of surface annotations

Machine-learning for

automating creat ion

of semantic

annotat ions

Create structured 

scene descriptions

Automatic constraint

solving/optimization

Automatic populat ion

of 3D vir tual environment

Human knowledge:

- Manual examples

Human knowledge:

- Clarify l inguistic ambiguity

- Implied scene layout

- Creative ideas

Human knowledge:

- Creative enhancements

Hierarchical rule-based learning Figure 4.3: Context of the hierarhial rule-based learning mehanism with respet to the �tion-to-animation problem.The �rst task in reating an annotation in �tion text requires the identi�ation of what frag-ments of text represent triggers within a partiular ategory. This involves disriminating textfragments that belong in the ategory (positive examples) from those that do not (negative exam-ples). One a trigger is loated, the fragments of text are then loated for eah de�ned text-referene(if de�ned for the partiular ategory of annotation), and semanti-onepts are assoiated withthe annotation.A human reates annotations using experiene with natural language and personal disretion.We onduted a preliminary experiment in whih a group of humans was instruted to reate twoategories of annotation over the same extrat of �tion text. No two extrats were annotatedin the same way. We speulate that the di�erenes are aused by varying interpretations of theannotation ategories and the �tion text. This implies that annotations annot be objetivelyveri�ed, as veri�ation is subjetive to the human performing the assessment.Fition text should be annotated in a manner that a single human onsiders orret. Thishapter investigates a mahine learning mehanism that uses examples provided by that humanto learn a model for reating similar annotations. Annotations our in many di�erent ategories,eah of whih are quali�ed by di�erent ombinations of text-referenes and semanti onepts. Themahine learning system should be apable of deriving models in any ategory, and for any typeof quali�er.4.1.3 ContextThe researh presented in this hapter examines the problem of automating the text-analysis taskof the �tion-to-animation proess. The ontext of this problem within the onversion proess isillustrated in Figure 4.3. We develop a method that automates the reation of annotations over�tion text, resulting in an intermediate representation. The input to this proess is �tion textannotated with surfae annotations, the proesses for whih are desribed in Chapter 3. Semantiannotations are reated based on example annotations provided by a human in onjuntion withthese surfae annotations.



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 484.2 Related workThe reation of semanti annotations over �tion text is similar to the task of information extra-tion. In both ases, fragments of text are identi�ed as belonging within a ertain ategory.Information extration is onerned with �lling a strutured template rather than marking uprelevant portions of the text. A template onsists of a number of slots that are labeled to indiatethe kind of information that an �ll them (Chinhor and Marsh, 1998). For example, a typialinformation extration task is onerned with automatially obtaining details about a �seminar�from an unstrutured text announement. A template onsists of slots that inlude �title�, �venue�,and �speaker�; while an information extration proess �lls these slots for eah text-based doumentthat announes a seminar (Cali� and Mooney, 2003).Subsequent interpretation of the text fragments, inluding anaphora resolution and o-refereneresolution, are performed as a post-proessing phase of the information extration task (nameddisourse proessing (Soderland, 1997)). This interpretation is analogous to providing data forsemanti-onepts de�ned in an annotation.Information extration methods are developed for a spei� subjet domain, and it is possiblefor domain-experts to hand-raft sets of extration patterns for loating important fragments oftext from douments within that domain. We experimented with this approah in identifying thespeeh-verb, ator and speaker of a quote in �tion text (Glass and Bangay, 2007). The handrafted rules produe aurate annotations, but the reation of the rules require many hours ofspeialized labour, and an not be applied to di�erent ategories of annotation.We investigate mahine learning tehniques that perform the information extration task byautomatially induing patterns from example data. These methods remove the need for speializedlabour in reating extration patterns and are adaptable over di�erent ategories of data.4.2.1 Mahine learning for information extrationA mahine learning algorithm generates a model or theory regarding how to identify text fragmentsthat �ll a partiular slot in a template. A model is reated using training examples (supervisedlearning), whih are douments ontaining marked-up text-fragments that are guaranteed to beorret for the partiular slot. Two ategories of tehniques exist for reating and representinga model, namely lassi�er-based tehniques and pattern- or rule-based tehniques (Turmo et al.,2006).Classi�er-based tehniques use statistial models to determine whether a ertain fragment oftext should be used to �ll a partiular type of slot. These tehniques determine the probabilitythat a fragment of text is a slot-�ller based on the types of features assoiated with the fragment.Features onsist of meta-data regarding a partiular item of text, for example the part-of-speeh,or the syntati relation between two words. Numerous lassi�er-based learning tehniques existfor information extration based on alternative statistial strategies and feature sets (Freitag, 2000;Freitag and MCallum, 2000; Chieu and Ng, 2002; Chieu et al., 2003; Bunesu and Mooney, 2004).The CarSim system (Johansson et al., 2005) makes use of statistial mahine learning for theinformation extration task within the text-to-animation proess.Pattern-based tehniques for information extration are onerned with the indution of a set ofpatterns that are able to distinguish fragments of text belonging to a partiular ategory. Patterns



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 49ontain onstraints that must be satis�ed by a portion of text before a text fragment an beextrated (Soderland, 1997). An example of a onstraint is a sequene of tokens that preede orfollow the fragment of text to be extrated. Patterns also ontain a slot-�ller that, assuming theonstraints are satis�ed, de�nes what fragment of text should be extrated to �ll a spei� slot. Anexample pattern �<vitim> was murdered� (Cali� and Mooney, 2003) ontains �was murdered� asa onstraint. If a similar string is found in the input doument, the onstraint is satis�ed and thetoken appearing just before the onstraint is extrated as the �ller of the �vitim� slot.We use a pattern-based method for performing mahine learning, but reognize that a lassi�er-based method also has the potential to perform the task of reating annotations. A pattern-basedtehnique is hosen beause it provides diret ontrol over the models indued for ategories ofannotation. The link between the hosen set of features and the suess of a learned model isunlear when using statistial tehniques (Johansson et al., 2005). Patterns are also reated usinga very small set of examples, while statistial models require larger orpora of training data, aresoure that is unavailable in the ontext of semantially annotated �tion text.4.2.2 Tehniques for pattern indution in information extrationPattern indution involves the onstrution of patterns that identify eah example in a set oftraining data (Rilo�, 1993, 1996).Patterns reated diretly from examples are potentially over-spei�, therefore limiting theirappliability to only a few examples. Pattern indution algorithms employ generalization so thatthe pattern applies to more than a single example (Chai et al., 1999; Harabagiu and Maiorano,2000). A single pattern an be generalized in a number of di�erent ways, and a soring tehniqueis required to selet what generalized pattern to use (Basili et al., 2000).Algorithms that perform generalization are ategorized into two groups, those performing om-pression and those improving overage (Cali� and Mooney, 2003). Alternatively, algorithms areategorized in terms of the diretion of pattern reation, namely top-down and bottom-up. An-other distintion between information extration algorithms is the type of text over whih they aredesigned to funtion, ategories for whih inlude free, semi-strutured and strutured text.4.2.2.1 Generalization method: ompression versus overingAlgorithms that perform ompression begin with a set of highly spei� patterns, usually one foreah example. A more general pattern is onstruted that replaes a number of spei� patterns,but is still able to over all the input examples (where over means that a pattern suessfullyidenti�es the orret element in an example). This proess ontinues until no further ompressionis possible (Cali� and Mooney, 2003). General patterns are found by enumerating di�erent gener-alized versions of the pattern, evaluating eah on the example set, and seleting the generalizationthat overs the most examples orretly. Alternatively, two patterns are merged, reating a moregeneralized pattern that overs both the original patterns (Freitag, 2000).Covering algorithms begin with a set of examples from whih a single pattern is derived at atime. All of the examples overed by the newly reated pattern are then removed from the startingset. New patterns are reated until no more examples remain in the starting set (Soderland, 1997;Freitag, 1998). The new pattern reated is either highly spei� or generalized. If more than



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 50one orret generalization is reated for a training example, then the pattern providing the bestoverage over the start set is hosen (Ciravegna, 2001).4.2.2.2 Diretion of rule reation: top-down versus bottom-upThe set of examples provided for training a model is divided into positive and negative examples(Quinlan, 1986). Positive examples ontain fragments of text orretly marked for a spei� slot,while negative examples ontain no suh markings. Both are provided to indue patterns thatorretly over all positive examples while orretly rejeting all negative examples. This ate-gorization of example data di�erentiates between two approahes for pattern indution, namelytop-down and bottom-up approahes.Top-down tehniques begin with a general pattern that overs all examples (inluding bothpositive and negative training examples). This pattern is iteratively speialized with the aim ofovering more positive examples, while rejeting negative examples (Quinlan, 1990; Soderland,1999; Freitag, 2000; Turmo and Rodriguez, 2002; Déjean, 2002).Bottom-up tehniques begin with a pattern that expliitly desribes one example in the set.Constraints within the pattern are iteratively generalized, with the aim of inreasing the numberof positive examples desribed by the pattern, while minimizing the overage over negative ex-amples (Soderland, 1997; Aseltine, 1999; Ciravegna, 2001; Cali� and Mooney, 2003; Català et al.,2003). Generalization ours in di�erent forms, suh as omparing two patterns and replaing twodissimilar portions of the onstraints with an abstrat onept that desribes both, or by replaingthe onstraint with a wild-ard (Cali� and Mooney, 2003).4.2.2.3 Type of input textThe type of input text for information extration tasks is ategorized into three lasses, namelystrutured text, semi-strutured text, and free text (Muslea, 1999; Turmo et al., 2006).Strutured text presents the simplest task for information extration tehniques, beause for-matting markers in the text learly indiate the funtion of a fragment of text. Example datainludes weather foreasts obtained from web-pages, and extrats from telephone diretories (Soder-land, 1999).Semi-strutured text exhibits strutural markers, although these do not always onform to onesingle pattern. Examples inlude seminar announements where, for example, the seminar titleand speaker is generally indiated in a onsistent manner (but are not marked up in any way)(Soderland, 1999; Ciravegna, 2001; Cali� and Mooney, 2003). Other examples inlude job-vaanyannounements (Ciravegna, 2001; Cali� and Mooney, 2003) and rental advertisements (Soderland,1999).Free text presents the most hallenging task for information extration where no struturaldetail exists in the input text, a harateristi that is exhibited by �tion text. Example testorpora inlude terrorist reports soured from newspapers, in whih slots to be �lled from eahreport inlude the entity attaked and the attaking entity (Kim and Moldovan, 1995). Otherexamples inlude reports on management hanges of ompanies (Hu�man, 1996; Soderland, 1997;Sudo et al., 2003), and reports of disease outbreaks (Patwardhan and Rilo�, 2007; Phillips andRilo�, 2007).



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 51System Test data Preision Reall F-measureTimes(Chai et al., 1999) Job listings(Company name, position,salary, loation,experiene, ontat, skills,bene�ts) 40.4% -96.8% 53.1% -83.8% 47.5% -84.5%Whisk(Soderland, 1999) Management suession(person in, person out,organization, post title) 48.5% -68.9% 46.4% -61.0% -ExDiso(Yangarber, 2003) Management suession(person in, person out,organization, post title) Approx.62% - 89% Approx.10% - 90% -Crystal(Soderland, 1997) Management suession(person in, person out,organization, post title) Approx.63% - 76% Approx.50% - 75% -Liep(Hu�man, 1996) Management hanges 89.4% 81.6% 85.2%Evius(Turmo andRodriguez, 2002) Colour 98.77% 88.89% 93.57%Essene(Català et al., 2003) Airraft rash reports(rash site, rash date,airraft, airline, departure,destination) 51.2% -100.0% 39.5% -75.4% 48.4% -78.8%Wave(Aseltine, 1999) Latin-Amerian terroristreports/hospital dishargesummaries - - Approx.49% - 58%Table 4.1: Reported performane of related pattern-based information extration tehniques overfree text.Few implemented pattern-based information extration systems are evaluated using a stan-dardized test orpus. This makes omparison between systems impossible. Di�erent evaluationmethods are also used in related researh, with respet to the number of examples used for testingand the number of test ases evaluated. Despite these di�erenes, reported performane resultsover a range of information extration systems over free text are listed in Table 4.1. This table indi-ates that preision levels between 40% and 100% are ahieved, with reall levels ranging between10% and 90%. We quote these �gures with aution, beause the various tasks are not diretlyomparable, and neither are the various slot ategories within eah task. These �gures highlightthat information extration over free text is a omplex task for whih no single tehnique an beestablished as superior. Turmo et al. (2006) present performane results for a range of systemsover semi-strutured texts whih, as expeted, tend to be higher than over free-text.4.2.3 Hierarhial rule-based learning as a pattern indution mehanismWe present hierarhial rule-based learning for induing and generalizing patterns from exampleannotations. This approah uses a bottom-up ompression algorithm, where highly spei� pat-terns are reated for eah positive and negative example in the training set. Patterns are mergedone pair at a time, until no further merges are possible.
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Pattern-based tehniques: Free Semi-Strutur

ed
Strutured Compression Coverage Other Top-down Bottom-upPalka (Kim and Moldovan, 1995) 3 3 - -AutoSlog (Rilo�, 1993, 1996) 3 3 - -Liep (Hu�man, 1996) 3 3 3 3Crystal (Soderland, 1997) 3 3 3Wave (Aseltine, 1999) 3 3 3Times (Chai et al., 1999) 3 3 - -(Basili et al., 2000) 3 3 - -Snowball (Agihtein and Gravano, 2000) 3 3 3(Harabagiu and Maiorano, 2000) 3 3 - -Essene (Català et al., 2003) 3 3 3ExDiso (Yangarber, 2003) 3 3 3Hierarhial rule-based learning 3 3 3Whisk (Soderland, 1999) 3 3 3 3 3Rapier (Cali� and Mooney, 2003) 3 3 3Srv (Freitag, 1998, 2000) 3 3 3(LP)2 (Ciravegna, 2001) 3 3 3Evius (Turmo and Rodriguez, 2002) 3 3 3 3Table 4.2: Pattern-based learning systems summarized aording to text struture, generalizationstrategy and diretion of generalization.Hierarhial rule-based learning is ompared with related researh in Table 4.2, in whihpattern-based mahine learning systems are ategorized aording to the type of text used asinput, the generalization method used, and the diretion of the pattern reation. Our system isone of the few bottom-up ompression algorithms designed for use with free text.The bene�t of the hierarhial rule-based system is the ability to learn many ategories ofannotation without modifying the internal learning mehanism. Rather, the struture and ontentsof a pattern are manually ustomized for di�erent annotation ategories, although future workinludes the possibility for automating the ustomization of pattern strutures (similar to work byShinyama and Sekine (2006)). These patterns provide the ability to inorporate both struturalelements of language (sentene, phrase, quote, and token) as well as syntati information (parts-of-speeh and syntati funtion). Patterns also provide the ability to identify semanti data,allowing for the semanti-onepts of annotations to be identi�ed. These onepts are learned ina knowledge-poor fashion, that is in the absene of external knowledge-bases (as opposed to someexisting approahes (Stevenson and Greenwood, 2005; Li and Bontheva, 2007)).Existing orpora for evaluating information extration tehniques do not ontain marked-upvisual desriptions. These orpora are also reated for testing the template-�lling ability of anautomated proess. Annotations are di�erent beause they identify every fragment of text in aategory as opposed to identifying one term that �lls a slot. This makes existing test data inappro-priate for evaluating hierarhial rule-based learning with respet to the �tion-to-animation task.
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(a) "Not so loud!" said Meg. (b) "I swore not to tell!" gasped Jammes.Figure 4.4: Strutural elements of a sentene arranged as a tree.Instead, we evaluate hierarhial rule-based learning by performing training and evaluation over austom-built orpus of �tion text marked-up with semanti annotations in visual ategories.4.3 Indution of rules for reating annotationsThis setion develops the onepts for hierarhial rule-based learning. We motivate the oneptof tree-based patterns, and indiate how they are indued, generalized and applied to reate an-notations in �tion text. Detailed algorithms for eah step in the proess are deferred to Setion4.4, whih has the same struture as this setion for onvenient referene.Semanti annotations identify visual desriptions in free text, a soure that is onsidered to bethe least strutured in the �eld of pattern-based information extration. We argue that struturalelements exist in free text that an be used to onstrut patterns for identifying annotations.Strutural elements inlude units of text suh as a sentene, a quote, and a token. Not only dothese elements indiate struture, but they are also related in a hierarhial fashion, where ertainelements enapsulate other elements. Consider the following example from The Phantom of theOpera by Gaston LeRoux (1911)2:�Not so loud!� said Meg.This example exhibits the following strutural elements (eah element is indiated using squarebrakets):Sentene: [� Not so loud ! � said Meg .℄Quote/Sentene-part: [� Not so loud ! �℄ [said Meg .℄Token: [�℄ [Not℄ [so℄ [loud℄ [!℄ [�℄ [said℄ [Meg℄ [.℄The above example indiates that the sentene ontains two strutural elements, namely a quoteand a partial sentene. The quote in turn ontains a number of tokens. This idea of ontainmentsuggests that the original sentene an be abstrated on di�erent levels using a tree struture toindiate the relationship between elements, illustrated in Figure 4.4(a). Abstrating text on anumber of levels in this manner presents an opportunity for identifying patterns in text. Thisis illustrated by the similar struture exhibited in Figure 4.4(b) where the trees are abstrated(highlighted), but the tokens are entirely di�erent.2All subsequent examples in this setion are taken from this soure, and are possibly modi�ed for illustrativepurposes.
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(a) "Not so loud!" said Meg. (b) "I swore not to tell!" gasped Jammes.Figure 4.5: Additional syntati abstrations within the tree struture.Patterns need not ontain only strutural abstrations, but an also inlude syntati abstra-tions. For example, the part-of-speeh of a token presents an abstration of the token, while aphrase type abstrats a group of tokens. The inlusion of syntati strutures is illustrated inFigure 4.5. The similar portions of the two trees are highlighted, indiating a pattern with �nerdetail to that in Figure 4.4.The above examples show that hierarhial patterns exist in free text. We present a method forautomatially induing these patterns with the purpose of learning how to reate a given ategoryof annotation.This setion desribes the full proess of reating patterns from annotations, ombining theseto form a general model regarding a spei� ategory of annotation, and applying a set of patternsto text for the reation of new annotations. The algorithms for performing these funtions areformally presented in Setion 4.4.4.3.1 Hierarhial patterns and rulesFree text has the potential to exhibit a variety of patterns. Given a set of manually reatedannotations over �tion text, we are interested in induing patterns that are able to identifyportions of text as belonging to a partiular ategory of annotation. Consider the following twoannotated examples:<quote speeh-verb=�said� ator=�Meg� speaker=�MEG�>�Not so loud!�</quote> saidMeg.<quote speeh-verb=�gasped� ator=�Jammes� speaker=�JAMMES�>�I swore not totell!�</quote> gasped Jammes.For the sake of demonstration, we onsider the task of identifying the speeh-verb of the abovequote annotations. Hierarhial trees derived from these sentenes are presented in Figure 4.5.Trees beome rules when they are able to identify portions of text that belong in a spei� ategory.Rules are reated from the annotated example above, beause the annotation indiates whih tokenfuntions as the speeh-verb of the quote, illustrated in Figure 4.6. In information extration terms,all nodes in the tree that are not highlighted represent the �onstraint� portion of the rule, whilethe highlighted node indiates the loation in whih to reate the annotation. We name this theanswer of the rule, and annotations ontaining answers are positive examples. Rules derived fromthese examples are named positive rules. Answer nodes are the equivalent of the �slot-�ller� ininformation extration, and at as a wild-ard beause any data an orrespond to this node.
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Sentence

sentence-partquote

verb proper noun punctpunct adverb adverb adjective punct punct

<speech-verb> Meg ." Not so loud ! "(a) "Not so loud!" said Meg.
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<speech-verb> Jammes ." I swore not to "tel l !(b) "I swore not to tell!" gasped Jammes.Figure 4.6: Example of rules indiating a the loation of a speeh-verb in a sentene.
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Figure 4.7: Di�erent omponents of hierarhial rule-based learning.Rules an also indiate when to avoid reating an annotation. In this ase, an example isprovided by a human that ontains no annotation. A tree is onstruted ontaining no answernode. We name these negative examples, and their orresponding trees negative rules. In general,we de�ne a rule as a tree pattern that is reated from an example expliitly provided by a human.We onstrut trees so that the leaf nodes represent individual tokens in the free text, and theroot node represents a single global abstration of the input (usually hoosing the arbitrary term�root� as the type for the root node). The levels of abstration between the leaf nodes and theroot are ustomized aording to a spei� ategory of annotation.The di�erent omponents of hierarhial rule-based learning are illustrated in Figure 4.7. Theindution of rules from annotated text begins by reating a base rule-set that ontains one ruleper example in the example-set. The base rule-set is generalized to reate a generalized rule-set,whih is apable of reproduing the original examples and produe further annotations. To testthe generalized rule-set we strip the original examples of their annotations to reate unannotatedexamples, from whih unmarked trees are reated (unmarked beause they do not ontain answers).Rules in the generalized rule-set are mathed with eah unannotated example, and annotations arereated where mathes our.
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Figure 4.8: Relationship between text and rules through the appliation of a rule-set.4.3.2 Rule-set reationThe goal of hierarhial rule-based learning is to onstrut a model regarding the reation of aspei� ategory of annotation over free text. This model is represented by a rule-set, whih is aolletion of rules. The pair of rules presented in Figure 4.6 is onsidered a rule-set beause it is aset of rules derived from manual examples with the expliit purpose of identifying the speeh-verbof a quote.The relationship between annotations and a rule-set is illustrated in Figure 4.8. A new anno-tation is reated by onstruting a tree for an unannotated example (alled an unmarked tree),and mathing this tree with every rule in the rule-set. If all the onstraint nodes in a partiularrule are idential in the unmarked tree, then the node in the unmarked tree in the same loationas the answer node in the rule is marked as the answer. The token in the unannotated exampleorresponding to this node in the unmarked tree is then annotated. If no mathing rules exist inthe rule-set, then the example is not annotated.Rule-sets are onstruted by reating a tree pattern for every example provided by a human.We expet that a human reates annotations by manually marking-up ontiguous extrats of �tiontext. Eah extrat is automatially sub-divided into positive and negative examples, and a treeis reated that represents eah example. Free text is sub-divided using lear strutural featuressuh as tokens, sentenes, and quotes (eah of whih are automatially identi�ed using methodsdesribed in Chapter 3). The strutural feature to use for sub-division depends on the ategory ofannotation.Assume that rules are to be reated for objet annotations and that for this ategory free text issub-divided into tokens. In this ase, every token represents an example, and a rule is onstrutedfor every example token in the text. Tokens not annotated as an objet reate negative rules, whiletokens that are annotated reate positive rules.A rule is reated for eah example in the input extrat, the result of whih is a base or startrule-set.The onstraint portions of the rules in Figure 4.6 are highly spei�, the onsequene of whihis that they math very few sentenes other than those responsible for their onstrution. Thetrees illustrated in Figure 4.6 exhibit portions that are idential, forming a pattern ommon to thetwo rules. This observation implies that a generalized rule an be derived by omparing trees, andkeeping only those portions that are similar. This idea is disussed further in the following setion.



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 57
Sentence

sentence-partquote

main verb subject

verb phrase noun phrase

verb noun

<speech-verb> Meg

other phrase

punctuation

punctuation

.

" Not so loud ! " said Meg .(a) Rule 1 " I swore not to tell ! " said Meg to John .

Sentence

sentence-partquote

main verb subject

verb phrase noun phrase

verb noun

<speech-verb> Meg

noun phrase

to

to

to

prep. compl.

proper noun

John(b) Rule 2
Sentence

sentence-partquote

main verb subject

verb phrase noun phrase

verb noun

<speech-verb> Meg

     

*

() Generalised ruleFigure 4.9: Examples of rule generalization.
Sentence

sentence-part
quote

verb proper noun punctpunct

<speech-verb> ."

ch

Special purpose wild-card:

Indicates that the children of this node

need only match with a sub-sequence

of children in another tree

General wild-card:

Indicates that any node

may occur in this location

*Figure 4.10: Example generalized rule ontaining general and speial-purpose wild-ards.4.3.3 Rule generalizationConsider the example rules presented in Figure 4.9(a) and (b). A large portion of both these treesis idential, with the exeption of the existene of an additional phrase in rule (b). A single rulean be reated that represents both rule (a) and rule (b) by replaing the di�erent portions of thetree with a wild-ard, as shown in Figure 4.9(). In this example, the highest di�ering node in thetree is replaed with a wild-ard, removing an entire sub-tree. The new tree is generalized, beauseit has the potential to math many more trees than the two responsible for its reation.The rules presented in Figure 4.6 also ontain similar patterns, and are di�erent in two portionsof the tree. The nodes indiating �Meg� and �Jammes� are di�erent, and these are generalized byreplaing the nodes with a wild-ard. The sub-trees headed by the �quote� nodes are also di�erent.However, we do not wish to replae the �quote� nodes with a wild-ard, beause this would removean element that is ommon to both trees. The hild nodes of �quote� annot be replaed by wild-ards beause the rule in Figure 4.6(a) has six hildren while the rule in Figure 4.6(b) has eighthildren, and no deision an be made regarding the number of wild-ards to insert. To solve thisproblem, speial-purpose wild-ards are spei�ed in nodes when only a sub-sequene of the hildrenare ommon. The rule generalized from the two rules in Figure 4.6 is illustrated in Figure 4.10,and ontains the two types of wild-ard.The speial-purpose wild-ard has the ability to produe a number of generalization options.This is beause numerous sub-sequenes of nodes have the potential to be ommon between tworules. This is illustrated in Figure 4.11, in whih four di�erent options exist for generalizing the twotrees. In all ases the �root� node is ommon, but the hildren ontain numerous sub-sequenes of
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Figure 4.11: Multiple options for generalization when using a speial-purpose wild-ard.mathing nodes. The hoie of whih generalized rule to aept depends on whether the generalizedrule still ontains an answer (that is, it has not been removed by generalization).Rule generalization results in the removal of portions of a tree from a rule, but this must bedone with are to prevent the removal of answer nodes. Other nodes in a tree might also be ritialto the struture of a rule and should never be removed in the generalization proess. We all nodeswith this harateristi preserved nodes. All answer nodes are preserved, but preserved nodes neednot neessarily be answers. Preserved nodes must never be removed from a rule and as a result, awild-ard an only be used if it does not result in the removal of a preserved node from the tree.The idea of omparing two rules and removing dissimilar portions of the trees is named merging,beause we replae two individual rules with one general rule that represents both. In some ases,a pair of rules ontains no similar patterns, in whih ase a merge is impossible. Merges are alsoimpossible if two rules ontain a similar pattern, but this pattern does not ontain all the preservednodes in both rules.Example merge senarios are presented in Figure 4.12 to illustrate the onept of suessfulmerging and merge failure. A merge resulting in the insertion of a general wild-ard is illustratedin Figure 4.12(a). A merge in whih multiple sub-sequenes of hildren are ommon resulting intwo merged rules is illustrated in Figure 4.12(b). Additional patterns exist that are ommon tothese two rules, but none of these ontain the preserved node �D�, and so are disarded as viablegeneralization andidates. A merge failure is illustrated in Figure 4.12(), where no ommonpattern exists between two rules that does not remove a preserved node.4.3.4 Appliation of a generalized ruleA generalized rule has the ability to math orretly with trees other than those from whih it wasreated. Assume the speeh-verb is to be loated for the following sentene ontaining a quote:�Where are you?� asked Paul.A tree is onstruted from this unannotated sentene, illustrated in Figure 4.13. This tree doesnot math with either of the rules in Figure 4.6, beause it ontains a number of di�erent nodes.However, the generalized rule derived from these two rules (shown in Figure 4.10) mathes withthis tree beause of the presene of wild-ards. The token �asked� is annotated as a speeh-verbbeause the math is suessful, and the node ontaining �asked� is in the same loation as the�speeh-verb� node in the rule.
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Figure 4.14: Example of on�iting rules in a rule-set.4.3.5 Generalization of a rule-setAn annotator presents a set of examples from whih a base rule-set is reated. Initially, this rule-setis over-spei� and applies only to the examples provided. This set of rules must be generalizedso that it has the ability to apply to unseen text, that is, new text for whih annotations must bereated.If two rules an be generalized by identifying ommon patterns in rules and removing dissimilarportion, then the base rule-set an be generalized in a similar manner. However, the more rulesompared at one, the less likely that a ommon pattern exists in the trees that also ontainsall the preserved nodes in the same loations. Alternatively, we propose an iterative proess inwhih pairs of rules are merged at a time until no further merges are possible. Using this method,generalized rules are likely to be merged multiple times before the proess ends.Given that pairs of rules are merged at a time, the question remains as to whih pairs of rulesto merge at eah iteration. One approah is to merge every pair of rules in the set, and hoose themerged rule that overs the most examples (Glass and Bangay, 2006).The rule-set generalization proess is haraterized by the problem illustrated in Figure 4.14,namely that a newly merged rule has the potential to on�it with an existing rule in the set.A pair of rules on�it if both an be mathed suessfully to a tree reated from an examplesentene, but whih indiate answers in di�erent loations. In Figure 4.14 both rules in the rule-set math the unannotated tree, yet indiate di�erent answers. If the inorret rule is hosen, thenan inorret annotation is reated. A on�it an also our between a positive and a negativerule, where both math an example, but where one rule indiates an answer and the other doesnot.Con�iting rules are prevented by mathing a newly merged rule with every individual rulein the rule-set. Rules are trees, and an be mathed against one another. If a suessful mathours, but the answers are in di�erent loations in the trees then a on�it is found, and the newmerged rule is deemed invalid.Mathing between two rules is di�erent to regular mathing beause both rules ontain answernodes and wild-ards. If regular mathing is used, the two rules in Figure 4.14 do not math,but they both math the unannotated tree. However, if the answer nodes are interpreted as wild-ards (as opposed to a literal string �<answer>�) then the two trees math, but point to di�erentanswers and a on�it is deteted. This is a onservative method beause possible on�iting rules
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but answers different: confl ictFigure 4.15: Con�it deteted using onservative mathing between rules.are avoided, even if no on�it exists within the example data. This point is illustrated by Figure4.15, in whih the seond rule does not math the unannotated tree, in whih ase there is noon�it. However, a positive math still exists between the rules when interpreting the answernodes as wild-ards, and the new merged rule is rejeted.The rule-set generalization proess onsists of seleting an arbitrary pair of rules and mergingthem. If the merge does not fail, then a number of merge andidates are presented. Mergeandidates that remove preserved nodes are disarded. The remaining rules are ompared withevery rule in the rule-set to detet if a on�it ours, and are disarded if this is the ase. Amerged rule is seleted from the remaining set of merge andidates and replaes the pair of originalrules in the rule-set (seletion strategies are desribed in Setion 4.4.5). This proess ontinuesuntil no pair of rules an be found that results in a valid merge.4.3.6 Rule-set appliation to unseen textUnseen text is sub-divided into strutural units in the same manner used for reating a rule-set,where a tree is onstruted for eah unit (see Setion 4.3.2). Every rule in the generalized rule-setis mathed against the new tree, and if a math is found, the answer in the tree is loated andthe appropriate annotation reated. If a negative rule mathes the tree, or if no mathing rule isfound, then no annotation is reated for the unseen example.We assume that on�iting rules do not exist in the rule-set as a result of the disussion inSetion 4.3.5. In this respet, the �rst mathing rule is assumed to point to the same answer asany subsequent mathing rule that potentially exists in the rule-set, and therefore the searh endswhen any mathing rule is loated.A base rule-set is the most onstrained set of rules representing the examples provided by ahuman. Assume that the same set of examples is used to reate a set of unmarked trees, thenevery rule in the base rule-set should be idential to exatly one unmarked tree. In this manner,annotations in the example data are reprodued by applying the base rule-set to the exampleextrat.If an inorret rule from the base rule-set mathes with an unmarked tree then the resultis an erroneous annotation. To avoid this senario, rules in a base rule-set must be su�ientlyonstrained to math only a single unmarked tree (the degree to whih a rule is onstrained



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 62depends on the ategory of the rule, as disussed in Setion 4.5). However, if su�ient onstraintsannot be de�ned for a partiular ategory of annotation, we make the following assumption:Assumption 4.2. (Consisteny Assumption) The base rule-set indued by a set of training ex-amples produes a lower bound regarding the number of aurate mathes with the unmarked trees(that represent the training examples).The Consisteny Assumption (Assumption 4.2) provides for the detetion of loss in annotationability as a result of generalization. A generalized rule-set should not redue the number of auratemathes below the lower bound ahieved by the most spei� base rule-set. An ideal generalizationprodues more aurate mathes than this lower bound.4.4 Algorithms for pattern indution and appliationThis setion formally de�nes hierarhial rules and presents algorithms for the onstrution of arule-set, the pairwise generalization of two rules, the generalization of a rule-set, and the appliationof a rule-set to unseen text.4.4.1 Hierarhial patterns and rulesThis setion de�nes a struture for representing multiple levels of abstrated text, and for indiatingwhere answers are loated.4.4.1.1 Struture of patterns: nodes and treesPatterns derived from free text an be abstrated on multiple levels, where a onept on one levelenapsulates zero or more onepts on a more spei� level. We represent a single onept as anode, where enapsulation is represented by links between nodes. A node is de�ned as follows:De�nition 4.3. A node N represents a single onept that is an abstration of zero or morespeialized onepts. A node has the following properties:
• Type: An identi�er for the onept that the node represents, or a wild-ard ω indiatingthat the node represents any onept.
• Parent: A link to a single node representing a more abstrat onept.
• Children: An ordered set of links to zero or more nodes that represent more speializedonepts.
• Answer: Indiates whether the onept represented by the node is manually marked asbelonging to a partiular annotation ategory.
• Preserved: Indiates whether the onept an be removed from the linked node struture.A value of true indiates that the node annot be removed.
• ChildSubSeq: Indiates whether the onept is represented exlusively by its set of hildren,or whether the set of hildren represents only a sub-sequene of possible hildren. A value oftrue indiates the latter.



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 63Eah node ontains a single link to an abstrat onept, but ontains multiple links to morespei� onepts. A olletion of nodes linked in this manner is alled a tree, and ontains onenode that has no parent, alled the root.We use the following terminology to refer to ertain aspets of a tree: the anestors of a node Nin a tree is the set of linked nodes between N and (inluding) the root of the tree; the desendantsof a node N in a tree is a set of all nodes in the tree for whih N is an anestor; the siblings ofa node N are all other nodes in the tree that have the same parent as N ; the depth of a node Nrefers to the number of nodes between N and (inluding) the root (root is at depth 0); and a nodethat ontains no hildren is referred to as a leaf node.The indution of patterns ommon in a olletion of trees is performed using a proess of pair-wise merging, desribed in Setion 4.4.3. This involves a node-by-node omparison of two trees,where nodes in the same loation in a tree are ompared. We de�ne the onept of loation in thefollowing setion.4.4.1.2 Loation and orresponding nodesThe omparison of two trees involves examining the properties of orresponding nodes. We de�neorresponding nodes in terms of the loation of two nodes in their respetive trees. Loation isexpressed in terms of a node's relative position to its siblings and anestors.De�nition 4.4. Let the pair number

siblings
de�ne a node's relative position with respet to its siblings,where number is the position of the node in the ordered list of siblings, and siblings is the totalnumber of siblings.Two nodes in two di�erent sequenes are orresponding if their relative positions are idential.If the sequenes ontain di�erent numbers of nodes, then the relative position of two nodes annotbe the same. However, this is not the ase if the parent node NP to one of these sequenes hasthe property childSubSeq(NP ) = true. Assume NP is a parent to n nodes but has the possibilityof being a parent to additional nodes (childSubSeq(NP ) = true), and NQ is a parent to m nodes(m > n). The relative position of eah hild node of NP is de�ned in terms of the number of hildnodes of NQ. Relative position is expressed by the pair k + number

∗
, given a hoie of the valueof k in the range 0 ≤ k ≤ m− n.De�nition 4.5. Loation of a node N is an ordered tuple that ontains the relative position ofevery node from the root of the tree to the node N (in order of root to N). The number of pairsde�ning a loation for node N is equal to 1 + depth(N). Nodes with idential ordered sequenesof relative position tuples are said to be orresponding.Loation is demonstrated in Figure 4.16. The node E in the �rst tree has the loation

〈

1

1
;

2

3
;

1

1

〉, whih is idential to the node J in the seond tree, indiating that these areorresponding nodes. The node E in the �rst tree does not orrespond to either leaf node in thethird tree, beause the loation tuples are di�erent.Loation aommodates instanes where only a sub-sequene of hildren are expliitly de�nedfor that node (where childSubSeq(N) = true). For example, in Figure 4.17 the node E orresponds



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 64
A

B C D

E

F

G H I

J

F

G H I

J K

1

1

1

3

2

3

3

3

1

1

1

1

1

3

2

3

3

3

1

1

1

1

1

3

2

3

3

3

1

2

2

2

2

3

1

1
Location(E) = 

1

1

2

3

1

1
Location(J) = 

1

1

2

3

1

2
Location(J) = 

Location(E)=Location(J)

corresponding nodes

1

1Figure 4.16: Example use of loation to determine orresponding nodes.
A

B C D

E

F

G H I

J K

1

1

1

3

2

3

3

3

1

*

1

1

1

3

2

3

3

3

1

4

2

4

1

1

2

3

k + 1

  *
Location(E) = 

ch

F

2

* L M

3

4

4

4

Set  0  <= k  <= 4-2 :

if k = 0: Location(E) = Location(J); Location(F) = Location(K)

if k = 1: Location(E) = Location(K); Location(F) = Location(L)

if k = 2: Location(E) = Location(L); Location(F) = Location(M)Figure 4.17: Interpretation of loation when only a sub-sequene of hild nodes are de�ned.to node J if k = 0, but orrespond to node K if k = 1. However, node E an never orrespond tonode M , beause the upper limit of k is 2. In ases suh as this, the term orresponding appliesfor any value of k in its de�ned range.This de�nition allows nodes from two di�erent trees to be referred to as orresponding. Wealso use the onept of loation to determine whether two trees ontain orresponding answer andpreserved nodes.4.4.1.3 Rules and unmarked treesWe de�ne two types of trees: those that are onstruted from examples provided by a human,and those that are onstruted from text for whih an annotation must be reated (unseen text).These are de�ned as rules and unmarked trees respetively:De�nition 4.6. A rule is a tree representing a positive or negative annotation example providedby a human. A rule has the following properties:
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• If a node N has the property type(N) = ω (node represents a wild-ard type), then the nodehas zero hildren.
• Answer nodes are always preserved, that is any node N with the property answer(N) = truealso has the property preserved(N) = true.Rules have the potential to ontain answer nodes and preserved nodes, depending on the anno-tations in the input example. Rules also ontain wild-ards and childSubSeq markers (if the ruleshave been generalized).Unmarked trees represent text for whih an annotation must be reated, and therefore ontainno answer or preserved nodes. Unmarked trees are never generalized and never ontain wild-ardsor childSubSeq markers:De�nition 4.7. An unmarked tree represents a unit of input that requires annotation. For everynode N in an unmarked tree, the following properties hold:
• type(N) 6= ω: No wild-ards are permitted in the tree.
• preserved(N) 6= true: No preserved nodes are permitted in the tree.
• answer(N) 6= true: The tree ontains no answer nodes.
• childSubSeq(N) 6= true: Children annot be a sub-sequene of the total set.The use of the same tree struture for representing rules and unmarked trees has a numberof advantages: the same method for onstruting a tree an be employed regardless of whether amanually annotated example or an unseen unit of text is provided; orresponding nodes in rulesand unmarked trees an be ompared to determine whether the trees math; if the trees math thenthe node in the unmarked tree that orresponds to the answer node in the rule an be identi�ed,and the orresponding text annotated as a result.4.4.2 Rule-set reationA rule-set is an ordered sequene of rules derived from an extrat of annotated text. We denotean ordered sequene as follows:

S−→ = 〈s1, ..., sn〉The onept of a rule-set is an example of an ordered sequene:De�nition 4.8. A rule-set R−→ is an ordered sequene of rules Ri, suh that:
R−→ = 〈R1, ..., Rn〉Algorithm 4.1 reates a single rule for every (positive or negative) example enountered in theinput extrat, the result of whih is referred to as the base rule-set.4.4.3 Rule generalizationThis setion desribes an algorithm for reating a generalized rule from two input rules. We de�nea valid generalized rule in terms of the following riterion:
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create(in: extrat E ontaining a number of examples;out: rule-set R−→ = 〈R1, ..., Rn〉)beginwhile E has more examples do

e←next example in Eonstrut rule R from example eappend R to R−→endCriterion 4.9. A valid generalized rule has the following properties:1. All preserved nodes in the two input rules exist at the same loation in the generalized rule.2. The generalized rule mathes both input rules.3. The generalized rule indiates answers in the same loation as the answers in both inputrules.A valid generalized rule is only reated if both input rules ontain preserved and answer nodesin idential loations. If the two input rules fail to meet these pre-onditions then generalizationfails for this pair of rules.We present an algorithm that generalizes two rules by traversing the two trees node by nodein a depth-�rst manner, omparing eah pair of orresponding nodes. If the onept representedby both nodes is the same, then a dupliate node is reated and inserted into a new generalizedrule. If the nodes do not represent the same onept, then a wild-ard is inserted instead and nofurther desendants of the nodes are ompared. The generalization proess fails if the insertion ofa wild-ard prevents preserved nodes in the input rules from being dupliated in the generalizedrule.The traversal through the two trees is aomplished using a reursive funtion alled mergethat ompares pairs of nodes, and reates a new generalized tree:De�nition 4.10. De�ne the funtion merge(N1, N2) 7→ {N0
merge, ..., N

n
merge}|FAIL to be a fun-tion that takes as input two trees with roots N1 and N2 and produes either a set ontainingmerged trees N i

merge or FAIL if N1 and N2 annot be merged.The merge funtion operates in two stages. The �rst stage is onerned with omparing thetwo input nodes and reating a dupliate or wild-arded node for the generalized rule. The seondstage is onerned with invoking a reursive all to the merge funtion for merging the hildren ofthe two input nodes.4.4.3.1 Node omparisonMerging is initially onsidered between a pair of nodes, where two nodes are used as input to aproess that generates a single, generalized node representing the two input nodes:De�nition 4.11. De�ne the funtion combineNodes(N1, N2) 7→ Ncombine|FAIL to be a funtionthat takes two nodes N1 and N2 as input, and produes either a new node Ncombine, or FAIL ifthe nodes annot be merged. FAIL results if N1 and N2 have the following properties:
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• isPreserved(N1) 6= isPreserved(N2)

• isAnswer(N1) 6= isAnswer(N2)Otherwise, combineNodes(N1, N2) results in a new nodeNcombine that has the following properties:
• Type:� if type(N1) = ω or type(N2) = ω, then type(Ncombine)← ω� if type(N1) 6= type(N2), then type(Ncombine)← ω� if type(N1) = type(N2), then type(Ncombine)← type(N1) [= type(N2)]

• children(Ncombine)← 〈〉

• isPreserved(Ncombine)← isPreserved(N1) [= isPreserved(N2)]

• isAnswer(Ncombine)← isAnswer(N1) [= isAnswer(N2)]

• childSubSeq(Ncombine)← falseAssume that nodes N1 and N2 are to be merged. The combineNodes funtion (De�nition 4.11)has the ability to reate a wild-ard, whih means that the sub-trees of N1 and N2 are irrelevant tothe generalized rule. This is inorret if these sub-trees ontain preserved nodes, whih means thatwild-ards should not be reated from nodes that are anestors to preserved nodes. This onditionis enfored using the following funtion:
checkPreserved(Ncombine, N1, N2) =











































Ncombine if type(Ncombine) 6= ω

Ncombine if type(Ncombine) = ω and number ofpreserved desendants of N1 and N2 = 0

FAIL if Ncombine = FAIL or type(Ncombine) = ω andnumber of preserved desendants (N1 or N2) > 0Both the ombineNodes and hekPreserved funtions are enapsulated within a single funtion:
mergeNodes(N1, N2) = checkPreserved(combineNodes(N1, N2), N1, N2)The mergeNodes funtion returns a single node representing both input nodes (or FAIL ifthe nodes annot merge). This node does not have any alloated hild nodes. These are assignedin the next stage of the merge funtion.4.4.3.2 Merge of sequenes of hildrenEah node in a pair of input rules has zero or more hild nodes. Eah hild node represents the rootof its own sub-tree, and the merge funtion is applied reursively to every pair of orrespondinghild nodes. Cases exist in whih a number of sub-sequenes of hildren from one node an bemerged with a number of sub-sequenes of hildren from another node, as illustrated in Figure4.18.
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max(n,m)
∑

k=0

(n− k)(m− k) (4.1)The merge funtion is invoked reursively for eah pair of nodes in eah sub-sequene. If a pairdoes not produe a valid generalized node, then the entire sub-sequene is disarded.Themerge funtion returns a set of merge andidates for a single pair of input nodes (De�nition4.10), as is illustrated in Figure 4.19. Every ombination of merge andidates from eah pairin a sequene is enumerated using the × operator as illustrated in the �gure. This proess isenapsulated in the mergeSub(E−→) 7→ {S1−→, ..., Sn−→} funtion that takes as input a sequene of tuples
E−→ = 〈〈C1,D1〉 , ..., 〈Ck,Dk〉〉, where eah tuple represents a pair of nodes to be merged. Theoutput of this funtion is a set ontaining every possible ombination of merged sequenes:

mergeSub(E−→) = merge(C1,D1)× ...×merge(Ck,Dk)
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}
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〉
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CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 69The mergeSub funtion is invoked for every enumerated sub-sequene of hild nodes. We usethe mergeChildren funtion to merge every possible sub-sequene of orresponding hild nodes.This funtion takes as input two sequenes of hild nodes, enumerates every possible sub-sequene,merges eah sub-sequene, and �nally enumerates all possible merged sub-sequenes. If {E1−→, ..., Ek−→}is the set of enumerated sub-sequene pairs resulting from enumerate(C−→, D−→), then:
mergeChildren(C−→, D−→) = mergeSub(E1−→) ∪ ... ∪mergeSub(Ek−→)

= {M1−→, ...,Mn−→}The mergeChildren funtion returns andidate merged sub-sequenes of the hild nodes of thetwo input nodes. A valid sub-sequene ontains every preserved hild node of the two input nodes.This is heked as follows:
checkChildPreserved(M−→, C−→, D−→) =































true if number of preserved nodes in C−→ and D−→ =number of preserved nodes in M−→
false if number of preserved nodes in C−→ and D−→ 6=number of preserved nodes in M−→Let Nmerge be a merged node produed from nodes N1 and N2 using mergeNodes(N1, N2).If more than one sub-sequene of hild nodes is produed using mergeChildren, then Nmerge isloned for eah valid sub-sequene, and the nodes in one sub-sequene beome hildren of one loneof Nmerge. The set of loned Nmerge nodes is returned as the result of the merge funtion.Algorithm 4.2 de�nes the merge funtion, where the mergeNodes funtion is used to reatenew generalized nodes, and themergeChildren funtion is used to reursively merge sub-sequenesof hild nodes. This algorithm has two base-ases: if a generalized node is a wild-ard, in whihase no further reursion ours; or if no valid merged sub-sequenes of hild nodes exist (either ifnodes are leaf nodes, or if no valid merge is possible). In the latter ase, the new node Nmerge isnot assigned any hild nodes.The childSubSeq marker is set to true in Nmerge whenever a merged sub-sequene of hildnodes is smaller than the original set of hild nodes. This indiates that the set of hild nodesassigned to Nmerge is a sub-sequene of possible hild nodes. A speial ase exists in whih nohild nodes are assigned to a lone of Nmerge. In this ase, childSubSeq is only set to true if theoriginal nodes have hildren.We prove that the �rst property of generalized rules (generalized rule ontains all preservedand answer nodes, as per Criterion 4.9 on page 66) is satis�ed using the merge funtion de�nedby Algorithm 4.2:Lemma 4.12. Let N1 and N2 be the root nodes of two trees that have preserved and answer nodesin orresponding loations. Any generalized node Nmerge produed by Algorithm 4.2 ontains allpreserved and answer nodes in N1 and N2, in the same loation as in N1 and N2.Proof. All answer nodes are preserved nodes, therefore we only need to prove that all preservednodes in the two input trees our at the same loation in a generalized tree. De�ne Ni to be the
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Algorithm 4.2 Merge algorithm.
merge(in: node N1 with hildren C−→,node N2 with hildren D−→;out: set of merged nodes or FAIL)begin
Nmerge ← mergeNodes(N1, N2) %% Nmerge has no hildren yet
M ← {}if Nmerge 6= FAIL thenif type(Nmerge) = ω then %% Do not reurse if wild-ard inserted

M ←M ∪ {Nmerge}else
E ← mergeChildren(C−→, D−→) %% Reursefor eah e−→ ∈ E doif checkChildPreserved( e−→, C−→, D−→) then

Nclone ← clone(Nmerge) %% Clone Nmerge for eah sub-sequene
children(Nclone)← e−→ %% Assign hildren to Nclone%% Indiate if sub-sequene is not omplete set of hild nodes
childSubSeq(Nmerge) ← (size( e−→) 6= size(C−→) or size( e−→) 6= size(D−→)) or

(childSubSeq(N1) or childSubSeq(N2))
M ←M ∪ {Nclone}%% Speial ase: leaf nodes or no valid mergesif checkChildPreserved(〈〉 , C−→, D−→) then%% Indiate if sub-sequene is not omplete set of hild nodes

childSubSeq(Nmerge)← (size(C−→) 6= 0 or size(D−→) 6= 0)

M = M ∪ {Nmerge}if M 6= {} thenreturn Melsereturn FAILend



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 71root node of a tree of height i, and Nj to be a root node of a tree of height j. We employ anindutive proof in four ases:Case 1: i = j = 0 and Ni and Nj are both preserved. The mergeNodes funtion is guaran-teed to return a merged node Nmerge that is also preserved as spei�ed by the de�nition ofthe combineNodes funtion (beause both Ni and Nj are preserved). FAIL an never resultfrom checkNodes beause neither Ni norNj have hildren. If type(Nmerge) = ω in Algorithm4.2 then Nmerge is the only possible result. Otherwise, the reursivemergeChildren funtionis invoked over the hildren of Ni and Nj , returning an empty sequene beause neither ofthese nodes have hildren. checkChildPreserved is guaranteed to return true over the emptysequene (beause there are no hildren), and the result is the return of the preserved node
Nmerge. The preserved node in the generalized tree is in the same loation as in the originaltrees.Case 2: i = j = 1 and Ni and Nj have preserved hildren in idential loations.If type(Nmerge) = ω then checkPreserved is guaranteed to return a FAIL, preventing thepossibility of a generalized tree with fewer preserved nodes than in Ni and Nj . Three asesare possible when merging the sequenes of hild nodes:- mergeChildren returns an empty sequene: the speial ase is enountered, but
checkChildPreserved prevents the addition of Nmerge toM beause the number of preservedhild nodes of the input nodes is greater than zero. The result is an empty set M , whihauses the algorithm to result in a FAIL.-mergeChildren returns a set of sub-sequenes, none of whih pass the checkChildPreservedondition: this has the same result as the previous point.-mergeChildren returns a set of sub-sequenes, some of whih pass the checkChildPreservedfuntion: checkChildPreserved guarantees that the number of preserved nodes in the mergedsub-sequene is the same as the number of preserved hild nodes of Ni and Nj . If a sub-sequene is of the same size as the number of hildren of Ni and Nj (assuming this numberis equal), then the loation of the preserved nodes is idential beause the sub-sequene isan exat opy of the hild sequenes of Ni and Nj . If the sub-sequene is of a redued sizethen it is still guaranteed to ontain all preserved nodes beause of the checkChildPreservedfuntion. In this ase, childSubSeq(Nmerge) = true, and by the de�nition of loation, a valueexists for k so that the preserved nodes in the generalized sub-sequene orresponds with thepreserved hild nodes of Ni and Nj .Case 3: i = 0 and j > 0 where Ni is preserved and Nj is root to a sub-tree ontainingpreserved nodes: in this ase, Nj annot be a parent to a sub-tree ontaining preserved nodes(by de�nition, Ni and Nj must have preserved nodes in idential loations). Therefore, Njis the only preserved node in its tree. In this ase, the mergeNodes funtion is guaranteedto return a preserved merged node Nmerge, and beause Nj annot have preserved hildren(and Ni has no hildren) the insertion of a wild-ard never removes preserved nodes.Case 4: i = x and j = y and Ni and Nj both have preserved desendants. If Ni and Nj ispreserved, then the mergeNodes funtion is guaranteed to return a preserved merged node
Nmerge, and a FAIL is guaranteed by checkNodes if a wild-ard is inserted. Reursive



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 72invoation of merge eventually results in either Case 1, 2, or 3, eah of whih guaranteepreserved nodes in the same loation in the sub-tree, or FAIL. Every generalized sub-treeis guaranteed to have preserved nodes in the same loation as in the input trees.We evaluate omplexity of the merge algorithm in terms of the number of andidate mergedrules that are produed from a pair of input rules. The worst ase ours if every node in bothrules ontains n hild nodes (branhing fator of n). The enumerate funtion produes no greaterthan n × n2 hild sub-sequenes (as a result of expression 4.1 on page 68). Assuming there aresiblings to these parent nodes, then the upper bound on the total number of andidate mergedsub-trees is n × n2 × n2 (in the worst ase, eah parent node orresponds to every other parentnode, resulting in an additional fator of n2 ). If this ours for every node in the tree, and if thereare p nodes in a tree, then the total number of merge andidates annot exeed O(pn5) rules.The upper bound of merge andidates is never reahed due to the insertion of wild-ards thatprevent traversal and dupliation of the entire input trees. In addition, merge andidates aredisquali�ed beause of failure points in the merge algorithm. Empirial evaluation indiates thatan average branhing fator of 2 ours, where input rules ontain on average 30 nodes. Thispresents an upper bound of 2× 305 andidate trees, but in pratie we observe an average of only2 andidates reated for eah pair of rules.4.4.4 Appliation of a generalized rule: mathingThe mathing proess ompares a given rule with an unmarked tree. If the pattern spei�ed by therule exists in the unmarked tree, then the math is suessful. Similar to generalization, mathingis performed as a depth-�rst traversal of the rule tree and the unmarked tree, starting at the root.We refer to a node from the rule as NR, while a node from the unmarked tree is referred to as
NU . As per De�nition 4.7 on page 65, an unmarked tree ontains neither wild-ards, childSubSeqmarkers, nor answer nodes. The match algorithm is only onerned with heking that orrespond-ing nodes are idential.Algorithm 4.3 presents the reursive rule-mathing proess beginning at the root nodes of twotrees NR and NU . If the node under onsideration is an answer node, then the orrespondingnode NU is marked as an answer. Subsequent heks are performed to ensure that the onstraintportions of the rules are idential. If the node is a wild-ard, then the orresponding node NUan be of any type, and its sub-tree requires no further mathing of NU 's hildren. The result is apositive math for the urrent sub-tree.The type �elds of the orresponding nodes are ompared, and if these are di�erent then themath fails. If they are the same, then the hild nodes are mathed reursively.The mathing of hild nodes depends on the status of the childSubSeq marker. If set to true,this marker indiates that the sequene of hild nodes ofNR is not omplete, and may be surroundedon either side by nodes. In this ase, a math ours only if a sub-sequene of hild nodes of NUan be found, for whih eah hild node results in a positive math with eah orresponding hildnode of NR. If no mathing sub-sequene an be found, then the math fails. If childSubSeq isset to false, the the entire set of hildren of NR must math the entire set of hildren of NU . If
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Algorithm 4.3 Rule mathing.

match (in: node NU with hildren CU−→,node NR with hildren CR−→;out: a Boolean value match indiating a suessful math)beginif isAnswer(NR) then
isAnswer(NU )← trueif type(NR) = ω thenreturn trueelseif type(NU ) = type(NR) thenif CU−→ = 〈〉 and CR−→ = 〈〉 thenreturn trueelseif childSubSeq(NR) = true thenif size(CR−→) = 0 thenreturn trueelseif (a sub-sequene in CU−→ exists that ontains the samenumber of nodes as in CR−→, and where every node in thesub-sequene returns positive match with everyorresponding node in CR−→) thenreturn trueelsereturn falseelseif (every node in CU−→ returns a positive match with everyorresponding node in CR−→) thenreturn trueelsereturn falseelsereturn falseend



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 74this is not the ase (for example, if NU has a di�erent number of hild nodes to NR), then themath fails. Regardless of the status of childSubSeq, a reursive all to match is made for eahorresponding pair of nodes.The seond property of a generalized rule is that it must math the two rules responsible forits reation (by Criterion 4.9 on page 66). This property is ensured by the following lemma:Lemma 4.13. Let R1 be an example rule with root N1, and R2 be an example rule with root N2.Let R1 ontain preserved nodes and answer nodes in the same loations as in R2, and let Nmergebe the root of a merged rule derived by applying merge(N1, N2) from Algorithm 4.2. Then:
∀Nmerge ∈ merge(N1, N2) : match(Nmerge, N1) = true and match(Nmerge, N2) = trueProof. To prove that any merge resulting from merge(N1, N2) will math with N1 and N2, allfailure points in the match algorithm (Algorithm 4.3) must be shown not to be reahable whenmathing Nmerge = NR (the rule) with N1 = NU or N2 = NU (the unmarked tree). Algorithm 4.3an result in false in 3 ases:Case 1: if type(NU ) 6= type(NR): By this stage in Algorithm 4.3, it is asserted that type(NR)is not a wild-ard. Algorithm 4.2 employs the funtion mergeNodes that returns a nodewith type equal to either a wild-ard ω if type(N1) 6= type(N2) or the type of N1(and N2)if type(N1) = type(N2). As suh, it is impossible for NR to have been reated ontaining anode in whih type(NU ) 6= type(NR), whih means this ase will never our if NU = N1 or
NU = N2. This ase is therefore guaranteed to never be the reason for a math failure.Case 2: if type(NU ) = type(NR) and childSubSeq(NR) = true and no mathing sub-sequeneexists: A math failure ours only if no sub-sequene of hild nodes from NU an be foundthat math the sequene of hild nodes of NR. The existene of NR with size(CR) > 0indiates that at least one merged sub-sequene of hildren was produed from the hildrenof N1 and N2. The match funtion enumerates and mathes every possible sub-sequene ofhild nodes of N1 and N2, guaranteeing that the sub-sequene found by merge is also foundby match, making a math failure impossible.Case 3: if type(NU ) = type(NR) and childSubSeq(NR) = false: the property
childSubSeq(NR) = false an only result from merge in two ases: if the type(NR) = ωbeause mergeNodes sets this property to false by default and no subsequent hanges arepossible if a wild-ard is inserted; or if the number of merged hild nodes is equal to thenumber of hild nodes of N1 and N2. The former ase does not apply for this point. Inthe latter ase, NR is guaranteed to ontain the full sequene of hild nodes idential to thehildren of N1 and N2, and therefore a match failure is impossible.Of the three properties that generalized rules should exhibit, only two are guaranteed by the

merge and match funtions. Lemma 4.12 guarantees that any generalized tree ontains all pre-served nodes in the same loations as those in the two input rules. Answer nodes are alwayspreserved nodes, as per the de�nition of a rule (De�nition 4.6), and therefore answers in a gener-alized rule are always in the same loation as in the input rules. Lemma 4.13 guarantees that a
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Figure 4.20: Example of the failure to guarantee that all idential answers are produed by amerged rule.merged rule generalized from two input rules will always math the two input rules. This ensuresthat the generalized rule is apable of replaing both input rules.The third property of a generalized rule (Criterion 4.9 on page 66) annot be guaranteed, namelythat the answers produed by the appliation of the generalized rule are the same answers produedby both input rules. An example is illustrated in Figure 4.20, whih shows a merged rule thatgeneralizes two input rules. By the de�nition of loation, the answer node is in the same loationas in the original rules beause of the childSubSeq marker. However, when this rule is mathed toan original rule, the childSubSeq marker results in the enumeration of every sub-sequene of hildnodes. The match algorithm has the potential to math two di�erent enumeration possibilitiesand indiate a di�erent answer in either ase, one of whih is inorret. The math algorithmhas no method for determining whih enumeration possibility is orret, allowing the potential forinorret annotations.The error illustrated in Figure 4.20 is the result of the reation of a merged rule that is notonstrained enough to distinguish between the two input rules. One option for orreting this isto prevent the use of the childSubSeq marker when a desendant is an answer. However, thisover-onstrains rules making them less appliable over unseen text. We avoid this problem byidentifying and preventing only the speial ases where on�its our, and by performing a post-merge match between every generalized andidate and the original two rules. If a math oursthat results in an inorret answer, then the generalized andidate is disarded. This post-mergehek is a speial ase onerned with the avoidane of on�iting rules, a senario dealt with whengeneralizing rule-sets.4.4.5 Generalization of a rule-setWe generalize a rule-set in a pair-wise fashion. We begin with en empty set of merged rules. Asingle rule is removed from the base rule-set and added to this set. Thereafter one rule is removedat a time and merged with every rule in the merged rule-set. This results in a set of generalizedmerge andidates, from whih only a single andidate is hosen. This andidate replaes the rule in



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 76Algorithm 4.4 Pairwise rule-set generalization.
generalize(in: S−→ the base rule-setout: M−→ the merged rule-set)begin

M−→← 〈〉
O−→← 〈〉 %%Original rule-setwhile size( S−→) > 0 do
R← removeF irst( S−→)
O−→← append R to O−→ %% Reord original rule to prevent onflits
(

N−→, Rmerge

)

← selectMerge(R,M−→, S−→,O−→)if N−→ = FAIL thenif (no rule exists in M−→ idential to R andnot isConflict(R,M−→, S−→,O−→)) then
M−→← append R to M−→ %% append non-merged rule to merged setelsedisard rule R %% R auses unresolvable onflitelse

M−→← N−→ %% Replae merged set with updated versionif (no rule exists in S−→ idential to Rmerge) thenappend Rmerge to S−→ %% Allow future generalization of Rmergeendthe merged rule-set that was used for the reation of the andidate. If no valid generalized mergeandidates are produed, then the rule from the base rule-set is appended to the merged rule-set.This proess ontinues until no further rules exist in the base rule-set. Every time a generalizedmerge andidate is added to the merged rule-set, a opy is also appended to the base rule-set toallow for future generalization of the same rule.Algorithm 4.4 performs the pair-wise rule-set generalization proess. A funtion alled selectMergeis used to merge the rule R from the base rule-set with every rule in the merged rule-set, returninga tuple ontaining the new merged rule-set and the merged rule that was added to it. Before anymerged or unmerged rule is added to the merged rule-set, it is veri�ed to ensure that it does notause a on�it with any existing rule in the merged rule-set (thus ensuring the third property ofgeneralized rules).Algorithm 4.4 has a time omplexity of O(n2), where n is the number of rules, beause of themerge between every rule in the base rule-set with every rule in the merged rule-set (whih inthe worst ase ontains no merged rules). However, in our experiene this senario never oursbeause merged rules are always produed.4.4.5.1 Detetion of on�iting rulesCon�iting rules are apable of inorretly mathing examples and produe an inorret answers.They our under the following irumstanes:1. Rules in the base rule-set are on�iting;2. Generalized rules on�it with rules in the merged rule-set;3. Generalized rules on�it with the rules responsible for their reation.



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 77If rules in the base rule-set are on�iting, then the most that an be done is detet when thisours, and raise a warning. The struture of the rules should be enhaned to ontain moredetailed onstraints to avoid on�iting rules, or alternatively the example data should be hekedfor inonsistenies.The seond irumstane is avoided by mathing every newly generalized rule with every rulein the merged rule-set, to ensure that no math ours that results in an inorret answer.The third irumstane is illustrated in Setion 4.4.4, where a generalized rule on�its withboth input rules. This is avoided by mathing the generalized rule with both input rules, anddisarding the generalized rule if on�iting answers are produed. However, this is a speial aseof a larger problem. A newly generalized rule might not on�it with a rule in the merged rule-set,or with the two input rules, but it might on�it with one of the rules in the original base rule-set.To avoid this, every generalized rule is mathed with every rule in the base rule-set (whih inludesthe two input rules), and is disarded if any on�iting answers are produed.We de�ne the funtion matchP (R1, R2) 7→ (Boolean,Boolean) that aepts two rules andreturns a tuple of two Boolean values (match, same). The match variable is assigned the value of
true if the two rules suessfully math. The same variable is assigned the value of true if boththe following onditions hold:
• R1 identi�es the orret answer nodes in the R2 tree; and
• R2 identi�es the orret answer nodes in the R1tree.The matchP funtion di�ers from the match funtion in that both input trees an be rules, and soboth ontain wild-ards, childSubSeq markers, preserved nodes, and answer nodes. Answer nodesare onsidered as wild-ards (as desribed in Setion 4.3.5).We de�ne on�iting rules to be rules for whih the matchP algorithm produes the tuple

(match = true, same = false). We use the funtion conflictExists(R,R−→) 7→ Boolean to detetwhether a rule R is on�iting with respet to a rule-set R−→ (if any rule M exists in R−→ suh that
matchP (R,M) = (true, false)).Every time a new rule is added to the merged rule-set, all irumstanes that result in a on�itare heked. This means heking the merged rule-set M−→, the base rule-set S−→, and the originalrule-set O−→ for on�its. All these heks are enapsulated in the isConflict(R,M−→, S−→,O−→) funtionthat returns true if the following ondition holds:
conflictExists(R,M−→) = true or conflictExists(R, S−→) = true or conflictExists(R,O−→) = trueThe isConflict funtion is used in Algorithm 4.4 in ases where no valid merge andidates areprodued. The rule R is appended to the merged rule-set only if no on�it is deteted.4.4.5.2 Seletion of a generalized ruleAlgorithm 4.4 hooses a single rule from S−→ that is merged with every rule in M−→ using the
selectMerge funtion, whih is de�ned in Algorithm 4.5. A merge results in a set of mergeandidates, eah of whih is heked to determine whether it is a on�iting rule. One all validmerge andidates are determined, a single andidate is hosen. We previously explored evaluating
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selectMerge(in: rule RC to be merged with any rule in M−→,merged rule-set M−→,rule-set S−→ ontaining rules still to be merged,rule-set O−→ ontaining original rules;out: tuple (N−→, Rmerge

) | FAIL)begin
W ← {}for eah R in M−→ doif R is not idential to RC then

V ← merge(R,RC)if size(V ) > 0 thenfor eah Rm in V do
N−→←M−→/R %% Remove R from M−→if not isConflict(Rm,M−→, S−→,O−→) thenappend Rm to N−→
W ←W ∪ {

(

N−→, Rm

)

}if W = 〈〉 thenreturn FAILelsehoose one tuple from W and return itendeah merged rule over the example set, hoosing the rule that reates the most orret annota-tions (Glass and Bangay, 2006). However, this method requires repeated rule-set appliation andevaluation. Alternatively, we hoose the andidate that mathes most rules in the merged rule-setwithout on�it (to promote future generalization), removing the appliation and evaluation steps.4.4.6 Rule-set appliation to unseen textAn unmarked tree T is reated for eah example. The rule-set R−→ is then traversed in order, anda match is performed between eah rule R from this rule-set and T . If a positive math ours,then the answer node reated in T by the match funtion is used to reate the annotation. Thisproess is desribed in Algorithm 4.6.Assume that the rule-set ontains n rules and the example set onsists of n examples. Algorithm4.6 has a run-time omplexity of O(n2) beause the last rule in eah rule-set has the potential tomath every rule in the example set. We observe that this worst-ase senario is never realized.In general, the apply algorithm is far more e�ient than the generalize algorithm beause everypossible merge andidate need not be enumerated, and the match algorithm ends as soon as amathing andidate is loated. As with most mahine learning algorithms, the ativity of trainingrequires substantial e�ort (in the order of hours), but the appliation proess requires less e�ortor resoures to exeute (in the order of seonds).
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apply(inout: extrat E ontaining a number of examples;in: rule-set R−→ = 〈R1, ..., Rn〉)beginwhile E has more examples do

e←next example in Eonstrut unmarked tree T from the examplefor i← 1 to n doif match(T,Ri) = true thenannotate e aording to answer nodes in Tbreak from loop over iend4.5 Hierarhial rules for semanti annotationsThis setion desribes the onstrution of rules for di�erent ategories of semanti annotation. Wehoose ategories that we believe are useful for reating animated 3D virtual environments, andwhih also demonstrate the apabilities of hierarhial rule-based learning:1. Quote: identi�es the avatar responsible for voiing instanes of diret speeh. A quoteannotation is de�ned in terms of the following quali�ers:(a) Quote (trigger): the atual quote onsisting of a sequene of tokens.(b) Speeh-verb (text-referene): a token in the text that desribes the at of speaking. Aquote need not have a speeh-verb.() Ator (text-referene): a token in the text that refers to the avatar performing the at ofspeaking, and is either a diret referene (for example, �Julian�, �Anne�) or an anaphorireferene (�he�, �she�). A quote need not have an ator.(d) Speaker (semanti-onept): We assume that a list of avatars ourring in the bookexists (using a method suh as desribed in Setion on page 41 in Chapter on page 26).This �eld ontains the identi�er of the avatar responsible for the speeh. Every quoteannotation must identify a speaker.2. Setting: identi�es tokens that indiate physial loation, for example �hill�, �valley�, �bed-room�, or �town�. This ategory is de�ned in terms of the following quali�er:(a) Setting (trigger): a token that desribes the physial loation of the urrent sene.3. Objet: identi�es tangible entities, for example furniture, �ora, and fauna. This ategoryis de�ned in terms of the following quali�er:(a) Objet (trigger): a token that desribes a tangible entity in the sene.4. Transition: identi�es behaviour of an entity in terms of entry or exit from the sene, andis de�ned in terms of the following quali�ers:(a) Transition (trigger): a token that indiates an entry or exit.



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 80They had it on the top of a hill, in a sloping �eld that looked down into a sunny <setting>valley</setting>.<avatar>Anne</avatar> didn't very muh like a big brown <objet>ow</objet> who <transi-tion type=�INSIDE� subjet=�ow�>ame</transition> up<relation type=�NEAR� subjet=�ow�objet=�her�>lose<relation> and stared at her, but it <transition type=�OUTSIDE� sub-jet=�it�>went</transition> away when <avatar>Daddy</avatar> told it to.Figure 4.21: Example annotated �tion text, from the Famous Five 1: Five on a Treasure Islandby Enid Blyton (1942).(b) Subjet (text-referene): a token referring to the entity performing the transition. Thistoken is either a diret referene or an anaphori referene. Eah transition is requiredto have an assoiated subjet to be valid.() Type (semanti-onept): desribes the type of transition ourring. We de�ne twoalternatives for transition annotations, namely inside and outside. The former indiatesthat the entity is moving into the sene, while the latter indiates that the entity isleaving the sene. Only one of these two is hosen for eah transition annotation.5. Relation: identi�es behaviour in terms of spatial relationships between two entities in thesene, and is de�ned in terms of the following quali�ers:(a) Relation (trigger): a token that indiates a spatial relation (for example �on�, �under�,or �behind�).(b) Subjet (text-referene): a token referring to the entity to whih the relation applies.This token is either a diret referene or an anaphori referene. Eah relation is requiredto have an assoiated subjet to be valid.() Objet (text-referene): a token referring to the entity that serves as a referene pointfor the relation. This token is either a diret referene or an anaphori referene. Eahrelation is required to have an assoiated objet to be valid.(d) Type (semanti-onept): desribes the type of spatial relation being desribed. We de-�ne the following semanti relations: near, inFrontOf , behind, toLeftOf , toRightOf ,
onTopOf , and below. Only one of these is hosen for eah relation annotation.An example of �tion text annotated using these ategories is presented in Figure 4.21. The follow-ing setion desribes the levels of abstration we inlude in rules for every ategory of annotation.4.5.1 Rule struture for di�erent annotation ategoriesWe design rules so that they ontain as many levels of abstration as possible to support generaliza-tion. The general priniple we adopt for rule struture is as follows: leaf nodes in the trees representindividual tokens from the input text. Multiple levels of abstration are provided between the leafnodes and the root node. For example, tokens are abstrated using parts-of-speeh (resulting ina parent node for eah token node). These nodes are grouped into phrases and sentenes, all ofwhih form desendants of the root node.
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<quote speech-verb="said" actor="Meg" . . . .  >"Not so loud!"</quote> said Meg.(b) Ator(Preserved nodes are highlighted in gray; answer nodes are indiated with dashed borders)Figure 4.22: Example rules for extrating speeh-verbs and ators.We always mark the answer at a leaf node in a rule beause answers are generally tokens.Additional preserved nodes are inluded when there is a relation between annotation tasks. Forexample, rules that loate the ator of a quote mark nodes that indiate the speeh-verb as pre-served, beause we believe that the speeh-verb is fundamental in identifying the ator.Rule-strutures an also ontain non-textual data to ater for the semanti onepts. We devisethe method of inluding a sub-tree below the root node that ontains a node for every availablesemanti onept. Eah of these is preserved, but only one is marked as the answer. This ensuresthat no semanti onepts are removed during generalization.The advantage of hierarhial rule-based learning is that rule-strutures an be ustomized foreah ategory of annotation, without modifying the ore indution proesses. The strutures weuse are desribed in the following setions.4.5.1.1 QuotesQuotes are identi�ed in �tion text with a high level of auray (desribed in Chapter 3). As suh,we onsider only the tasks of loating the speaker for eah quote. Glass and Bangay (2007) showin previous researh that this task an be ahieved by �rst loating the speeh-verb of a quote.A link is then identi�ed between this token and another in the text that identi�es the ator ofthe verb. This token is then used to selet a speaker using a set of hand-oded rules. The ruleindution proess removes the need for the intermediate steps of loating speeh-verbs and ators.However, we inlude these annotation quali�ers as toy examples for demonstrating the abilities ofhierarhial rule-based learning.A rule for identifying the speeh-verb of a quote is onstruted for eah quote trigger. Tokensfrom one sentene prior to the quote, the adjoining sentene of the quote (if there is one), andfrom one sentene after the quote form leaf nodes of the rule. The node ontaining the speeh-verbis marked as the answer. Every token is abstrated using parts-of-speeh and syntati funtion.Tokens are then grouped into phrases, and then into sentenes. A rule in the speeh-verb ategoryis illustrated in Figure 4.22(a).
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(b) Context-model(Preserved nodes are highlighted in gray; Answer nodes are indiated with dashed borders)Figure 4.23: Example speaker rule and avatar ontext model.A rule for the ator of a quote is idential in struture, as illustrated in Figure 4.22(b), withone addition: the token indiating the speeh-verb is marked as preserved (to maintain the linkbetween the ator and the quote).The formulation of the speaker rule demonstrates the ability to inlude non-text data in a rule.We make use of a ustom built ontext-model to provide a list of avatars that our in a urrentsene. An avatar identi�er is plaed at the front of this list every time an expliit referene is madeto an avatar. The speaker quali�er identi�es whih avatar to hoose from the list for a spei�quote. This makes possible the identi�ation of speakers involved in two-way dialogue where thespeakers are not indiated expliitly in the text.A rule for identifying the speaker is onstruted in the same manner as rules for speeh-verbsand ators (but ator nodes are marked as preserved). These rules inlude an additional sub-treeontaining nodes that serve as an index to the ontext model. An example rule and ontext modelis illustrated in Figure 4.23. Eah index node is marked as preserved to prevent its removal, andthe node indiating the orret index is marked as the answer.The ontext model potentially introdues error to the rule-reation proess. Assume that a ruleis reated for a quote that has avatarM as a speaker, but the ontext-model for this quote does notontain the identi�er for M . A possible reason for this is an indiret referene to M that annotbe resolved orretly by the ontext model. However, a human resolved this referene during thereation of the manual annotation. In this ase, no answer node an be highlighted during thereation of the rule beause no M exists in the ontext model. Error introdued in this mannerredues the lower bound of orret annotations reated by the base rule-set and subsequentlygeneralized rule-sets (by the Consisteny Assumption on page 62).4.5.1.2 Settings and ObjetsSetting and Objet annotations are similar in that they only require the identi�ation of a singletoken as a trigger. We divide an annotated extrat into tokens, and reate a rule for eah token.Expliitly annotated tokens result in positive rules, and the rest result in negative rules.
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(Preserved nodes are highlighted in gray; Answer nodes are indiated with dashed borders)Figure 4.25: Example Relation rule for annotation type (derived from an example from the FamousFive 1: Five on a Treasure Island by Enid Blyton (1942)).The order in whih the subjet, objet, and type quali�ers are determined is not signi�ant. ATransition or Relation annotation is only de�ned if these �elds have data, and so only positiveexamples are provided for subjet, objet, or type, one for eah valid trigger.4.6 Analysis of hierarhial rule-based learningWe examine the properties of hierarhial rule-based learning to determine if it is e�etive inautomatially reating semanti annotations over �tion text. These properties are investigated interms of the following questions:1. Is there a small set of patterns in English that identi�es a large portion of annotations in apartiular ategory?Hierarhial rule-based learning is based on the premise that patterns exist for identifyingategories of semanti annotation. We investigate if this is the ase, and whether hierarhialrule-based learning is apable of induing these patterns.2. Does the type of book make a di�erene to the types of patterns learned?Fition books are written by di�erent authors, in di�erent genres and for di�erent audienes.We investigate if the patterns indued from one book are appliable to di�erent books, andwhether examples from di�erent books enhane a model indued by the learning system.3. How does the omposition of the example set impat the ability of the indued rule-set inreating orret annotations?Some annotation ategories ontain both negative and positive examples. We investigate therelationship between these di�erent types with respet to the reation of aurate rule-sets.4. Can aurate rule-sets be indued for di�erent ategories of annotation using the same rule-struture?One potential problem with hierarhial rule-based learning is the need for ustomized rule-strutures for eah annotation ategory. We investigate if the same rule-struture an beused to indue aurate models for di�erent ategories.



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 85Book Series Author Flesh Fog Ave. Words / SenteneBook 1 A A 95.6 4.7 9.3Book 2 A A 96.2 5.2 10.5Book 3 B B 87.8 6.6 11.7Book 4 B B 88.1 6.6 12.0Book 5 C C 92.2 6.3 13.0Book 6 G G 83.6 7.8 13.4Book 7 C C 90.5 6.9 14.6Book 8 D D 82.8 8.6 16.7Book 9 D D 80.0 9.1 17.6Book 10 E E 77.7 9.6 18.4Book 11 E E 76.7 10.0 19.2Book 12 F E 76.3 10.4 20.4Book 13 F E 64.8 13.9 28.3Table 4.3: Breakdown of manually annotated �tion text orpus.5. Can generalized rule-sets be aurately indued for di�erent annotation quali�ers?Annotations are de�ned in terms of triggers, text referenes, and semanti onepts. Weinvestigate if hierarhial rule-based learning is apable of automating the reation of eahquali�er type for di�erent ategories of annotation, without modifying the ore algorithm.6. Can hierarhial rule-based learning be used to automate the reation of aurate semantiannotations?Assuming that patterns exist for identifying annotations, we investigate if indued patternssupport automation in the following manner:(a) Can 50% (or less) of the total positive examples be used to identify more than 50% ofthe annotations in a ategory?(b) How an hierarhial rule-based learning be used to redue the e�ort required to reatethe intermediate representation?This setion presents a suite of experiments and desribes a orpus of data used to answer thesequestions. Metris for measuring suess are de�ned, and possible soures of experimental errorare disussed.4.6.1 Test orpusWe reate a orpus of �tion that is manually annotated with the semanti ategories identi�ed inSetion 4.5. Properties of the books used to onstrut this orpus are listed in Table 4.3, indiatingwhih books are from the same series and by the same author. The books are ordered aordingto average sentene length and aording to readability metris, namely the Fog Index (Gunning,1952) (where low sores desribe �easy reading�), and the Flesh Index (Flesh, 1949) (where highsores desribe �easy reading�). We observe that the readability indies orrelate approximatelywith the average sentene length. Books by the same author, and in the same series generallyluster together in terms of these readability sales.



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 86Tokens Quotes Settings Objets Transitions Relationsspeeh-verbs ators speakersBook 1 49662 1109 1109 1229 399 425 108 68Book 2 50011 1382 1382 1446 - - - -Book 3 113950 1169 1169 1666 - - - -Corpus 984036 9675 9674 13913 - - - -Table 4.4: Summary of annotation ategories over orpus.We onsider books to be of di�erent type if they have di�erent authors, and are not lusteredtogether in Table 4.3. In this respet, Book 1 is similar to Book 2, but is of a di�erent type toBook 3.All the books in Table 4.3 ontain Quote annotations, but only Book 1 ontains annotationsin the other ategories. The number of annotated examples in eah ategory is listed in Table 4.4,whih indiates Book 1, 2, and 3 beause these are examined individually in the experiments.4.6.2 MetrisExperiments are onduted by providing an extrat soured from the orpus of annotated books tothe rule-base learning system. A base rule-set is onstruted from a sub-set of the examples in theextrat. The base rule-set is applied to the entire extrat to determine the auray of the leastgeneralized rule-set over unseen data. When the number of rules in the base rule-set equals thetotal number of examples, the lower bound desribed in Consisteny Assumption 4.2 on page 62is established for the book. The base rule-set is then generalized using the algorithms presented inSetion 4.4.5. The generalized rule-set is applied to the extrat and the resulting annotations areompared with the original set.The above proess is repeated using base rule-sets of inreasing size, until all examples areinluded in the base rule-set. The suess of eah merged rule-set provides an indiation of therelationship between the number of example annotations required and the suess of the generalizedrule-set.Some annotation quali�ers ontain both positive and negative examples (Quote: speeh-verb,ator ; Setting: trigger ; Objet: trigger : Transition: trigger ; Relation: trigger). In these ases, wemeasure the suess with whih positive annotations are reated using:
• False positives: the number of positive annotations reated where they should not our.The ideal ase is a value of zero for this metri.
• False negatives: the number of positive annotations not reated where they should our.The ideal ase is a value of zero for this metri.
• Corret annotations: the sum of true positive and true negative annotations.
• Reall : the ratio of orret annotations to the total number of annotations that should exist:

recall =
number of automatic, correct, positive annotations

number of manual, positive annotations



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 87This metri determines how well a rule-set identi�es positive annotations, but does not pro-vide an indiation of how well the rule-set avoids reating inorret annotations. As suh, itshould always be viewed in onjuntion with preision.
• Preision: the ratio of orret annotations to the total number of annotations reated auto-matially:

precision =
number of automatic, correct, positive annotations

number of automatic positive annotationsThis metri provides an indiation of the extent to whih non-orret annotations are avoided.However, if the number of automati positive annotations is small, then the preision ratio ishigh, and so this �gure might be deeptive. As suh, it should always be viewed in onjuntionwith reall.Some annotation quali�ers are onerned only with positive examples beause eah annotationontains exatly one instane (Quote: speaker ; Transition: subjet, type; Relation: subjet, objet,type). In these ases, the number of false positives is irrelevant, and we are onerned with ensuringthat the orret data is assoiated with the annotation. We measure suess in terms of:
• Auray : the ratio of orret annotations to the total number of manual annotations:

accuracy =
number of automatic, correct, annotations

number of manual annotations4.6.3 Soures of experimental errorWe aknowledge the omplexity of the English language and its understanding as a soure of ex-perimental error. The manual annotations produed for the orpus of test data are not guaranteedto onsistently follow a single interpretation, and as a result annot be evaluated as onsistentlyorret. The possibility exists that idential examples are annotated di�erently, resulting in on-�iting rules. An example of suh a senario is when the ontext-model is used for rule-reation,desribed in Setion 4.5 on page 79. These ases are identi�ed by evaluating the base rule-set overthe example data, allowing a baseline to be established for annotation suess (by ConsistenyAssumption 4.2 on page 62).The variety of �tion authors, genres, and target audienes is another soure of experimentalerror. Examples in a single book need not orrelate with examples in other books, beause ofdi�erent writing styles. We propose a method for mitigating this soure of error that involvestraining a rule-set with examples soured from a number of di�erent books.The struture used to represent rules (de�ned in Setion 4.5) is also a soure of experimentalerror. The de�nition of these strutures is based on experiene with the learning system, but arenot validated as being the optimum strutures for ahieving generalized rules, or representing aspei� ategory of annotation. However, we believe that only marginal improvements are possiblegiven tailored rule-strutures for eah ategory of annotation.The automatially reated surfae annotations that are used for obtaining strutural and syn-tati properties of text are also a soure of error in these experiments (as a result of the smallportion of error in their reation, as desribed in Chapter 3). We believe that speial purpose



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 88rules are indued to handle these errors, mitigating the e�ets on overall auray, but potentiallyresulting in larger generalized rule-sets.4.6.4 ResultsThis setion desribes the individual experiments performed during the investigation of the ques-tions posed at the beginning of this setion.4.6.4.1 Analysis of generalized rule-set indutionThe experiments in this setion investigate whether a small set of patterns exist that identify alarge portion of annotations in a partiular ategory.Can hierarhial rule-based learning indue a small set of patterns from annotatedexamples?We provide the learning system with a set of example annotations and indue generalized rule-sets from these examples. We evaluate the auray with whih annotations are reated usingthe indued patterns. These experiments are onduted for identifying the speeh-verb, ator, andspeaker of a quote.We plot the size of the indued rule-sets (and the number of orret annotations reated)against the inreasing number of examples for speeh-verb, ator, and speaker annotations inFigures 4.26(a), (), and (e) respetively. In all three �gures, the size of the generalized rule-setis markedly smaller than the base rule-set (wherever the number of provided examples is greaterthan zero). This result indiates that a small set of patterns exist for these ategories, and thatthese patterns are suessfully indued using hierarhial rule-based learning.The generalized rule-sets orretly annotate more examples than provided for training in allthree ategories. For example, a rule-set generalized from only 100 examples orretly annotatesnearly 1000 speeh-verb examples. This indiates that the indued patterns orretly annotateadditional examples in the text.The lower bound for auray, determined as the number of example annotations orretlyreated by the base rule-set, is also indiated in Figures 4.26(a), (), and (e). The base rule-sets generated for speeh-verbs and ators reprodue the example annotations preisely, but thebase rule-set for speakers produes a redued number of orret annotations. This is attributedto weakness in the ontext model (desribed in Setion 4.5). However, onsisteny heks onindued rules redue this error, demonstrated in that more orret annotations are reated by thegeneralized rule-set than the base-rule set for any number of examples.This experiment demonstrates that a small set of patterns exists for identifying annotations,that these patterns are indued using hierarhial rule-based learning, and that generalized rule-setsorretly reprodue the example annotations and reate further orret annotations.What is the nature of the indued patterns?Given a generalized rule-set that is apable of reproduing all the annotated examples orretly,we examine the nature of the indued rules and their usage over the examples. The relative
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* ** () Third most frequently used rule.Figure 4.27: Illustrations of the three most frequently used generalized rules for loating speeh-verb.distributions of generalized rule-use for speeh-verb, ator, and speaker are presented in Figures4.26(b), (d), and (f) respetively. In the ase of the speeh-verb a single rule orretly annotates17.57% of the entire example set, while the top three rules are responsible for orretly annotating32.62% of the entire example set. This shows that patterns summarize large portions of the exampleannotations.The top three rules from the indued rule-set for speeh-verb, are illustrated in Figure 4.27. Themost frequently used rule indiates a quote followed by the speeh-verb, whih must be followedby a proper noun. The seond most ommon rule is similar, but indiates that a pronoun shouldpreede the speeh-verb. The third most ommon rule is similar to the �rst, but is more spei�, inthat it indiates that �Julian� should be the token following the speeh-verb. While appliable tothe book over whih the rule was indued, it is not appliable to other books that do not ontaina harater named �Julian�. This suggests a question regarding the appliability of an induedrule-set over di�erent books, as examined in Setion 4.6.4.2.Does the order in whih examples are presented in�uene the auray of the gener-alized rule-set?We investigate whether the order in whih examples are provided a�ets the auray of the induedgeneralized rule-set by providing the learning system with a reversed set of example annotations.The number of orret speaker annotations using both a non-reversed and a reversed set of examplesis plotted in Figure 4.28. There is a di�erene in the size and auray of the generalized rule-sets,but these di�erenes are minimal.4.6.4.2 The e�et of the book type on pattern indutionThis experiment investigates whether the type of book in�uenes the indued rule-sets, and theappliability of rule-sets over di�erent books.
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Accuracy(b) RelationFigure 4.36: Training and appliation for the subjet of Transition and Relation annotations.one de�ned subjet, objet, and type. This means that there are no negative examples for thesequali�ers.Can patterns be indued for identifying text-referenes?We provide the learning system with example Transition or Relation annotations, eah of whihhas a de�ned subjet or objet. We evaluate the auray of the text-referenes produed by theindued rule-set.Auray is plotted against the number of examples used for training in Figures 4.36(a) and (b)for the subjet of Transitions and Relations respetively (�Auray� and �Corret� are equivalentin these graphs, and result in overlapping urves). In both ases a generalized rule-set is reatedontaining fewer rules than the base rule-set. The generalized rule-set reates a greater number oforret annotations than examples provided, given enough examples. Transitions require greaterthan 30 examples, while Relations require greater than 10 examples (indiated by the divergenebetween the Corret/Auray urves and the Base rule-set urve).Auray is plotted against the number of training examples in Figure 4.37 for the objet ofRelation annotations. The generalized rule-set is smaller than the base rule-set, and given enoughtraining examples, reates more orret annotations than examples provided.These experiments demonstrate that generalized patterns are indued for text-referene quali-�ers that result in the reation of aurate annotations.Can patterns be indued for assoiating semanti-onepts to annotations?We provide the learning system with example Transition or Relation annotations, eah of whihhas a de�ned type. We evaluate the auray of the semanti onept identi�ed for eah annotationprodued by the indued rule-sets.Auray is plotted against the number of examples used for training in Figures 4.38(a) and(b) for the type quali�er of Transition and Relation annotations respetively. Generalized rule-setsare indued for the type �eld in both the Transition and Relation ategory, and a greater numberof orret annotations are reated using the generalized rule-set than the total number of examples
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Accuracy(b) RelationFigure 4.38: Training and appliation for the type of Transition and Relation annotations usinginreasing positive negative examples.provided. For example, using only 10 examples, approximately 35 orret type annotations arereated in the Transition ategory.These experiments demonstrate that patterns are indued for reating aurate semanti-onepts. This is a signi�ant ontribution in the �eld of information extration, beause it allowssemanti data to be assoiated with a text-based annotation without an external knowledge-base.These results indiate that the formulation of the rule strutures is �exible enough to be augmentedwith non-textual data, and that the generalization proess provides for the indution of patternseven for non-text data.Can aurate patterns be indued for annotation quali�ers in di�erent ategories usingthe same rule struture?The rule strutures used for subjet and objet patterns in the Transition and Relation ategoriesare idential. The suessful indution of generalized rule-sets that reate orret annotations inboth ategories (shown in Figures 4.36(a) and (b)) demonstrates that the rule-struture need notbe modi�ed for di�erent ategories of text-referene. An idential rule struture is used for induing



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 100Annotation Quali�er PositiveAnnotations PositiveExamples Negativeexamples Preision ReallQuote speeh-verb 1109 500 60 97.14% 89.62%ator 1109 500 60 97.27% 90.94%speaker 1229 500 - - 76.92%Setting trigger 399 195 195 70.27% 52.13%Objet trigger 425 210 210 67.06% 53.64%Transition trigger 108 54 250 96.55% 52.83%subjet 108 54 - - 56.60%type 108 54 - - 76.41%Relation trigger 68 34 250 50.0%. 51.4%subjet 68 34 - - 51.4%objet 68 34 - - 57.3%type 68 34 - - 77.9%Table 4.5: Summary of results when training with 50% or less of the positive training examples.patterns for type quali�ers of Transitions and Relations, demonstrating that the same applies forsemanti onepts (shown in Figures 4.38(a) and (b)).The impliation of these results is that the addition of ategories of annotation ontaining text-referenes or semanti onepts need not require the ustom reation of rule-strutures for thesequali�ers.4.6.4.6 Automati reation of semanti annotationsAll previous experiments verify that hierarhial rule-based learning indues patterns from exampleannotations, and substantial evidene is provided indiating that generalized rule-sets produegreater number of orret annotations than the number of examples provided. We investigatewhether the automati reation of annotations is truly supported in eah semanti annotationategory for the �tion-to-animation task.Can hierarhial rule-based learning be used to automatially reate semanti anno-tations?The reation of positive examples is the most arduous task in reating manual examples for training(beause negative examples need not be annotated). We onsider automation to be suessful ifthe provision of 50% (or less) of the total positive annotations results in the reation of more than50% of the total number of annotations in the book.We indue a rule-set using 50% or less of the positive annotations in eah semanti annotationategory. The preision and reall for every ategory is listed in Table 4.5 using the indued rule-set. A reall of greater than 50% is ahieved in all ategories, demonstrating that the induedrule-sets produe additional orret annotations.The reation of triggers is the most di�ult task, indiated by the low reall levels for thisquali�er in all ategories. However, highly e�etive rule-sets are indued in some ategories, forexample in identifying the speaker of a quote, and the type of a Transition or Relation. Reallrates are highest where the number of examples available is large (demonstrated by the Quote



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 101annotations), and we believe that higher reall levels are possible should the orpus be enlargedwith examples in the Setting, Objet, Transition, and Relation ategories.These results indiate that the reation of semanti annotations is automated using hierarhialrule-based learning. We speulate that a human annotator would not reate 50% of the totalpositive annotations before training the learning system. We develop a boot-strapping methodthat uses the learning system to redue the e�ort in reating annotations.A boot-strapping method for reduing e�ort in the reation of semanti annotationsThe question remains as to the pratiality of hierarhial rule-based learning for automating thereation of semanti annotations. The manual reation of su�ient example data for induingaurate rule-sets potentially requires signi�ant e�ort (for example, in reating 50% of the totalnumber of positive examples).We propose a boot-strapping method that guides the rule-set reation proess through an iter-ative validation of automatially produed results. We believe that validating a sub-set of anno-tations requires less manual e�ort than reading the original text and expliitly reating examples.The boot-strapping proess begins with the manual reation of a small set of positive annotationsin a partiular ategory. These are presented as examples to the rule-based learning system alongwith a small set of negative examples (that are automatially obtained from the annotated ex-trat). A rule-set is indued and applied to the entire book, the result of whih is a larger numberof annotated examples, some of whih are orret, but most of whih are likely to be false positives(as demonstrated in Setion 4.6.4.3). An annotator reviews the automatially reated annotationsby seleting and marking some annotations as orret or inorret. A new rule-set is reated usingthe validated positive and negative examples. This rule-set reates more aurate annotations thanthe previous rule-set, and the proess of orretion is repeated until the annotator is satis�ed witha set of annotations reated by the system.We demonstrate the validity of the boot-strapping method using the Objet annotation at-egory. The number of true positives and false positives is reorded eah time the generalizedrule-set is applied to the �tion text. The ations taken by a human annotator in reating Objetannotations are summarized in Table 4.6. The human initially reates 15 positive annotations(orresponding to one hapter of the book). The generalized rule-set reated from these examplesresults in a total of 254 annotations, 41 of whih are orret. The annotator reviews these, andselets 10 erroneous annotations and 5 additional orret ones, and retrains the model. This resultsin 337 annotations, of whih 10 are seleted as being inorret (more ould be seleted dependingon the energy or time available to the annotator). The proess repeats until the annotator issatis�ed or runs out of time. The last set reated ontains 42 positive annotations and only 32false positives. The annotator expliitly reates only 15 positive annotations, and validates only40 automatially generated annotations.We observe that automatially identi�ed annotations help the annotator re�ne his or her ownidea of whih fragments of text belong in a ertain ategory. During the experiment summarized inTable 4.6, additional annotations are suggested by the learning system that are orret, but weremissed during the reation of the manually annotated orpus. In this respet, the results presentedin Table 4.6 unfairly penalize false positives, where these atually represent inonsistenies in theoriginal test data.



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 102Human e�ort AutomationPositiveannotationsseleted False positivesdeseleted True positivespresented(425 total) False positivespresentedHuman reates 15 positive annotations; trains:15 0 41 213Human selets 10 negative examples, and an additional 5 positive; trains:20 10 69 268Human selets 10 negative examples; trains:20 20 27 15Human selets 5 positive examples; trains:25 20 33 15Human selets 5 positive examples; trains:30 20 72 159Human selets 5 negative examples: trains:30 25 42 32Table 4.6: Evidene in support of a boot-strapping proess using the Objet annotation ategory.4.6.5 Summary of �ndingsThe experiments presented in Setion 4.6.4 provide insight into the harateristis of the rule-basedlearning system, with respet to the questions posed at the beginning of this setion:1. A small set of patterns exist in natural language that orretly identi�es a large portion ofannotations in a partiular ategory. These patterns are indued using hierarhial rule-basedlearning.2. The type of book makes a di�erene to the number and suess of patterns indued by thelearning system. Rules indued from one book are appliable to books of a similar type, butless so for books of di�erent type. However, inluding examples from di�erent types of booksinreases the auray of the indued rule-set over di�erent books.3. Example sets ontaining both positive and negative examples produe the best balane be-tween orret annotation reation, and false positive elimination. However, only a smallsub-set of negative examples is needed to remove the majority of false positives.4. Aurate rule-sets are indued for di�erent ategories of annotation using the same rule-struture.5. Aurate rule-sets are indued for di�erent annotation quali�ers (inluding text-referenesand semanti-onepts) using the same rule-struture.6. Hierarhial rule-based learning automates the reation of semanti annotations. Spei�ally:(a) 50% of the total examples are generalized into a rule-set that identi�es more than 50%of the annotations in that ategory.(b) Hierarhial rule-based learning redues the e�ort of reating annotations through theuse of a boot-strapping tehnique.



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 1034.7 ConlusionThis hapter presents hierarhial rule-based learning as a mehanism for automatially reatingannotations over �tion text. This learning system indues and generalizes patterns from exampleannotations provided by a human, and applies these patterns to text to aurately identify addi-tional annotations. Patterns are strutured as trees that abstrat input text on di�erent levels.We present algorithms that automatially reate these trees, generalize them, and apply them toexamples in the reation of new annotations.Hierarhial rule-based learning supports the automati reation of annotations in �tion text.With partiular referene to the problems listed in Setion 4.1.1, we onlude the following:1. Hierarhial rule-based learning indues patterns that re�et individual human disretionregarding the annotation task. Our automated mehanism an be re�ned to math a human'sannotation style, and produe similar annotations to the examples provided.(a) Hierarhial rules express patterns for identifying annotations, using both struturaland syntati properties of text. These provide an e�etive mehanism for expressingpatterns in the English language that identify annotations in �tion text.(b) A model for reating annotations is represented using a set of rules. A rule-set enap-sulates a wide range of senarios peuliar to a partiular ategory of annotation. Thisis signi�ant in that both ommon and rare senarios an be aommodated in a singlemodel.() The tree-struture of a rule provides for the abstration of onepts to reate generalizedrules. Generalized rules provide for the appliation of a model to unseen text in thereation of aurate annotations.(d) Rules generalized using our algorithms are onsistent (indiate the same answers as theoriginal rules, math with the two rules that result in its reation, and do not on�itwith other rules). This means annotation ability is not lost during the generalizationproess.(e) Tree mathing determines when a rule applies to a portion of text (and reate a orre-sponding annotation). This is made possible by the use of the same tree struture forrepresenting rules and unseen text.(f) Generalized rule-sets never produe fewer annotations than non-generalized rule-sets.The signi�ane is that additional orret annotations are reated by a generalized rule-set, supporting automation.2. Hierarhial rule-based learning indues models for multiple ategories of annotation. Thismeans that the reation of a rih intermediate representation (ontaining many annotationategories) is automated using this tehnique.(a) Rule-strutures an be tailored for di�erent ategories of annotation. The ore rule-setreation, generalization, and appliation proesses are independent of the rule-struture.Further annotation ategories an be de�ned without modifying the fundamental algo-rithms.



CHAPTER 4. CREATION OF ANNOTATED FICTION TEXT 104(b) Rule-strutures need not be ustomized every time a new annotation ategory is de�ned.Strutures exist for suessfully deriving rules in multiple ategories.3. Hierarhial rule-based learning quali�es annotations with text-referenes and semanti on-epts. This means that annotations are automatially parametrized appropriately for futureinterpretation proesses.(a) Tree-strutures provide for the reation of rules that identify quali�ers for an annota-tion. The impliation is that patterns indued by the learning system re�et strutural,relational and semanti patterns in the English language.(b) Rules are e�etive in assoiating semanti onepts to annotations without the use ofan external knowledge-base. This removes the need for subsequent disourse proessingin ertain ategories of annotation.Aurate models are indued over di�erent types of �tion text using hierarhial rule-based learn-ing. Some indued patterns are appliable aross di�erent books, but better quality models useexamples soured from a variety of book types. The boot-strapping proess that uses hierarhialrule-based learning automates the reation of annotations, and also redues the repetitive taskof reating examples for training a model. We onlude that the reation of the intermediaterepresentation in the form of annotated �tion text is automated using these methods.A model indued using hierarhial rule-based learning an potentially be onsidered a detailedknowledge-base, whih on�its with our desired knowledge-poor paradigm for ahieving the �tion-to-animation task. However, knowledge-entri systems use manually pre-onstruted bases ofspeialized knowledge to guide the text analysis proess (Coyne and Sproat, 2001; Lu and Zhang,2002; Ma, 2006). Our tehnique is knowledge-poor in that it makes no prior assumption (in termsof enoded knowledge) about how to perform the task, but rather indues assumptions from aspei� human. We believe that this distintion is in keeping with the knowledge-poor paradigmdesribed in Chapter 1.Hierarhial rule-based learning resembles existing tehniques in its ability to learn models fordi�erent ategories (although we annot ompare any two of these systems diretly, as desribedin Setion 4.2). Similar to existing information extration tehniques, our method exhibits a widerange of reall levels, depending on the ategory of annotation.The researh presented in this hapter ontributes innovative work with respet to the text-to-graphis and information extration domains:
• The use of a pattern-based information extration tehnique for reating semanti anno-tations is novel in the text-to-graphis �eld. The only other text-to-graphis system thatemploys information extration tehniques is CarSim, whih uses statistial mahine learn-ing algorithms (Johansson et al., 2005).
• We de�ne a set of semanti annotation ategories for identifying visual desriptions in �tiontext. The formalization of these ategories ontributes to the text-to-graphis domain in thatthey are the �rst that are formally spei�ed for handling �tion text.
• We ontribute to the domain of information extration by demonstrating that tree-struturesare e�etive for representing, abstrating, and generalizing patterns in free text.
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• We provide two innovative methods for generalizing patterns in natural language, usinggeneral and speial purpose childSubSeq wild-ards.
• The ability to indue models regarding di�erent quali�ers of annotations suh as triggers,text-referenes, and semanti onepts ontributes to the �eld of information extration. Theability to assoiate semanti data (without the use of a knowledge-base) and thus perform atype of disourse analysis is a signi�ant ontribution.Future work in this area inludes the extension of the orpus of annotated �tion text, in terms ofsize and in terms of the ategories of annotation reated over the orpus.



Chapter 5Constraint-based quanti�ation ofbehaviourThis hapter investigates the problem of quantifying behaviour in a virtual environment from aonstraint-optimization perspetive (desribed in Setion 5.1). The use of a onstraint optimizationmethod is motivated in Setion 5.2 by omparing alternative approahes to this problem. Wepresent an innovative optimization tehnique that loates solutions (or solution approximations)to onstraint systems de�ned over ontiguous intervals of time. This tehnique is based on intervalarithmeti, a brief overview of whih is provided in Setion 5.3. We develop an interval-basedoptimization approah for loating solutions (or solution approximations) to onstraint systemsin Setion 5.4. Properties of the interval-based optimization approah are investigated using asuite of benhmarks in Setion 5.5. We present onlusions and ontributions resulting from ourinnovations in Setion 5.6.5.1 Introdution5.1.1 Problem statementFition books desribe the set of entities that exist in an environment and the behaviour of theseentities. We use the term behaviour to refer to the positioning of an entity and its motion withinan environment. Behaviour is identi�ed in �tion text using ategories of annotation that sug-gest spatial onstraints between entities (further details on interpreting annotations are providedin Chapter 6). We investigate the problem of automatially quantifying behaviour in a virtualenvironment so that it onforms to spatial onstraints presribed by annotations. In partiular:1. We de�ne virtual environments in terms of spae and time, whih introdues the problemof quantifying behaviour that onforms to onstraints spei�ed over ontiguous intervals oftime.2. An animated �lm is onstruted as a sequene of lips, potentially �lmed out of order. Weinvestigate the quanti�ation of behaviour at any time-instant in a virtual environment,106



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 107Anne didn't very muh like a big brown ow who ame up lose and stared at her, but it went away when Daddytold it to....He tiptoed by him to the table behind his unle's hair.Figure 5.1: Example �tion text indiating spatial positioning and behaviour from the FamousFive 1: Five on a Treasure Island by Enid Blyton (1942).without simulating every instant of time in an inremental fashion until the desired state for�lming is reahed.3. We believe that desriptions in �tion text imply under-onstrained behaviour, the quanti�-ation of whih involves a searh for valid options. We investigate the problem of searhing,while direting the searh towards valid behaviour.4. We speulate that the more omplex the behaviour in the sene, the more di�ult the taskof quantifying the behaviour beomes. This translates to an inreased searh time. Weinvestigate the problem of providing behaviour on�gurations that only approximate thedesired behaviour, but whih are derived in spite of bounds on omputation time.5. We antiipate that annotations in �tion books are potentially �awed, either beause ofinonsistenies in the original narrative or beause of inonsisteny in manual or automatedannotation reation. Flawed annotations potentially translate to on�iting onstraints, andwe investigate the problem of approximating behaviour where suh on�its our.We investigate the above problems under the assumption that a proess exists for translatingannotations into onstraints (see Chapter 6 for this aspet of the problem). This hapter is on-erned only with onstraint optimization as a method for identifying preise numerial solutionsthat quantify visual behaviour.5.1.2 Problem formulationDesriptions found in �tion text imply the positioning or behaviour of entities within a sene. Anexample of �tion text ontaining suh desriptions is presented in Figure 5.1. These desriptionsare identi�ed using spei� ategories of annotation (for example, Transition or Relation annota-tions, as demonstrated in Figure 5.2). The Relation annotation illustrated in Figure 5.2(a) spei�esthat a �table� is �behind� a �hair�. The problem in this ase is to determine exat oordinates forthe �table� and �hair� objets so that the �behind� spatial-relation holds. The Transition annota-tion illustrated in Figure 5.2(b) spei�es that a �ow� is �outside� the environment, indiating thatan appropriate motion for the ow must be alulated so that this behaviour is visualized.The quanti�ation of behaviour involves alulating exat values that desribe an entity's be-haviour in a virtual environment. We de�ne an environment in terms of its dimension, its bound-aries, and the interval of time over whih the environment exists. We name eah environment asene, de�ned as follows:De�nition 5.1. De�ne S (dimension, boundary, time) to be a sene spei�ed as a Cartesian spaein a number of dimensions where eah dimension is bounded aording to a boundary. The seneexists over the duration spei�ed by time.
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behindTrigger:

Type:

Subject:

BEHIND

table

RELATION:

Object: chair

the table behind his uncle’s chair

BEHIND

(a) Relation annotation
wentTrigger:

Type:

Subject:

OUTSIDE

i t  <COW>

TRANSITION:

but i t went away when Daddy told i t  to.

OUTSIDE

(b) Transition annotationFigure 5.2: Example annotations from �tion text.
• Entity M has a trajetory de�ned as rM (t) = (1− t)pM

0 + tpM
1

• Entity N has a trajetory de�ned as rN (t) = pN
0Example system of onstraints over the two trajetories:

M near N : ||rM (t)− rN (t)||2 − (aM + aN + α)2 < 0∀t ∈ [tstart, tend]
M noCollide N : ||rM (t)− rN (t)||2 − (aM + aN )2 > 0∀t ∈ [tstart, tend]... Figure 5.3: Example set of time-based mathematial onstraints.For example S (2, {[−20, 20], [−20, 20]}, [0, 15]) is a sene in two dimensions, where eah dimen-sion is de�ned over the intervals [−20, 20]. This sene is spei�ed to last for 15 seonds.A sene ontains geometri models representing entities desribed in the �tion text. Textannotated in ategories suh as Relation or Transition onstrain a model's behaviour in a sene.For example, the Relation in Figure 5.2(a) desribes a onstraint over the behaviour of the �hair�and �table� models, speifying that the �hair� must be behind the �table�, no matter where the�table� model is plaed in the sene. The Transition illustrated in Figure 5.2(b) spei�es that the�ow� model must leave the sene, whih is interpreted as a onstraint on the behaviour of the�ow� that requires the model to be outside the boundaries of the sene at a ertain time.A sene is de�ned as an n-dimensional Cartesian spae, and this allows spatial onstraintsto be expressed as symboli funtions. We desribe the behaviour of entities in a sene usingtrajetories that are onstrained aording to the annotations. Phrased in this manner, the problemof behaviour quanti�ation is one of onstraint satisfation. Example trajetories are presented inFigure 5.3, along with examples of the symboli funtions that onstrain these trajetories.Senes are de�ned in terms of a spae interval (boundary) and a time interval (time). Thismeans that values must be found for the variables de�ning the trajetories that satisfy the on-straints both spatially, as well as over a ontiguous interval of time. This is represented in Figure5.3 by the expression ∀t ∈ [tstart, tend]. The inlusion of a temporal aspet to the formulationof onstraints presents a universally quanti�ed onstraint satisfation problem (Benhamou et al.,2004; Ratshan, 2006), where the time-dimension is said to be universally quanti�ed.We assume that onstraint systems suh as those illustrated in Figure 5.3 are reated auto-matially from annotations (see Chapter 6 for details on this proess). An automated proess hasthe potential to reate onstraints that on�it within the same system, in whih ase no solution



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 109
Fiction book

Problem 1: Text Analysis

  1.1) Linguistic indicators

  1.2) Annotation creation

Problem 2: Interpretation

   2.1) Interpretation of annotations

    2.2) Specification of behaviour 

           in a virtual environment

    2.3) Populating 3D environments

Intermediate 

representation

Animated 3D environment

Animated f i lm

Annotated f ict ion text

Automatic creation

of surface annotations

Machine-learning for

automating creat ion

of semantic 

annotat ions

Create structured 

scene descriptions

Automatic constraint

solving/optimization

Automatic populat ion

of 3D vir tual environment

Human knowledge:

- Manual examples

Human knowledge:

- Clarify l inguistic ambiguity

- Implied scene layout

- Creative ideas

Human knowledge:

- Creative enhancements

Interval-based quantif ied 

constraint optimizerFigure 5.4: Context of the interval-based quanti�ed onstraint optimizer with respet to the �tion-to-animation problem.exists. We prefer an approximate solution to be presented rather than no solution, beause thisguarantees quanti�ed behaviour that an be used to populate a sene (no matter how �awed).The problem investigated in this hapter is automatially �nding values for entity trajetoriesthat satisfy a system of onstraints. Constraints are expressed as non-linear, symboli funtionsthat inlude a universally quanti�ed time variable and spatial variables bounded to intervals.The solver must produe solutions that satisfy the onstraints over ontiguous intervals of time(where onstraint systems are onsistent), or produe approximations of quanti�ed solutions (whereonstraint systems are inonsistent).5.1.3 ContextThe researh presented in this hapter examines one sub-problem of the interpretation task inthe �tion-to-animation proess. The ontext of this problem within the onversion proess isillustrated in Figure 5.4. We examine a method that generates preise numerial values thatquantify behaviour in a virtual environment. These values are used in a subsequent omponent forpopulating a virtual environment that orresponds to the �tion text. The input to this proess isa set of onstraints derived automatially from an annotation interpretation module (desribed inChapter 6).5.2 Related workWe name the problem investigated in this hapter spatial reasoning, and this term desribes problemof deriving exat values that quantify an entity's behaviour in a virtual environment so that itvisually orresponds to the behaviour desribed by annotations. Spatial reasoning is haraterizedby the fat that behaviour is spei�ed using high level (non-detailed) instrutions, while the preisevalues de�ning behaviour in an environment are left to be alulated by an automated proess.We ategorize existing spatial reasoning tehnologies aording to the manner in whih pre-ise values are obtained. We identify two ategories, namely those that formulate these valuesinrementally through diret manipulation of the environment (environment-sensitive), and those



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 110that phrase the problem in terms of symboli expressions that are solved independently of theenvironment (environment-independent).5.2.1 Environment-sensitive reasoningWe broadly de�ne environment-sensitive reasoning as the olletion of tehniques that progresstowards aeptable behaviour by iteratively updating and evaluating behaviours of entities in theenvironment. These methods are haraterized by a tight oupling with the target environment,usually inluding diret manipulation and simulation of the environment in determining valuesthat desribe behaviour. Eah state in a time-based environment is the ulmination of all previousstates.We examine environment-sensitive reasoning in two ategories, namely those that are onernedwith stati environments (ontaining entities without motion), and those that are onerned withdynami environments (ontaining moving and non-moving entities).5.2.1.1 Stati environmentsSpatial reasoning in a stati environment is onerned with speifying the loation and orientationof entities within a �nite spae. Proedural methods suh as those desribed by Parish and Muller(2001) use a suite of hand oded rules to guide the plaement of roads and buildings in an environ-ment. This method is environment-sensitive in that the plaement of a road segment is a�etedby the plaement of previous road segments in the environment.An alternative method for spatial reasoning exists where the environment is desribed by a setof onstraints. Values that satisfy the onstraints de�ne the orret geometri layout of entities inthe environment. Environment-sensitive methods for performing the reasoning inlude stohastiand onstrutive methods (Le Roux and Gaildrat, 2003) (however, numerial methods also existfor these problems as shown in Setion 5.2.2). Stohasti methods progressively re�ne the layoutof entities in an environment by perturbing entity loations and evaluating the subsequent envi-ronment layout (aording to the degree to whih they satisfy the onstraints) (Xu et al., 2002;Sanhez et al., 2003). Construtive methods build the environment inrementally, by plaing asingle entity in the environment and then enumerating and testing every possible loation for thenext entity (Baykan and Fox, 1991; Kwaiter et al., 1998; Bonnefoi and Plemenos, 1999; Le Rouxand Gaildrat, 2003), then seleting only valid options.5.2.1.2 Dynami environmentsSpatial reasoning in a dynami environment is an example of the motion planning problem. Motionplanning initially emerged as a �eld of study in robotis with the aim of determining a path throughan environment that avoids ollisions between an autonomous agent and possible obstales (and issometimes referred to as the Piano Mover's problem in the �eld of Arti�ial Intelligene (Garberand Lin, 2003)). The motion planning problem is phrased in terms of a start-loation and a goal-loation within a workspae that ontains several obstales. The task of an autonomous agent isto �nd a ollision-free path from the start to the goal.



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 111We lassify motion planning tehniques in two ategories, namely global and loal tehniques,based on the information available to the agent during the reation of a path (Garber and Lin,2002).Global methods assume the prior existene of a populated environment, as well as global knowl-edge regarding the layout of obstales within it (Foskey et al., 2001; Garber and Lin, 2002). Prob-abilisti road-map algorithms are examples of global methods and funtion by seleting randomsamples aross the workspae, and then onneting samples with paths (Overmars, 1992; Kavrakiand Latombe, 1994; Overmars and vSvestka, 1995; Salomon et al., 2003). The path from the startloation to the goal loation is determined by searhing the resulting graph using algorithms suhas A* (Calomeni and Celes, 2006). This algorithm assumes global knowledge in the sense thatthe loation of obstales aross the environment is available for use by the agent in reating agraph. Paths that result in ollisions with these obstales are deteted and removed. Probabilistiroad-map algorithms ater for stati obstales (Kavraki and Latombe, 1994; Pettré et al., 2003)and dynami obstales (Gayle et al., 2005; van den Berg and Overmars, 2006), and many motionplanning problems make use of some variant of this tehnique (Koga et al., 1994; Nieuwenhuisenand Overmars, 2003; Pettré et al., 2003). Another example of a global motion planning teh-nique is ell deomposition, whih breaks the workspae into a number of simple ells (Ku�ner Jr.,1998; Latombe, 1999), using shortest-path algorithms to determine paths from the start-loationto goal-loation.Loal motion planning tehniques are employed when an agent does not have global knowledgeof the workspae, and repeatedly observes the environment to detet and avoid obstales. Anexample is the potential-�eld method that assoiates attrative and repulsive fores to obstalesin the environment. The agent is attrated to the goal loation, while repulsed from obstales(Druker and Zeltzer, 1994; Hong et al., 1997; Ge and Cui, 2002).Motion planning tehniques exist that speify onstraints over the motion of an entity, inaddition to the task of �nding a path that avoids ollisions. Examples of suh onstraints inludeforing agents to adhere to physial laws suh as gravity and volume preservation (Gayle et al.,2005), or for maintaining onnetivity between joints in artiulated models (Garber and Lin, 2002).These onstraints are used in ombination with loal or global path planning tehniques, whereonstraints are evaluated to determine whether the next disrete move of the entity satis�es orminimizes the set of onstraints.Global motion planning tehniques are environment-sensitive beause they require repeatedqueries to the environment for setting up a path, espeially where other dynami entities our ina sene. Loal motion planning tehniques are environment-sensitive beause the loation of anentity in an environment is determined in relation to its previous loation. If a partiular time-instant in an environment is required (for �lming), then every environmental state prior to therequired time-instant must be simulated to that point.5.2.2 Environment-independent reasoningTehniques for spatial reasoning exist that phrase the problem in terms of symboli funtions thatare solved analytially or numerially. These tehniques remove the need for simulation or tightoupling with the environment, and transform behaviour quanti�ation into a general onstraint



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 112satisfation problem. All that is required is a set of symboli onstraints, a set of variables, andinitial domains for eah variable. An independent onstraint solver is applied to loate a solution.We onsider approahes for quantifying behaviour in stati and dynami environments.5.2.2.1 Stati environmentsBehaviour of entities in a stati environment is onerned only with layout. Constraints are for-mulated as symboli inequalities that de�ne the layout of the environment, and solving tehniquessuh as linear programming are used to determine values that satisfy these onstraints (de Vriesand Jessurun, 2000).5.2.2.2 Dynami environmentsReasoning regarding entities with motion is ompliated by the time dimension. In pratie, time isrepresented as another variable in eah onstraint. However, solutions must satisfy the onstraintover the entire interval of time. The lassial approah is to disretize the time dimension into asequene of values, and perform onstraint solving at eah disrete point (Witkin and Kass, 1988).This approah is used for text-to-graphis researh by the CarSim system (Johansson et al., 2005).The disretization of time-intervals is avoided in the �eld of automated amera ontrol byrepresenting time as ontiguous intervals rather than breaking the time dimension into disretepoints (Jardillier and Languénou, 1998; Benhamou et al., 2004). Interval methods for motionplanning are based on Interval Analysis, the �eld of mathematis onerned with the use of intervalsof real numbers rather than �nite values during alulations. This allows a time variable to berepresented as a ontiguous interval, for example T = [tstart, tend]. An advantage of this approahis that solutions to onstraint systems an be found that are guaranteed to be valid over ontiguousintervals.Interval arithmeti is used in a number of appliations in omputer graphis beause of itsusefulness in solving systems of onstraints, namely ray traing of parametri surfaes (Toth, 1985;Mithell, 1991), ontour traing and impliit surfaes (Mithell, 1991), ollision detetion (Snyderet al., 1993; Redon et al., 2002), and approximations of o�sets/bisetors/medial-axes (Oliveira andDe Figueiredo, 2003).5.2.3 Interval-based onstraint solving as an environment-independentspatial reasoning mehanismBoth environment-sensitive and environment-independent methods have advantages with respetto the task of spatial reasoning. Environment-sensitive methods do not require formulations ofexpliit expressions that require solving, and are also useful for real-time motion planning. Inontrast, environment-independent methods are haraterized by the following advantages:
• A solution determined by an environment-independent method desribes entity behaviourat any point in the sene, without the need for prior states to be alulated �rst. This isthe primary di�erene to environment-sensitive methods that require the environment tobe repeatedly updated, with the e�et that every state of the environment is a funtionof all previous states. In terms of �tion-to-animation onversion, a solution provides the



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 113ability to instantiate a sene at any point, without pre-onstruting the entire duration ofthe environment.
• Environment-independent methods separate the problem domain from the solution strategy,unlike environment-sensitive methods in whih the environment is repeatedly updated andevaluated during the reasoning proess. Environment-independent methods pose the problemas a set of domain independent onstraints that are solved using an arbitrary solver. Thissolver is independent of the problem domain, and an be improved or replaed withoutmodifying the original problem.Based on these observations, we employ an environment-independent method for performing spatialreasoning. This means that behaviour of entities in a sene is desribed by systems of onstraintsthat require solving. Interval-based solving methods have bene�ts unavailable to other forms ofonstraint solving (for example linear programming (de Vries and Jessurun, 2000), or Newton-Rhapson solving (Witkin and Kass, 1988)):
• Time (and other quantities) is represented as ontiguous intervals using interval onstraintsolving. This is suitable given our de�nition of a sene that spei�es the spae and time interms of intervals (De�nition 5.1 on page 107).
• Interval arithmeti avoids the need to sample the time dimension at disrete points. Teh-niques exist in interval-based onstraint solving that are apable of providing solutions toquanti�ed onstraint systems, that is, onstraints that are spei�ed over ontiguous intervalsof time.
• Interval-based tehniques solve an entire quanti�ed system in a single operation, rather thaninvoking a solver at eah disrete time instane. This provides for more e�ient solving.
• The output from an interval onstraint solving proess is a set of ontiguous intervals, anyvalue from whih represents a solution to the onstraint system. This provides a range ofvalid behaviour options for a sene.Most appliations of interval arithmeti in onstraint solving are onerned with loating a solutionto a system of equations or inequalities, spei�ally in the amera ontrol domain (Jardillier andLanguénou, 1998; Benhamou et al., 2004). However, we presume that onstraints are automatiallygenerated by the �tion-to-animation system, and that some automatially generated onstraintsystems have the potential to be inonsistent. Existing onstraint solvers perform an exhaustivesearh of the on�guration spae before onluding that no solution exists. An optimization meh-anism is preferable, so that trajetories are spei�ed even in the absene of a onsistent solution.Optimization tehniques exist that are based on interval arithmeti (Snyder, 1992; Huyer andNeumaier, 1999; Dolgov, 2005), but these methods do not ater for universally quanti�ed variables.This hapter desribes an optimization tehnique for onstraint systems ontaining universallyquanti�ed variables. This tehnique is based on existing universally quanti�ed onstraint solvingmehanisms (Benhamou and Goualard, 2000; Benhamou et al., 2004).



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 1145.3 Interval analysis and universally quanti�ed onstraint solv-ingThis setion provides a brief introdution to interval arithmeti, after whih tehniques in interval-based onstraint solving are desribed. We fous on quanti�ed interval-based onstraint solving,primarily using tehniques developed by (Benhamou et al., 2004) and (Benhamou and Goualard,2000) and relevant portions of this researh are desribed here. Formal desriptions and proofsof these proesses are not reported in this exposition, but are loated in the original soures(Benhamou et al., 1994; Benhamou, 1995; Benhamou and Older, 1997; Benhamou et al., 1999;Benhamou and Goualard, 2000; Benhamou et al., 2004).Interval Analysis was pioneered by Moore (1966) as a method for oping with round-o� errorsthat our during alulations performed by mahines with limited representation for �oatingpoint numbers. Real numbers are replaed by intervals that ontain them and whose bounds aredesribed using omputer representable numbers. For instane, the onstant π is represented as
[3.14, 3.15] rather than a single �oating point number rounded up or rounded down (Benhamouet al., 2004). Complete theoretial expositions in interval arithmeti and analysis are providedby Moore (1966) and Neumaier (1990), and the following setions desribe only those aspetsneessary for investigating the quanti�ed onstraint satisfation problem.5.3.1 Interval analysisThis setion develops the fundamentals of interval analysis that are used for subsequent onstraintsolving tehniques. Let R be the set of real numbers. F is the set of omputer representable �oatingpoint numbers, and is a subset of the set of real numbers suh that F ⊂ R. A set of real numbersis represented on a omputer by speifying �oating point bounds, as desribed by the followingde�nition:De�nition 5.2. Floating point interval (Moore, 1966): A �oating point interval is a set of realnumbers bounded on either side by �oating point numbers. Formally1, given g ∈ F and h ∈ F,then [g, h] = {r ∈ R|g ≤ r ≤ h}. Therefore, the interval [g, h] ontains every real number between(and inluding) g and h.The set of all intervals is denoted as I, and a single interval is denoted using a apital letter(for example, I = [g, h]). For the remainder of this hapter, unless otherwise stated, small lettersrepresent �oating point numbers. It is often neessary to refer to the lower or the upper-bound ofan interval, and this is indiated using lower(I) and upper(I) respetively.The set of primitive operations used for real numbers are extended to interval arithmeti in aonservative manner. All real numbers that ould possibly our as a result of the operation areinluded in the result:De�nition 5.3. Interval Extension. De�ne ♦(x1, ...xn) 7→ R to be a real-valued operation on-sisting of n real-valued operands (xi ∈ R). An interval extension of operation ♦ is denoted as1Similar to Moore (1966), this exposition uses the notation {x|P (x)} for �the set of x suh that the proposition
P (x) holds.
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�(X1, ...,Xn) 7→ I, whih is the orresponding operation extended to funtion over n �oating-pointintervals (Xi ∈ I), suh that:

x1 ∈ X1, ..., xn ∈ Xn ⇒ ♦(x1, ...xn) ⊂ �(X1, ...,Xn)De�nition 5.3 means that an interval extension of a real valued operation produes an intervalontaining the result produed by the orresponding real-valued funtion if the operands of thereal-valued funtion fall within the orresponding interval operands. Natural interval extensionsof elementary operations are de�ned by Moore (1966) as follows:De�nition 5.4. Let A = [a, b] and B = [c, d]. Natural interval extensions of real-valued elementaryoperations are de�ned as follows:
• Addition: A⊕B = [a+ b, c+ d]

• Subtration: A⊖B = [a− d, b− c]

• Multipliation: A⊗B = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

• Division: A⊘B = [a, b]⊗ [1/d, 1/c] if 0 /∈ [c, d], unde�ned otherwiseThe natural interval extension of a real-valued funtion f(x1, ..., xn) is the funtion F (X1, ...,Xn)onstruted by replaing eah real-valued elementary operation in f with a orresponding naturalinterval extension, and replaing eah real value xi with a orresponding interval Xi.Interval extensions of real-valued funtions have an important property, desribed by the fun-damental theorem of interval analysis (Moore, 1966; Benhamou et al., 1994). If F (X1, ...,Xn)is an interval extension of the real valued funtion f(x1, ..., xn), then the interval produed by
F (X1, ...,Xn) ompletely ontains any real-value produed by f(x1, ..., xn) as long as any realnumber xi is in the orresponding interval Xi:

x1 ∈ X1, ..., xn ∈ Xn ⇒ f(x1, ...xn) ⊂ F (X1, ...,Xn)The fundamental theorem of interval analysis leads to an important property, namely that aninterval extension of a real-valued funtion is inlusion monotoni. This means that the intervalextension of a funtion is guaranteed to return an interval ontaining the real-valued result for any
xi ∈ Xi. This property implies that interval arithmeti is a onvenient mehanism for alulatingthe range of a real-valued funtion over a spei� domain. However, natural interval extensionsare onservative in their approximation. While an interval returned by an interval extension of afuntion ontains the omplete range of the real-valued funtion, it potentially ontains values thatare not in the range. Alternatives to natural interval extensions exist that more tightly bound therange of a funtion, but are more omputationally expensive to implement (van Hentenryk et al.,1997).Union and intersetion operators are often used in interval onstraint solving. Let I1 and I2 betwo intervals, then the union of the two intervals is the smallest interval ontaining both I1 and
I2:

I1 ∪ I2 = [min (lower(I1), lower(I2)) ,max (upper(I1), upper(I2))]



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 116The intersetion of two intervals is the largest interval ommon to I1 and I2. Let
IU = [max (lower(I1), lower(I2)) ,min (upper(I1), upper(I2))], then the intersetion is one of twooptions:

I1 ∩ I2 =







IU if lower(IU ) ≤ upper(IU )

undefined if lower(IU ) > upper(IU )An interval I = [a, a] is alled a degenerate interval, and is used to represent onstants. Aanonial interval is an interval of the form I = [a, b] where b is the next �oating point value after
a. Canonial intervals are the smallest possible interval representable on a mahine with limited�oating point representation.The following examples are provided to demonstrate interval arithmeti:Example 5.5. Let A = [−3, 2] and B = [2, 4] then:
• A⊕B = [−1, 6]; A⊖B = [−7, 0]; A⊗B = [−12, 8]; A⊘B = [−1 1

2 , 1]

• A ∪B = [−3, 4]; A ∩B = [2, 2]

• if f(a, b) = a+ 2 ∗ b then F (A,B) = A⊕ 2⊗B = [−3, 2]⊕ [2, 2]⊗ [2, 4] = [1, 10]The Cartesian produt of a set of n intervals is alled a box, suh that B = I1 × I2 × ... × In.Boxes are denoted using boldfae apitals.5.3.2 Solution-bounding using interval analysisInterval analysis lends itself to onstraint solving beause of its ability to ompute the bounds overthe range of a funtion. For example, assume that the onstraint f(x) < 0 must hold given aertain variable x and a �nite domain for x. If the interval extension F (X) = [a1, a2] (where X isan interval onstruted using the lower bound and upper bound of the domain of x) evaluates toan interval for whih a2 (the upper bound) is less than zero, then the onstraint is guaranteed tohold for all values in X. If a1 (lower bound) is greater than zero then the onstraint never holdsfor any value in X. These observations are a diret result of the fundamental theorem of intervalanalysis. However, beause of the exaggerated bounds resulting from natural interval extensions,the onstraint is not guaranteed to hold over the entire domain if 0 ∈ [a1, a2], nor is it guaranteedto violate the onstraint over the entire domain.Moore (1966) proposes a solution to the problem of exaggerated bounds. The narrower thedomain of a funtion beomes, the more aurately the interval extension approximates the real-valued funtion. For example, a more aurate approximation of the funtion F (X) is evaluatedby splitting the domain represented by X into a number of smaller sub-intervals and taking theunion of eah resulting range: X = [b1, b2] ∪ [b2, b3] ∪ ... ∪ [bn−1, bn]. Spei�ally, Moore (1966)proves that:
lim

n→∞

n−1
⋃

i=1

F ([bi, bi+1]) = {f(x)|x ∈ [b1, bn]}If a problem is phrased so that all values of x must be found that satisfy f(x) < 0, then intervalarithmeti an be used to loate intervals within X that satisfy the onstraint. If the originaldomain does not onlusively satisfy the onstraint, then the interval X an be reursively split



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 117until the interval evaluation of the funtion over the sub-interval onlusively veri�es or violatesthe inequality. The method of alternating evaluation and splitting steps forms the basis of aninterval-based onstraint solving algorithm, whih is onerned with loating all solutions to a setof non-linear onstraints (inluding inequalities). The searh spae is evaluated as being a validsolution, no solution, or indeterminate. In indeterminate ases, the spae is split and re-evaluatedin a reursive fashion (Jaulin and Walter, 1993, 1996; Jardillier and Languénou, 1998). No furthersplits our when the intervals beome anonial, and no further splits an be represented on the�oating point mahine.We use the following terminology for onstraint solving, assuming that a onstraint f(x1, ..., xn) <

0 is de�ned over n variables: the value of eah variable xi is drawn from a �nite interval of realnumbers Xi whih is the domain of that variable. The domain of the funtion f is represented bythe box B = X1×...×Xn, and this domain is loosely referred to as the searh spae or on�gurationspae beause it is to be searhed for solutions that satisfy the onstraint.5.3.3 Constraint propagation using loal onsisteniesConstraint solving mehanisms bene�t from propagation tehniques that remove values from thesearh spae that annot possibly satisfy the onstraints. Interval arithmeti is shown to be bene-�ial in this regard (Cleary, 1987; Older and Vellino, 1990; Puget, 1994), and relevant tehniquesfor this are desribed in this setion.We make use of an example to illustrate the onepts used for onstraint propagation in intervalarithmeti. Consider the following onstraint:
c : x+ y = zThis onstraint onsists of three real valued variables, x, y, and z. Any onstraint de�nes a relationbetween sets of real values, where values from these sets validate the onstraint. In the exampleonstraint, the relation desribes the sets of real numbers for the variables x, y, and z that ausethe onstraint to hold (Benhamou and Older, 1997). A relation is expressed using the symbol ρand is de�ned as follows:De�nition 5.6. An n-ary relation ρc is the set of n-tuples of real numbers that validate a onstraint

c (Hikey et al., 1998).A relation di�ers from a solution to a onstraint in that a relation desribes every possibletuple of real values that validates the onstraint. A solution is a sub-set of the underlying relation:De�nition 5.7. A solution to a onstraint is a sub-set of n-tuples from the relation of the on-straint.Aording to De�nition 5.6, the relation for onstraint c is the set of 3 − tuples in R
3 thatvalidates it. Given the initial domain for the onstraint represented as a box B = X × Y × Z,the intersetion of the relation and the box ρc ∩B represents a solution to the onstraint over theinitial domain.An initial domain is not always a subset of the relation of the onstraint. For example, assumethat eah variable x, y, and z have initial domains X = [−3, 2], Y = [1, 2] and Z = [0, 100]. The



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 118Cartesian produt of X, Y , and Z form a box B that enloses all or part of the relation. The box
B = X × Y × Z does not exlusively desribe the relation of c beause if x = −3 and y = 1 then
x+ y = −2 whih is not part of the domain of Z.It is possible to narrow an initial domain so that it more aurately approximates the relationby removing portions of the box that violate the onstraint. The exat values for ρc are notknown, but ρc ∩ B is approximated using projetions of box B that are de�ned aording toproperties of the operators involved in the relation (de�ned by Hikey et al. (1998)). For example,the addition operator implies three relationships, namely that the addition of the operands equalsthe sum, and that the di�erene between the sum and one operand equals the other operand(for both operands). Values violating these properties are removed from the domains using threeorresponding projetion operators:

πX(ρc ∩B) = X ∩ (Z − Y )

πY (ρc ∩B) = Y ∩ (Z −X)

πZ(ρc ∩B) = Z ∩ (X + Y )The Cartesian produt of πX , πY , and πZ results in B′, a narrowed box that better approximates
ρc. In the example, Z is redued to [0, 4] as a result of the πZ projetion as follows:

(X + Y ) ∩ Z = ([−3, 2] + [1, 2]) ∩ [0, 100] = [−2, 4] ∩ [0, 100] = [0, 4]Further projetions over elementary operations inluding subtration, division, and multipliationare also de�ned by Hikey et al. (1998). Projetions are not always su�ient to alulate exatvalues for ρc ∩ B, espeially when a onstraint ontains more than a single operation. In asessuh as these, ρc ∩ B an only be approximated using propagation tehniques based on hull andbox onsisteny.5.3.3.1 Hull onsistenyDisarding all real numbers from a box that do not satisfy a onstraint is not ahievable in thegeneral ase, and so a oarse method alled hull onsisteny is used to alulate the smallestbox ontaining all ρc ∩ B (Benhamou and Older, 1997). If r is a real number, then the funtion
Hull(r) 7→ I returns the smallest �oating-point interval I ontaining r. More generally, the funtion
Hull�(B) 7→ B′ returns the smallest �oating-point box B′ ontaining box B (Benhamou et al.,1994; Benhamou, 1995).Given a onstraint c and a domain expressed as a box B, the term hull onsisteny is used toindiate that B represents the smallest box ontaining ρc. A real onstraint c is hull onsistentwith respet to a box B if and only if B = Hull�(ρc ∩B) (Benhamou et al., 1999).Hull onsisteny is ensured if the smallest box is found that ontains all tuples that form thesolution from the initial domain. The relation ρc is potentially omprised of multiple disjoint boxes,and in this ase the hull of this relation ontains tuples that are not part of the solution.Hull onsisteny is ahieved using a hull onsisteny operator, an algorithm that makes useof projetions to determine the hull of ρc ∩ B. Benhamou et al. (1999) present an algorithmalled HC4, whih ahieves hull onsisteny for non-primitive onstraints. HC4 is a method for



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 119narrowing an initial box aording to a set of arbitrary onstraints, or deteting when a box doesnot ontain any portion of the relation. The algorithm formulates an evaluation tree for eahonstraint, where eah node in the tree desribes a primitive operation. Projetion operators areinvoked at eah node in the tree, resulting in a narrowed domain. Domains are narrowed repeatedlyuntil no further narrowing ours, a proess alled haoti iteration (Apt, 1999). Algorithm HC4is explained further in Appendix C, and spei� detail and proofs regarding this algorithm areprovided by Benhamou et al. (1999).Hull onsisteny does not guarantee that the returned box ontains only the solutions. Partof the ause of this is that the projetion operators are not always able to narrow the domains ofvariables any further without the risk of losing valid solutions. Related researh also aknowledgesthat hull onsisteny is limited in its ability to handle onstraints in whih a single variable oursmultiple times (Benhamou et al., 1994). As a result, a tighter form of narrowing is used based onthe idea of box onsisteny.5.3.3.2 Box onsistenyThe primary problem with hull onsisteny over omplex onstraints (onstraints ontaining mul-tiple instanes of the same variable (Benhamou et al., 1994)) is the deomposition of the onstraintexpression into elementary operations (at eah step in the evaluation tree). This introdues depen-deny problems between eah instane of the same variable (Benhamou et al., 1999). To overomethis, box onsisteny avoids deomposition, and hene is able to produe tighter narrowing of aninitial box.The onditions for box onsisteny are more omplex than for hull onsisteny. Let a onstraint
c ontain k variables, where eah variable vi is de�ned over a domain Di from the box D. Theonstraint is rewritten as a set of k univariate onstraints Ci where 1 ≤ i ≤ k. Every variable in
Ci is replaed with its orresponding domain, exept for the variable vi. D is box onsistent if thefollowing relation holds (for all 1 ≤ i ≤ k):

Di = Di ∩ {vi ∈ R|Ci(D1, ...,Di−1, vi,Di+1, ...,Di)}Simply stated, a box D is box onsistent if every Di ∈ D represents the hull of the solution tothe ith univariate onstraint.Intervals forDi that exhibit box onsisteny are determined using an iterative algorithm. Givena onstraint Ci, we replae eah variable with its domain in the input box, exept for one variable.This transforms the onstraint into a univariate interval funtion. The bounds on the solutionsin Di to the univariate funtion are then loated. Finding the bounds of Di is ahieved by usingroot �nding methods (typially the Interval Newton Method) over the univariate funtion. Morespei�ally, the left most and right most root is loated.Benhamou et al. (1994) de�ne an algorithm alled BC4 that ahieves box onsisteny overa set of onstraints, and that is apable of narrowing the initial domain more tightly than hullonsisteny. BC4 is also able to detet when a domain ontains no solutions. BC4 uses analgorithm alled BC3Revise that ahieves box onsisteny for a single onstraint at a time. Thesealgorithms are desribed in detail by Benhamou et al. (1999), as well as in Appendix C.



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 120Both hull and box onsisteny operators are e�etive for removing portions of the searh spaethat do not form part of a solution to a set of onstraints. These narrowing operators are termedouter ontrating operators beause they ontrat the domain as muh as possible without removingany portion of the solution spae (Benhamou et al., 2004). However, neither of these tehniquesguarantee that a narrowed box ontains only solutions, and so outer ontrating operators aloneare not su�ient for loating the solution to a set of onstraints. Boxes that exlusively ontainsolutions are sound, and further methods are required to loate sound solutions to a system ofonstraints.5.3.4 Sound onstraint solvingSound onstraint solving tehniques produe boxes that ontain only solutions. We are interestedin onstraint systems de�ned over universally quanti�ed variables, and the de�nition of a solution isextended to enompass this onept. Constraints with universally quanti�ed variables are requiredto hold over the entire ontiguous intervals de�ned by these variables. This means the initialdomain of a universally quanti�ed variable must be idential to its orresponding domain in thesolution box:De�nition 5.8. A solution to a onstraint ontaining a universally quanti�ed variable u ontainsthe entire initial domain of u.Outer ontrating operators impliitly identify boxes that are not solutions to universally quan-ti�ed onstraints, beause any narrowing that ours over the domain of the universally quanti�edvariable violates the universal requirement. If this ours, then the box is guaranteed not be auniversally quanti�ed solution.An inner ontrating operator produes boxes that fall exlusively within the solution spae(Benhamou and Goualard, 2000; Benhamou et al., 2004) and disards all values from the initialbox that do not form part of the solution, as well as values that form part of the solution butannot be enlosed in a omputer representable box.An inner ontrating operator narrows a domain using the original set of onstraints, andthen narrows the domain over the set of negated onstraints (that is, where relational symbolsare reversed, for example from > to ≤). Narrowing over the negated onstraints removes portionsfrom the domain that are guaranteed to be non-solutions to the negated onstraint. These removedportions are then guaranteed to be solutions to the original onstraints by impliation. This proessis illustrated in Figure 5.5 for a onstraint that inludes a universally quanti�ed variable.In Figure 5.5(a), the initial box B is narrowed using the outer ontrating operator over aonstraint and produes box B′ eliminating some, but not all, invalid ranges of values from theinitial domain. Narrowing operators never disard solution spae, and if the universally quanti�edvariables are narrowed in this step then it means that no solutions exist in B and this box isdisarded.
B′ is then narrowed using the orresponding negated onstraint, whih is derived by invertingthe relation operator from > to ≤. The result of this narrowing is box B′′, as illustrated inFigure 5.5(b). This narrowed box ontains all solutions and possibly non-solutions to the negatedonstraint. However, the di�erene between the original box B′ and this narrowed box B′′ isguaranteed to be a solution to the original onstraint, beause it is guaranteed to be a non-solution
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B(e) A ompletely subsumed by BFigure 5.6: Illustration of set di�erene between two intervals.to the negated onstraint. Using this reasoning, solutions are found without the need to evaluatethe funtions and risk exaggerated range bounds. In addition, a solution is identi�ed withoutsampling over the universally quanti�ed variable t.The solution of the negated onstraint is the inverted solution of the original onstraint, andany box-set di�erene between B′ and B′′ is guaranteed to be a solution to the original onstraint.Set di�erene is di�erent to the subtration of intervals, and is illustrated graphially in Figure5.6. In eah example B is subtrated from A, and the set di�erene is unde�ned if B ompletelysubsumes A (Figure 5.6(e)). If A ompletely subsumes B then the set-di�erene results in twointervals (Figure 5.6()). Box-set di�erene is the set di�erene of eah domain within the twooperand boxes, and potentially returns more than a single box as a result.Figure 5.5() indiates two options for alulating the box set di�erene. The �rst optionyields a solution P that spans all t and is a universally quanti�ed solution (Q is not a universallyquanti�ed solution in this respet). If further solutions are required, then B′′ is searhed furtherfor solutions. This has the e�et of narrowing the universally quanti�ed domain, beause theonstraint is guaranteed to hold for any x over the entire sub-interval of t in Q′.If a solution is not enountered, then box B′′ is split along any domain exept that of the uni-versally quanti�ed domain, and the proess repeated on eah sub-box. The proess of ontratingand splitting is repeated until boxes beome anonial, or solutions are found.The above tehnique is apable of loating solutions for universally quanti�ed variables withoutrequiring an evaluation step, and also enables the redution in size of the universally quanti�eddomain. Benhamou et al. (2004) formalize this tehnique as the ICO2 algorithm that ats as aninner ontrating operator over a single onstraint. Solving for a set of onstraints is ahieved by�nding all solutions for eah onstraint in turn, and using the solutions for eah onstraint as initialboxes for the next onstraint to be onsidered. The exat algorithm for a system of onstraints isformally desribed by Benhamou et al. (2004) as the IPA algorithm. IPA is shown to be sound,that is, boxes returned by the algorithm ontain only solutions.Figure 5.7 illustrates the various omponents of a sound onstraint solver. The IPA algorithmis used to loate sound solutions to a system of onstraints. It uses the ICO2 algorithm to loate
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Figure 5.7: Illustration of the omposition of a sound interval onstraint solver by Benhamou et al.(2004).sound solutions for eah onstraint in turn. The ICO2 algorithm uses a narrowing operator, namely
BC3Revise to narrow the domain over the onstraint, as well as over the negated onstraint.5.3.5 Alternative formulations of interval onstraint solvingSome interval extensions of primitive operations are more rigorously de�ned to provide intervalevaluations with tighter bounds. For instane, Hikey et al. (2001) indiate that the division op-eration need not be unde�ned if the denominator interval ontains zero, but rather produes twodisjoint intervals. In the tehniques desribed until this point, one interval is used to subsumedisjoint intervals for the reason that preserving disjoint intervals is too omputationally expen-sive (Benhamou et al., 1994). Alternative methods exist that maintain disjoint intervals however(Chabert et al., 2005), and in some instanes this is shown to improve splitting strategies (Batniniet al., 2005).Other improvements to the onstraint solving tehnique inlude deteting and using yleinformation between onstraints to optimize haoti iteration (Lhomme et al., 1998), removingonstraints from the system as they are satis�ed (Borning et al., 1996) and performing intervalnarrowing on a parallel arhiteture (Granvilliers and Hains, 2000). Ratshan (2006) proposes amore generalized quanti�ed onstraint solver that splits the universally quanti�ed domain (unlikeBenhamou et al. (2004) who never split these domains), and ensures that a solution exists for allsub-domains of the universally quanti�ed domain. We follow the work by Benhamou et al. (2004)in this hapter.5.4 Interval-based quanti�ed onstraint optimizationThis setion desribes our innovative approah to loating solutions to quanti�ed onstraint sys-tems. Interval-based onstraint solvers (suh as the one desribed in Setion 5.3.4) fail when faedwith onstraint systems that are inonsistent, or are ine�ient for systems in whih solutionsonsist of small disjoint portions of the searh spae:
• Constraint solvers are interested in �nding only global solutions. If a onstraint system isinonsistent, then an extensive searh is performed without any immediate results. The resultis stritly binary: a solution, or no solution.
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• The solver presented in Setion 5.3.4 is a split and searh algorithm in the worst ase.Unless tailored heuristis are employed (for example alternative spae traversal strategies(Benhamou et al., 2004) or �oordinate searh� (Huyer and Neumaier, 1999)) there is noorrelation between the amount of searhing performed and the proximity to a solution.We desribe an optimization strategy that addresses both these problems, while maintaining theability to loate universally quanti�ed solutions. We use the term optimizer to refer to the proposedalgorithm, and the term solution to refer to a box that satis�es a set of onstraints. We use theterm minimizer when referring to a box that approximates a solution.The optimization strategy desribed in this setion uses the quanti�ed onstraint propagationand sound onstraint solving tehniques presented in Setion 5.3.4. This strategy is able to providea minimizer at any point (even if the minimizer is not a proper solution to the onstraint system).The longer the optimization ontinues, the more the minimizer resembles the atual solution ofthe onstraint system. If the onstraint system is inonsistent, then the minimizer approximates asolution even though one does not exist.The following setions desribe the onept of relaxed onstraints and how these are used toahieve optimization.5.4.1 Optimization using relaxed onstraintsOur tehnique for optimization is based on the following onjeture:Conjeture 5.9. Assume a onstraint c with underlying relation ρc an be �relaxed� in somemanner, so that the underlying relation of the relaxed onstraint ρδ

c ompletely ontains ρc, that is
ρc ⊆ ρδ

c. We speulate that approximating ρδ
c is a �simpler� task than approximating ρc in the asewhere ρc exists, and that ρδ

c is a �minimizer� for the onstraint in the ase where the onstraint isinonsistent.Figure 5.8 provides an illustration of Conjeture 5.9, in the ase where a solution exists. Assumesome onstraint F (B) < 0 is applied over a domain represented by box B. The onstraint isrelaxed by rephrasing the onstraint as F (B) < δ given a large enough δ. Loating a solution forthis relaxed onstraint does not require any splitting or narrowing of B given a large enough δ. For a redued value of δ, the task of loating solutions is more di�ult, but still requires lesssplitting than the original onstraint.For this exposition we disuss onstraints that are phrased in the manner c : f(x1, ..., xn) ≤ 0,but all the desribed methods are appliable to other inequality relations. We relax a onstraintby replaing the zero on the right hand side with a value δ (alled the relaxation onstant) that isgreater than zero, in the following manner:
cδ : f(x1, ..., xn) ≤ δWe assume that a large enough value of δ exists that auses the onstraint to hold over the initialdomains of x1, ..., xn.Example 5.10. Let c be a onstraint de�ned as follows: c : 2x + y ≤ 0 where x ∈ [−2, 4] and

y ∈ [−1, 2]. Evaluating the interval extension of f over the original domain results in F (X,Y ) =
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Figure 5.8: Illustration of interval optimization proess.
[2, 2] ∗ [−2, 4] + [−1, 2] = [−5, 10]. This interval does not verify the onstraint (not all numbersare less than or equal to zero), and so a relaxation onstant δ = 10 is hosen so that F (X,Y ) =

[−5, 10] ≤ [10, 10].Example 5.10 illustrates that an initial value for δ is found using the interval evaluation ofthe funtion over the initial variable domains. This method is used to determine the relaxationonstant, and the initial domain is a solution to the relaxed onstraint.The value of δ is redued and the newly tightened onstraint is solved one again, resultingin a solution that is a sub-set of the initial domain. The proess of reduing δ and solving thetightened onstraint is repeated until δ reahes zero, whereby the resulting solutions are solutionsto the original onstraint. If no solutions are found at a spei� value of δ, then no solutions existfor the onstraint and the solutions for the previous value of δ are minimizers.This method for onstraint optimization produes a foused traversal of the searh spae,beause portions of the spae that are not solutions to a relaxed onstraint are removed from thesearh-spae for a non-relaxed onstraint. These portions of spae are removed for eah value of
δ, and as δ approahes zero the remaining portions of spae beome loser approximations of thesolution spae.Interval-based onstraint solving methods return solutions as boxes, whih means that a solutiondesribes a range of values that satisfy the onstraint. Solutions to relaxed onstraints provide boxapproximations to the atual solutions, and the value of δ indiates the upper bound of deviationfrom an atual solution with respet to any range of values omprising an approximate solution.In this respet, a box returned as an approximate solution potentially ontains atual solutions,where the likelihood inreases as δ approahes zero.The following setion desribes the method used for solving relaxed onstraints at any level of
δ. These onstraints potentially ontain universally quanti�ed variables.



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 1265.4.2 Constraint solving over a set of relaxed onstraintsThe method employed for onstraint solving at eah value of δ is similar to the approah developedby Benhamou et al. (2004), and is based on the use of an outer and inner ontrating operator.The primary di�erene is that the ontrating operators are implemented over a set of onstraintsrather than a single onstraint at a time.An outer ontrating operator outerContract takes as input a system of onstraints C and abox B representing the domain of the variables in the system of onstraints. Three results arepossible, namely an unhanged box, a redued box, or failure. These are interpreted as follows:
outerContract(C,B) ⊆ B ⇒ existene of a solution in B is indeterminate

outerContract(C,B) = FAIL ⇒ no solution in BThe BC3 algorithm detailed by Benhamou et al. (1994) is used for the outerContract operator.If the algorithm returns FAIL, this means that no solution exists in the input domain (for instane,if any universally quanti�ed variable is shrunk then FAIL is returned). The primary funtion ofthe outer ontrating operator in the optimization proess is to narrow the searh spae usingonstraint propagation and to detet if the searh spae ontains no solutions.An inner ontrating operator innerContract takes as input a system of onstraints C and abox B representing the domain of the variables in the system of onstraints. The result is a tuple
(S = {S1, ...,Sn},L) ontaining a set of solution boxes, and a box L representing a narrowed B.These are interpreted as follows:

Si ⊆ B ⇒ solutions exist in box B, and Si is a solution
S = {} ⇒ existene of solution in B indeterminate,but if it does exist, it is in the redued box LThe primary funtion of the inner ontrating operator is to detet whether an entire box isa subset of the solution spae, that is, detet sound solutions. Leftover spae L an neither beguaranteed to ontain solutions, nor guaranteed not to ontain solutions.We design an inner ontrating operator that has these properties in the manner desribed byAlgorithm 5.1. This algorithm is similar to the ICO2 algorithm in that it uses the idea of negatedonstraints and box-set di�erene to loate solutions (Benhamou et al., 2004). Algorithm 5.1 isdi�erent from ICO2 beause it applies to a set of onstraints rather than a single onstraint at atime. The algorithm takes as input a set of onstraints, and a box B that is previously narrowedusing the outerContract operator. Eah onstraint is negated and narrowed individually overbox B and if a FAIL is returned then B is the solution spae to the onstraint by impliation.Otherwise, the box set di�erene between B and the narrowed box is a solution to the onstraint.Eah onstraint has the potential to produe a number of disjoint solution boxes. To �nda global solution to the set of onstraints, an intersetion is performed for every ombination ofsolution boxes produed by eah onstraint. This is illustrated in Figure 5.9, in whih onstraint c1results in three disjoint solutions, onstraint c2 results in two disjoint solutions, and onstraint c3results in three disjoint solutions. The ⊎ operator is used to enumerate every possible ombinationof disjoint solution boxes from eah onstraint. The intersetion of eah ombination is a globalsolution to the system of onstraints.
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Algorithm 5.1 Inner ontrating operator over a set of onstraints.

innerContract(in: onstraint set C,box B previously narrowed by outerContract;out: tuple (T,L) where:
T is set of solution boxes
L is the narrowed left-over box)begin

R← {} %% Every ombination of solutions
L← ∅ %% Initialize left-over spae as empty-setfor eah c ∈ C do
S ← {} %% Solutions for this onstraint
B′ ← outerContract({c},B) %% Narrow B over single negated onstraintif B′ = FAIL thenadd B to S as a solution to this onstraintelse
Q← B ⊟ B′ %% Box set differenefor eah box Q ∈ Q doadd Q to S if universally quantified domain not narrowedif B′ 6= B then

L← L ∪B′ %% Get union of left-over box
R← R

⊎

S %% Enumerate all ombinations of solutions
T ← {}%% Eah set in R ontains one solution box for every onstraintfor eah set V in R doif intersetion between all solutions in V is defined thenadd intersetion to Treturn (T,L)end

Figure 5.9: Illustration of the ombination of solutions performed by the inner ontrating operator(de�ned in Algorithm 5.1).



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 128The two inner and outer ontrating operators funtion together as a onstraint solving meh-anism. The outerContract operator is used to remove portions of the domain that ontain nosolutions, and innerContract is used to identify sound solutions within domains previously nar-rowed by outerContract. The manner in whih these operators are invoked in an optimizationproess is desribed in the following setion.5.4.3 Optimization through iterative tighteningWe present an optimization proess that repeatedly solves systems of progressively tightened on-straints. The less relaxed a system of onstraints, the more its set of solutions approximates theatual solutions to the original set of onstraints.A relaxed onstraint set is reated by relaxing eah individual onstraint within it. This isdone by evaluating eah individual onstraint ci over the initial domain, and seleting a δi thatrelaxes the onstraint su�iently so that it is validated over the initial domain. The sum of δivalues represents the overall relaxation onstant for the onstraint set. A relaxed onstraint set Cwith total relaxation δ is denoted as Cδ.The onstraint optimization algorithm over universally quanti�ed onstraints is presented asAlgorithm 5.2, whih onsists of a pair of nested loops. The inner loop populates a set T withsolutions of the onstraint system (using outer and inner ontrating operators) for a spei�relaxation onstant. Boxes for whih no solutions are expliitly loated are split using the splitfuntion (never splitting universally quanti�ed variables). These split boxes are added to the set
D for further searhing and splitting. The inner loop exits when no further boxes exist in D, astate that ours when boxes annot be split any further on a �nite �oating point representationmahine.After the inner loop exits, the set of solutions at the urrent level of δ represent urrent minimiz-ers to the onstraint system. The onstraint system is tightened by reduing δi for eah onstraint,and the outer loop iterates using the set of solutions at the previous step as initial domains tobe searhed. The outer loop exits under three onditions: if there are no domains for the nextiteration, in whih ase no solution exists for the onstraint system; if δ is su�iently lose to zero,in whih ase the urrent solution is a solution to the system; and if the exeution time of thealgorithm exeeds a manually spei�ed threshold.The problem with Algorithm 5.2 is its slowness to onverge to a minimum or solution. Boxesthat are indeterminate are split repeatedly at eah level of δ until mahine preision is reahed,whih means that the number of boxes in D grows very quikly. This results in a large portion ofexeution time being spent in the inner loop of the algorithm. The next setion disusses strategiesfor mitigating this problem.5.4.4 Redution of exeution timeWe modify Algorithm 5.2 to redue the amount of time spent searhing for solutions at eah levelof δ using a pair of thresholds that are used to exit the inner loop prematurely.The �rst threshold for exiting the inner loop of Algorithm 5.2 de�nes a maximum number ofsolution boxes τsolutions to be found at eah value of δ. If the number of solution boxes in Texeeds this threshold, then the inner loop exits. The other threshold limits the number of split
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Algorithm 5.2 Quanti�ed interval optimizer.
IOPT(in: onstraint set C, box B,preision level for reognizing solutions ε,time utoff threshold τtime;out: set S of solution or minimizer boxes)begin
Cδ ← onstraint set relaxed over initial domain
D ← {B} %% Set of solutions at previous δ
M ← {} %% Minimizers found so farwhile size(D) > 0 and δ > ε and time < τtime do

T = {} %% Solutions at this level of δwhile size(D) > 0 and time < τtime do
B← removeF irst(D)
B′ ← outerContract(Cδ,B)if B′ 6= FAIL then

(Q,L)← innerContract(Cδ,B′)if size(Q) > 0 thenadd all solutions in Q to T
D ← D ∪ split(B′) %% Split for future searhing
D ← D ∪ split(L) %% Split for future searhingif size(T ) > 0 then %%There are solutions at this δ

D ← T %% Use these solutions as input for redued δ value
M ← T %% Save these solutions as minimizers
Cδ ← tighten onstraint set Cδ(redue δ)if δ > ε then %% Outer loop exits without reahing δ = 0return M %% return minimizerselsereturn D %% return solutionsend



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 130boxes reated within the inner loop. If the number of boxes in D exeeds the threshold τsplits,then the inner loop exits. The use of these thresholds limits the number of iterations performedby the inner loop. However, the early termination of the inner loop introdues the problem thatpotential solutions in D are never reognized.We use baktraking to avoid the problem introdued by thresholds. When a threshold isreahed, all boxes in D that have not yet been searhed are saved, along with the urrent relaxedonstraint system. If any subsequent searhes fail to loate solutions for a tightened onstraintsystem, the algorithm relaxes the onstraints to their previous level, and ontinues searhing theremaining boxes.We represent D using a queue struture. At eah iteration of the inner loop the �rst box from
D is removed and searhed, and if no solutions are found the box is split. Newly split boxes areappended to the end of D. This proess is analogous to a breadth-�rst traversal of a tree. Toredue the problem introdued by thresholding, we only enable thresholds if eah depth in theimpliit searh tree is searhed to a su�ient degree. In pratie, we �nd that searhing 200 boxesat eah depth in the tree (before thresholds are enabled) provides adequate performane gains.These boxes are hosen in a distributed manner so that they are sampled from aross the entirerange at a partiular depth.The enhaned interval optimizer is presented as Algorithm 5.3, in whih the enhanements fromAlgorithm 5.2 are highlighted. Algorithm 5.3 makes use of a variable alled δbest, whih reords thelowest level of δ for whih solutions are found. This is required in the event that baktraking oursto distinguish future minimizers from the best solution loated until that point. A set alled Statesis also maintained for baktraking purposes, ontaining tuples of the form (Cδ = {cδ1 , ..., cδn},D),eah of whih assoiates a set of relaxed onstraints with a set of boxes that still require searhing.The outer loop of Algorithm 5.3 remains unhanged, but the inner loop is modi�ed in a numberof ways. Instead of removing the �rst box from the set D for searhing, a box is removed at aspei� index to ensure that boxes are sampled from aross the urrent depth of the tree. Newlysplit boxes are not immediately added to D for future proessing, but are rather added to anintermediate set N representing the next depth in the tree to be searhed. Only in the event that
D beomes empty are the elements in N appended to D. The inner loop only exits if the urrentdepth has been adequately sampled aording to the manually spei�ed factor value (number ofboxes searhed at eah level) and one of the two thresholds are reahed. The inner loop also exitsif a time limit is reahed, or no remaining boxes are left for searhing at the urrent value of δ.The exit of the inner loop results in either a set of solutions for the urrent value of δ (the set
T ), or no solutions (T = {}). If solutions are found and the urrent δ is less than δbest then thesesolutions are minimizers, and the onstraint set an be tightened and solved over these solutions.If no solution is found (T = {}), then a baktrak must our, relaxing the onstraint set to aprevious level of δ that still has unsearhed boxes. The deision as to whih onstraint set andset of boxes to searh at the next iteration of the outer loop is enapsulated in the switchStatefuntion, whih either tightens the onstraint set, or baktraks to a relaxed onstraint set:

switchState(Cδ, T, States) =







(tightened Cδ, T ) if size(T ) > 0

removeF irst(States) if size(T ) = 0
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Algorithm 5.3 Interval optimizer updated for e�ieny.

IOPT2(in: onstraint set C, box B,preision level for reognizing solutions ε,time utoff threshold τtime,solution utoff threshold τsolutions,split utoff threshold τsplitsnumber of boxes before thresholds enabled factor;out: set S of solution or minimizer boxes)begin
Cδ ← onstraint set relaxed over initial domain
D ← {B} %% Set of solutions at previous δ
M ← {} %% Minimizers found so far

◮ δbest ← δ %% Lowest δ found with solutions
◮ States← {} %% Baktrak stateswhile size(D) > 0 and δ > ε and time < τtime do

T = {} %% Solutions at this level of δ
◮ distribution← size(D)/factor %% Calulate how to selet searh boxes
◮ removeIndex← 0 %% Index for removing searh boxes
◮ N = {} %% Next level of split boxeswhile size(D) > 0 and time < τtime and
◮ not(removeIndex > size(D) and
◮ (size(N) > τsplits or size(T ) > τsolutions)) do

◮ B← remove box at index removeIndex from D
◮ removeIndex← removeIndex+ distribution

B′ ← outerContract(Cδ,B)if B′ 6= FAIL then
(Q,L)← innerContract(Cδ,B′)if size(Q) > 0 thenadd all solutions in Q to T

◮ N ← N ∪ split(B′) %% Split for future searhing
◮ N ← N ∪ split(L) %% Split for future searhing
◮ if size(D) = 0 then
◮ D ← N %% If level is omplete, searh next leveladd all boxes in N to D

◮ if size(T ) > 0 and δ < δbest then
◮ M ← T
◮ δbest ← δ
◮ if size(D) > 0 then add (Cδ,D) to States %% Save state
◮ (Cδ,D)← switchState(Cδ, T, States) %% Redue δ or baktrakif δ > ε then %% Outer loop exits without reahing δ = 0return M %% return minimizerselsereturn D %% return solutionsend
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ε Level of preision for relaxation onstant δ

factor Number of boxes to be searhed at eah depth before thresholds are enabled
τtime Threshold for exeution time

τsolution Threshold for solutions found in inner loop
τsplits Threshold for split boxes reated in inner loopTable 5.1: Summary of parameters for the interval-based quanti�ed onstraint optimization algo-rithm.

IOPT2

outerContract

BC3

BC3Revise

Constraint optimization:

Inner contracting operator:

Outer contracting operator:

Set of constraints

Single constraint

Single negated constraint

innerContract

Set of constraints

Set of constraints

Set of constraintsFigure 5.10: Illustration of the omponents of the interval optimization algorithm.The outer loop iterates until δ reahes a su�ient proximity to zero (de�ned by the onstant
ε), or until no further baktraking states exist. The outer loop also exits if the time thresholdis reahed, in whih ase the minimizer at the urrent δbest value is returned as an approximatesolution.The set of parametrization values for the IOPT2 algorithm is summarized in Table 5.1.5.4.5 ImplementationWe implement the IOPT2 algorithm using omponents soured from existing researh. Figure5.10 illustrates that the primary two omponents of IOPT2 algorithm are the outerContract and
innerContract operators. The outerContract operator is implemented using the BC3 algorithmde�ned by Benhamou et al. (1994). This algorithm in turn inorporates the BC3Revise (Ben-hamou et al., 1994, 1999) omponent for ahieving box onsisteny. The innerContract algorithm(Algorithm 5.1 on page 127) is based on the ICO2 algorithm de�ned by Benhamou et al. (2004),in whih a single negated onstraint is narrowed at a time using the outerContract operator.We implement interval arithmeti operations in Java, using natural interval extensions of primi-tive operators desribed by Moore (1966) and Hikey et al. (2001). Conservative outward roundingis provided in the implementation using the BigDeimal lass available in the Java 1.5 API, whihperforms rounding at manually spei�ed levels of preision.Our implementation of box onsisteny is di�erent to the method used by Benhamou et al.(1994). We use a divide and onquer approah for �nding the right-most and left-most roots ofthe univariate funtions (instead of the Newton method). The Newton method is faster in loatingroots, but it requires the alulation of the derivative of a funtion, as well as an implementation ofthe interval division operator, both of whih are non-trivial. For example, the handling of division



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 133by zero in interval arithmeti is a topi with disputed solutions (Moore, 1966; Hikey et al., 1998).The divide and onquer approah avoids this issue, at the ost of slower onvergene however.The IOPT2 algorithm performs an initial evaluation of the set of onstraint funtions to deter-mine the starting value of δ. Evaluation of an interval funtion F (B) is performed using an intervalevaluation tehnique based on entered forms for produing less exaggerated bounds, desribed byMoore (1966).Input onstraints are expressed symbolially (examples of whih appear in Appendix D) andare parsed using the Java Expression Parser2. An initial, non-in�nite box B is spei�ed thatrepresents the searh domain for a system of onstraints.5.5 Analysis of the interval-based quanti�ed onstraint opti-mizerWe examine the properties of the interval-based quanti�ed onstraint optimizer to determine ifit is e�etive in quantifying behaviour spei�ed by systems of onstraints. These properties areinvestigated in terms of the following questions:1. What parametrization values are appropriate for the interval-based quanti�ed onstraint op-timizer?We investigate the two threshold values τsolutions and τsplits to determine the e�et theseparameters have on the time taken to loate a solution to a system of onstraints.2. Does the implementation of underlying algorithms ompare to reported implementations interms of exeution time and salability?The BC3 algorithm is an important omponent of both the onstraint solving (Setion 5.3.4)and onstraint optimization algorithms (Setion 5.4). We investigate if our implementationof this algorithm is omparable to reported implementations.3. Is the interval-based quanti�ed onstraint optimizer able to loate solutions for standard uni-versally quanti�ed onstraint solving benhmarks?One requirement that we plae on the interval-based quanti�ed onstraint optimizer is that itbe apable of loating solutions to onstraint systems that are onsistent. We investigate thesuess of the algorithm over standard benhmarks, and ompare the optimization algorithmwith an implementation of an existing onstraint solver.4. Is the onstraint optimizer apable of loating solutions to onstraint systems that desriberelations between stationary and moving entities in a virtual environment?The �tion-to-animation system is onerned with moving multiple entities around a Carte-sian spae with a time dimension, as presribed by our de�nition of a sene in Setion 5.1.We investigate benhmarks that perform this task, and determine whih of the optimizer orsolver is more appliable for solving these onstraint systems.2JEP: http://www.singularsys.om/jep/ [aessed on 16 June 2008℄



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 134Benhmark SoureCLPRevisited{a,b,} A toy benhmark desribed by Benhamou et al. (1994).Broyden BandedFuntions{5,10,20,40,80,160} Used as benhmarks by Benhamou et al. (1994, 1999) to showsalability to inreasing number of variables and onstraints.More-Cosnard{10,20,40,80} Used as benhmarks by Benhamou et al. (1994, 1999) to showsalability to inreasing number of variables and onstraints.Table 5.2: Benhmarks for verifying underlying narrowing and solving algorithms.Benhmark SoureParabola Fitting, Cirle,Robot, Point-path andSatellite Desribed by Benhamou et al. (2004) as benhmarks for onstraintsolving over universally quanti�ed variables.Robust 1 Used by Ratshan (2006) from the bibliography available from hiswebsite (Ratshan, 2008).Table 5.3: Benhmarks for verifying ability to solve universally quanti�ed onstraint systems.This setion presents a suite of experiments for answering the above questions, and desribesbenhmarks used in these experiments. Metris for measuring suess are de�ned, and possiblesoures of experimental error are identi�ed.5.5.1 BenhmarksWe divide benhmarks into three ategories: those used to verify underlying algorithm implemen-tation, those used to validate and ompare the ability to solve standard universally quanti�edonstraint benhmarks, and those that ontain onstraint systems likely to be reated by the�tion-to-animation proess.5.5.1.1 Non-quanti�ed benhmarks to verify underlying algorithmsThe onstraint optimizer relies on an implementation of outer and inner ontrating operators thatmake use of the BC3 algorithm de�ned by Benhamou et al. (1994). The implementation of thisalgorithm is evaluated using standard onstraint solving benhmarks in related researh. Thesebenhmarks are listed in Table 5.2. The Broyden and Cosnard funtions are hosen as benhmarksbeause the funtions an be inreased in terms of the number of variables and onstraints, andprovide an indiation as to the salability of the onstraint solving implementation.The benhmarks listed in Table 5.2 are all non-quanti�ed root-�nding problems. Full formula-tions are listed in Appendix D.5.5.1.2 Quanti�ed benhmarks to verify solving abilityThe goal of the interval-based quanti�ed onstraint optimizer is the ability to loate solutions foronstraint systems that inlude a universally quanti�ed variable. Standard benhmarks exist forvalidating this ability, listed in Table 5.3.All benhmarks de�ned by Benhamou et al. (2004) are onerned with solving onstraint sys-tems in whih eah onstraint ontains a single universally quanti�ed variable. Ratshan (2006)



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 135Benhmark DesriptionFront Four objets, eah onstrained to appear inFrontOf and near one of theothers. noCollide onstraints over all objets.Sene Six objets arranged using toRightOf , toLeftOf , inFrontOf , behind,
noCollide and near onstraints.Layout3 Three objets arranged with the noCollide onstraint.WayPoints One objet onstrained to pass through 3 �xed way-points, using the nearonstraint over 3 di�erent time-intervals.Dynami1Stati1 One objet is stati, the other dynami with trajetories of inreasing degreein eah dimension. near and inFrontOf are applied over a sub-interval oftime. noCollide is applied over the entire interval of time.Dynami2 Both objets are dynami, having trajetories of inreasing degree in eahdimension. near and inFrontOf are applied over sub-interval of time.
noCollide is applied over entire interval of time.Collision n objets, eah onstrained to be near and noCollide with every other objet.Inreases in omplexity with addition of eah objet, and for n > 3 isinonsistent.Table 5.4: Benhmarks for �tion-to-animation onstraints.de�nes a suite of benhmarks in whih eah onstraint ontains more than one quanti�ed vari-able. Our implementation of the interval-based quanti�ed onstraint optimizer urrently handles asingle quanti�ed variable per onstraint (although many quanti�ed variables per system) beausewe antiipate that time is the only universally quanti�ed value in our behaviour quanti�ationproblem. Therefore, out of the six possible �Robust� experiments de�ned by Ratshan (2008) weonly use �Robust 1�, the only benhmark from this suite in whih onstraints ontain at most oneuniversally quanti�ed variable. Full formulations of these benhmarks are listed in Appendix D.5.5.1.3 Quanti�ed �tion-to-animation onstraint systemsWe use a suite of benhmark onstraint systems that de�ne the motion of entities in a d-dimensionalCartesian spae. We limit the number of dimensions to three, beause greater dimensionality is notrequired for visual representation. Entity trajetories are represented as n-degree Bezier splinesde�ned over a universally quanti�ed time variable. The onstraint solving task is onerned with�nding values for the ontrol points of the Bezier splines so that the resulting trajetories satisfythe de�ned relational onstraint over a spei�ed time interval.These benhmarks are divided into those desribing stati and those desribing dynami senes,summarized in Table 5.4. We phrase onstraints in terms of spatial relations (suh as inFrontOfand near) that are motivated and formulated in Chapter 6. For these experiments, we assumethat these benhmarks are representative of onstraint systems to be produed by an automatedproess. For repeatability, the exat onstraint formulations for these experiments are detailed inAppendix D.The Front, Sene, Layout3, and Collision benhmarks are used as non-quanti�ed on-straint solving benhmarks and only ontain entities without motion. The WayPoints, Dy-nami1Stati1, and Dynami2 benhmarks de�ne senes ontaining moving entities, and areused to evaluate onstraint optimization for systems ontaining a universally quanti�ed variablerepresenting time.



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 1365.5.2 MetrisTime-to-solution is the most ommon metri used for evaluating onstraint solving tehniques(Benhamou et al., 2004; Ratshan, 2006). We measure this metri as the number of seondsbetween the invoation of the solving/optimization proess and the detetion of a solution.We also report the δ value for the system of onstraints during the onstraint optimizationproess. This value is reorded one every ten seonds, and in these experiments we are interestedin the following observations:
• δstart: the largest relaxation onstant for the system of onstraints. The initial domain is asolution to this system of relaxed onstraints.
• δbest: the lowest value of δ ahieved by the optimization proess at the time of termina-tion. This value indiates the remaining quantity of tightening required before a solution isobtained.5.5.3 Soures of experimental errorA soure of experimental error in this investigation is the omputer system on whih the imple-mented algorithm is exeuted. We perform our experiments on a Pentium 4 dual ore 1.86GHzmahine with 2GB of memory. The operating system permits multiple simultaneous proesses,whih means that the time-to-solution value for the solving/optimizing proess is potentially af-feted by other exeuting proesses. We mitigate this soure of error by exeuting eah proessmultiple times, and taking the average exeution time as the time-to-solution.Another soure of experimental error is the type of rounding performed on a partiular mahine.We mitigate this problem using the BigDeimal lass, and for all experiments enfore outwardrounding at a preision level of 10−2.5.5.4 ResultsThis setion desribes the individual experiments performed during the investigation of the ques-tions posed.5.5.4.1 Parametrization and behaviour of the optimizerThis experiment examines the e�et of the threshold parameters on the solving and optimizingability of the IOPT2 algorithm, and also provides initial insight into the nature of the relaxationonstant. We investigate the following questions:
• What values of τ provide the best ompromise between exeution time and low values for δ(where τ refers to both τsolutions and τsplits simultaneously)?
• What is the relationship between the value of the relaxation onstant and the amount ofexeution time of the optimization proess?We use three benhmarks for this experiment. The Satellite benhmark is used to represent aommon universally quanti�ed solving task, while the Sene benhmark is used as an example
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ε factor τsolution τsplits

10−2 200 120 120Table 5.5: Optimizer parameters used for experiments.of a �tion-to-animation task. The Collision7 benhmark is also used as an example of aninonsistent onstraint system.The experiment is onduted as follows: a value of 5 is hosen for τ and the optimizationproess is invoked for a benhmark. The value of δ is reorded at 10 seond intervals, until either asolution is found, or until the total exeution time exeeds 90 minutes. This experiment is repeatedten times, doubling the value of τ for eah experiment. This experiment does not investigate theindependent e�ets of τsolutions and τsplits.The level of preision ε is �xed at 10−2 for all experiments, and the distribution fator at eahlevel in the searh tree is �xed at factor = 200. τtime is �xed at 90 minutes.We plot the δ value as a funtion of time in Figure 5.11 for eah experiment. For the Satelliteproblem time-to-solution is minimal using thresholds of 5, as shown in Figure 5.11(a). However,using a threshold of 5 the optimization proess never reahes a solution in the time allotted forthe Sene benhmark, as shown in Figure 5.11(b). Instead, higher thresholds (of 20 and 80) aremore suessful. Thresholds of 10 and 160 produe the two lowest values for δ for the Collision7benhmark in Figure 5.11().The above observations indiate that a dependene exists between the type of onstraint systembeing solved and the most appropriate threshold values for minimal exeution time. We hoose athreshold value of 120 for the majority of experiments in subsequent setions, beause this is anintermediate value within the range of suessful thresholds observed in this experiment. However,we suggest a rule-of-thumb based on personal experiene with the solver stating that this thresholdvalue should be inreased as the number of variables in a onstraint system inreases.All three graphs in Figure 5.11 indiate that the value of δ dereases with the progression oftime. The redution in δ is step-wise in nature, re�eting the fat that redution only ourswhen solution boxes are loated. The more di�ult the solution �nding proess for a partiular
δ, the longer the overall relaxation value stays onstant. However, the graphs indiate that givensu�ient exeution time, solutions or minimizers at low δ levels are loated eventually.These experiments demonstrate that appropriate threshold values for the optimization algo-rithm are dependent on the type of onstraint system being solved, but values re�eted in Table5.5 are generally suessful. All subsequent experiments use these parameter values unless other-wise indiated. We also onlude that an inverse relationship holds between the amount of timespent optimizing a onstraint system and the value of δ. This means that better approximationsare expeted given additional exeution time of the algorithm, but the degree of improvementdiminishes the longer the proess runs.5.5.4.2 Implementation of underlying algorithmsThis experiment investigates whether the underlying algorithms are implemented to a omparablelevel to existing implementations. The reason for this experiment is that our implementationontains di�erenes to existing methods (for example using a divide and onquer approah for
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CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 139Benhmark Consistent Corret Time / [s℄ Growth Reported GrowthCLPRevisited(a) Yes 3 1.096 - -CLPRevisited(b) Yes 3 0.908 - -CLPRevisited() No 3 0.911 - -Broyden 5 Yes 3 1.253 - -Broyden 10 Yes 3 2.330 1.860 7.59 (Benhamou et al., 1994)Broyden 20 Yes 3 5.041 2.164 2.94 (Benhamou et al., 1994)Broyden 40 Yes 3 12.669 2.513 2.38 (Benhamou et al., 1994)Broyden 80 Yes 3 38.309 3.024 2.07 (Benhamou et al., 1994)More-Cosnard 10 Yes 3 2.414 - -More-Cosnard 20 Yes 3 11.332 4.694 6.333 (Benhamou et al., 1999)More-Cosnard 40 Yes 3 79.811 7.043 3.052 (Benhamou et al., 1999)More-Cosnard 80 Yes 3 698.898 8.757 4.724 (Benhamou et al., 1999)Table 5.6: Performane benhmarks for non-quanti�ed onstraint solving.�nding roots as opposed to the Newton method). We evaluate whether these di�erenes impatsalability, and by doing so, a�et the ability of an implemented universally quanti�ed onstraintsolver and optimizer. We investigate the following questions:
• Can our implementation of underlying algorithms be used to loate solutions to non-quanti�edbenhmarks?
• Is our implementation omparable to existing implementations in terms of salability (withregards to the number of variables and onstraints)?We ondut this experiment using the BC3 algorithm for onstraint propagation (Benhamou et al.,1994) over a number of benhmarks. The �rst benhmark is the CLPRevisited problem desribedby Benhamou et al. (1994), whih we use to verify that the implemented algorithm is apable ofdeteting inonsistent onstraint systems. Salability is investigated using the Broyden-bandedfuntions and More-Cosnard funtions, both of whih are systems of onstraints with doublingnumbers of variables and onstraints. The time-to-solution is reorded for eah benhmark.We evaluate the salability of the implemented algorithms using the ratio between onseutiveinstanes of inreasingly omplex onstraint systems. This ratio represents growth, a metri used byBenhamou et al. (1994) to evaluate the penalty in time that exists when inreasing the omplexityof the onstraint systems.The reorded time-to-solution values over the aforementioned benhmarks are listed in Table5.6. A solution is found for all benhmarks using the implemented algorithm, and the inonsistentonstraint system is orretly identi�ed.The growth ratio observed for onseutive Broyden and Cosnard funtions is also presentedin Table 5.6, along with the orresponding growth �gures observed for related implementations(Benhamou et al., 1994, 1999). The growth �gures reported for the related implementations arevaried, and do not present onstant growth for either the Broyden or the Cosnard funtions. Thisvariability is also re�eted in our implementation, although we report growth �gures within thesame order of magnitude as the referene implementation. We report redued growth ratios forsome Broyden and Cosnard funtions indiating that, up to a point, our implementation produesbetter salability than the related implementation.



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 140Benhmark Reported Solver Optimizer Relaxation onstant
(ε = 10−2) Time / [s℄ Time / [s℄ Time / [s℄ δfirst δbestParabola Fitting 0.02∗ 0.097 4.292 3.0 0Cirle 0.01∗ 0.500 13.452 4891.09 0PointPath 7.85∗ 1.151 50.296 146.07 0Robot 0.01∗ 0.954 5.271 10.98 0Satellite 0.99∗ 2.860 653.308 79.19 0Robust 1 < 1+ 0.053 2.561 197.80 0

∗As reported by Benhamou et al. (2004).
+As reported by Ratshan (2006)Table 5.7: Performane benhmarks for non-linear, universally quanti�ed onstraint solving.These experiments demonstrate that our implementation of onstraint propagation and solvingalgorithms are omparable to existing implementations, and that our implementation is apable ofloating solutions to standard onstraint solving benhmarks. The salability of our implementa-tion is also omparable to existing implementations with regards to the number of variables andonstraints in the system.5.5.4.3 Benhmarks in universally quanti�ed onstraint solvingThis experiment investigates whether solutions an be found for standard benhmarks in universallyquanti�ed onstraint solving using the optimization algorithm. We ompare our implementationof the universally quanti�ed solving proess with an implementation reported in related researh,and also investigate how an optimization approah ompares over these problems. In partiular:

• Is the interval-based quanti�ed onstraint optimizer able to loate solutions for standard uni-versally quanti�ed onstraint solving benhmarks?
• Is our implementation of the universally quanti�ed onstraint solver omparable to a relatedimplementation reported by Benhamou et al. (2004)?
• Does the optimization method inrease or derease time-to-solution over standard benh-marks, and what is the nature of the relaxation onstant for these benhmarks?This experiment is onduted as follows. Eah benhmark is solved using our implementation ofthe IPA algorithm desribed in Setion 5.3.4 and by Benhamou et al. (2004) and the time-to-solution reorded. The same benhmark is solved using the optimization algorithm, reording thetime-to-solution, the initial relaxation onstant, and the �nal relaxation onstant.The reported solving time (for �nding the �rst solution) for existing systems over the set ofbenhmarks is listed in Table 5.7. Our implementation of the IPA solver suessfully loatessolutions to all the benhmarks.The time-to-solution of our implemented solver is greater than the reported time-to-solution ofthe existing implementation in all ases exept for the PointPath benhmark. We attribute thisfat to a number of fators: our implementation is penalized in exeution e�ieny due to thevirtual mahine-based exeution; our implementation uses a simple depth-�rst traversal aross thesearh spae, as opposed to the heuristi traversal strategies used by Benhamou et al. (2004); and



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 141the use of the divide and onquer approah for loating roots a�ets the onvergene to solutions(as demonstrated in Setion 5.5.4.2). In spite of these di�erenes, the reported time-to-exeution isof the same order (both within a range of seonds) in both implementations of the solver, indiatingthat the implementations are omparable.The reported solving time for the onstraint optimizer is presented in Table 5.7. We observethat the optimizer loates solutions to all benhmarks, but the time-to-solution in all ases is largerthan that observed using the solver. This indiates that there is a penalty in exeution time forusing an optimization approah rather than a solving approah. We believe that this penalty iso�set by the availability of an approximate solution at any point during the exeution.The initial values of the relaxation onstant for eah benhmark are also presented in Table 5.7.These values vary aording to the benhmark, indiating that the interpretation of the onstantis dependent on the formulation of the onstraints. However, in all ases the onstant reahes zero.We onlude that our implementation of the onstraint solver and optimizer is apable ofloating solutions to benhmarks in universally quanti�ed onstraint solving. Our implementationof the solver is omparable to a related implementation, whih means that further evaluations anbe performed using this solver as a representative of the solving strategy (see Setion 5.5.4.4, whihompares solving and optimization strategies for �tion-to-animation benhmarks).5.5.4.4 Benhmarks formulated for virtual environmentsThis experiment investigates the problem of �nding solutions to onstraint systems that are for-mulated for speifying time-based spatial relations in n-dimensional senes. We investigate thisproblem to determine if the interval optimizer is apable of loating solutions to the types ofonstraints that are formulated by an automati �tion-to-animation proess. We investigate thefollowing questions:
• Is the interval-based quanti�ed onstraint optimization algorithm apable of loating solutionsto onstraint systems formulated for senes without motion (non-quanti�ed) as well as seneswith motion (quanti�ed)?
• Does the onstraint optimizer fous the searh with the result of loating solutions in lesstime?
• Is the interval optimizer apable of produing approximate solutions for inonsistent on-straint systems?This experiment is onduted using the set of �tion-to-animation benhmarks disussed in Se-tion 5.5.1.3, whih inlude onstraint systems that speify senes with and without motion, as wellas onstraint systems that are inonsistent. These benhmarks are solved using the implementa-tion of the solver, and also using the interval optimizer. Time-to-solution is reorded using bothtehniques, and we �x an upper limit of 90 minutes for the solving/optimizing proess.Time-to-solution for eah �tion-to-animation benhmark is presented in Table 5.8 for boththe solver and the interval optimizer. The ∞ symbol is used when no solution is found withinthe alloated 90 minute period. The interval solver performs poorly over the set of onsistentbenhmarks, only �nding a solution for two benhmarks in the set. The interval optimizer loates



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 142Benhmark Time/[s℄ Relaxation onstantName d n τ Solver Optimizer δfirst δbest Time-to-δbest/[s℄Consistent benhmarks without motion:Front 2 0 120 ∞ 1929.28 3620.63 0 1929.282Sene 2 0 120 ∞ 2928.03 19339.99 0 2928.03Layout3 2 0 120 1364.438 60.78 9648.00 0 60.787Consistent benhmarks with motion:WayPoints 2 2 120 ∞ 578.768 63871.8 0 578.7682 3 500 ∞ 2071.92 56615.68 0 2055.775Dynami1Stati1 1 1 120 218.493 22.53 594 0 22.5332 1 500 ∞ 173.95 1197.00 0 173.952 2 600 ∞ ∞ 927.71 24.20 232.154Dynami2 1 1 500 ∞ 337.35 81197.01 0 337.352 1 500 ∞ 471.97 324007.02 0 471.972 2 600 ∞ ∞ 761070.10 25.08 833.07Inonsistent benhmarks with and without motion:Collision4 2 0 120 ∞ ∞ 9546.00 219.54 3882.0762 1 120 ∞ ∞ 9642.24 4639.15 3213.20
d =dimension; n =degree of trajetory; τ =threshold value for both τsolutions and τsplitsTable 5.8: Performane benhmarks for �tion-to-animation onstraints.solutions to nine of the eleven benhmarks, inluding benhmarks with and without motion. Thisindiates that onstraint systems exist where the interval optimizer loates solutions in less timethan the interval solver. We believe that this is beause the relaxation proess guides the searhtowards solutions.The starting relaxation onstant δfirst and the lowest relaxation onstant ahieved by theinterval optimizer δbest are reorded in Table 5.8. In ases where solutions are loated, δbest reaheszero. Minimizers are found for benhmarks for whih no solutions are loated, and the relaxationonstant δbest provides an indiation of how losely the minimizer approximates a solution throughits distane to zero. We observe that the two onsistent benhmarks for whih no solutions areloated result in minimizers that are lose to zero in omparison with δfirst.As expeted, solutions to inonsistent benhmarks are neither loated by the solver nor arethey loated by the optimizer. However, the optimizer provides minimizers to both benhmarks,and in the ase of the sene without motion, produes a relaxation onstant that is redued by97.70%. This result highlights the strength of the optimization approah, in that an approximatesolution is provided even where no solution exists.Table 5.8 presents the time-to-δbest value, whih is the time required to reah the lowest re-laxation onstant for a benhmark. In all ases where solutions are loated, this value is equalto time-to-solution. However, for all inonsistent benhmarks, this value is less than 5400 (90minutes), indiating that minimizers are loated earlier than the uto� time threshold.The interval optimizer is e�etive at loating solutions for onstraint systems that speify time-based behaviour. The optimizer fouses the searh for solutions suh that it loates solutions fasterthan the solving tehnique for these types of onstraint systems, and also produes approximatesolutions for inonsistent onstraint systems.



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 1435.5.5 Summary of �ndingsThe experiments presented in Setion 5.5.4 on page 136 provide insight into the properties of theinterval-based quanti�ed onstraint optimizer with respet to the questions posed at the beginningof this setion:1. Threshold values for parametrizing the interval-based quanti�ed onstraint optimizer (toredue exeution time) vary aording to the onstraint system to be solved. The relaxationonstant dereases as a funtion of time, and given su�ient time, the optimizer eventuallyloates a solution (for onsistent systems).2. Our implementation of the underlying algorithm is omparable to an existing implementationin terms of its ability to loate solutions to standard benhmarks, as well as in terms of itssalability with respet to the number of variables and onstraints in a system.3. The interval-based quanti�ed onstraint optimizer loates solutions to onsistent onstraintsystems that ontain universally quanti�ed variables. There is a penalty for using an opti-mization proess for �nding solutions to universally quanti�ed onstraint systems, whih iso�set by the availability of an approximate solution at any point.4. The onstraint optimizer loates solutions to onstraint systems that desribe relations be-tween stationary and moving entities in a virtual environment. It also derives approximatesolutions for inonsistent onstraint systems. Systems exist spei�ally in the �tion-to-animation domain where the trade-o� experiened using the optimizing strategy (as opposedto a solving strategy) is nulli�ed, and the optimizer loates solutions faster than the solver.5.6 ConlusionThe interval-based quanti�ed onstraint optimizer provides a solution to the problem of quan-tifying behaviour in a virtual environment. If behaviour is phrased as symbolially formulatedonstraints, this mehanism is guaranteed to produe quanti�ed values that satisfy the onstraintsor approximate valid behaviour (in ases where onstraints on�it). We onlude the followingwith regards to the initial problem statement at the beginning of this hapter:1. Constraints formulated over ontiguous intervals of time and spae are represented e�etivelyusing interval arithmeti. This enables diret solving of symbolially phrased onstraints, andremoves the need to transform systems into disrete representations.2. Environment-independent spatial reasoning is ahieved using an analytial formulation ofonstraints and their solutions using interval-based methods. This means that behaviour isquanti�ed prior to the instantiation of the environment, and provides for the onstrution ofenvironments at any point in the duration of a sene (for non-sequential �lming).(a) The interval-based representation provides for the identi�ation of sound quanti�edsolutions over a ontiguous interval (this onlusion is also reahed by Benhamou et al.(2004)). This ensures that no errati behaviour is produed in a sene that ouldpotentially result from aliasing when using disrete solving methods.



CHAPTER 5. CONSTRAINT-BASED QUANTIFICATION OF BEHAVIOUR 144(b) Solutions returned by the interval-based solving/optimizing proess are also phrased asontiguous intervals. This provides a range of options for valid behaviour in a sene.3. The interval-based quanti�ed onstraint optimizer direts the searh for solutions with theresult that it loates solutions faster than a regular solving algorithm (for �tion-to-animationbenhmarks). Relaxed onstraints and iterative tightening suessfully prune the searh spaeposed by the original onstraints. This is signi�ant beause it redues searh time, and alsoestablishes a orrelation between searh time and the proximity of the proess to an atualsolution.4. The interval-based quanti�ed onstraint optimizer addresses the trade-o� between loatingvalid behaviour on�gurations and the amount of time spent searhing for these on�gura-tions.(a) The optimization method e�etively maintains a solution approximation that is re�nedwith further exeution of the optimizer. This suggests that a human with limited timeis apable of ontinuing the �tion-to-animation proess with an approximate solution,but is free to use a more re�ned solution at a later stage if the optimization proessontinues.(b) Optimization time is a�eted by the type of onstraint system being solved. The useof thresholds redues optimization time, but ustom threshold values must be deriveddepending on the type of system. We use a rule-of-thumb stating that the greater thenumber of variables, the larger these thresholds should be for shorter time-to-solution.5. A null solution is not the only possibility for inonsistent onstraint systems that are re-ated automatially. The interval-based quanti�ed onstraint optimizer produes approximatesolutions even for inonsistent onstraint systems. This guarantees quanti�ed behaviour (re-gardless of how �awed), despite inonsistenies in the text or annotations.The interval-based quanti�ed onstraint optimizer provides a mehanism for automatially quan-tifying sene behaviour. The derivation of analytial onstraint systems, as well as the onversionof onstraint solutions into orresponding visuals is disussed in Chapter 6.This hapter ontributes innovative work with regards to the text-to-graphis task and interval-based onstraint solving:
• We present the �rst use of interval-based onstraint solving in the text-to-graphis domain.
• To the knowledge of the author, this work is the �rst to employ quanti�ed onstraint solvingtehniques from an optimization perspetive rather than a solving perspetive. In partiular:� This work presents the �rst method for optimizing universally quanti�ed onstraintsystems where a solution is not guaranteed to exist.� This work is the �rst to provide a mehanism that allows early termination of theuniversally quanti�ed solution-�nding proess while still providing values that an beused in subsequent appliations.
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• We ontribute to the �eld of interval-based onstraint solving through the reation of an innerontrating operator that funtions over a set of onstraints (rather than a single onstraintat a time).
• Our method of using a divide and onquer approah for loating roots over univariate fun-tions ontributes an alternative strategy for implementing the BC3 algorithm that does notrequire the implementation of division or root operators. While resulting in slower on-vergene, this method does not seriously impat the performane or salability of solvingmethods.Future work inludes investigating further enhanements to the IOPT2 algorithm to speed uponvergene to a minimum or solution. This is partiularly important when saling to the typesand quantity of onstraints automatially generated from annotated text. This issue is investigatedfurther in Chapter 6.



Chapter 6Population of virtual worldsThis hapter desribes the reation of multi-modal animated 3D environments and �lms from an-notated �tion text. The interpretation proess onsists of deriving high-level sene desriptionsfrom the annotations that inlude the list of senes to visualize and the ontents and behaviourin eah sene (Setion 6.2). High-level behaviour is expressed using abstrat onstraints, and isquanti�ed in a virtual environment through the optimization of orresponding analytial expres-sions (Setion 6.3). The �nal step in the proess automatially populates virtual environments sothat they visually represent the desriptions in the original text (Setion 6.4). We evaluate theinterpretation proess in terms of the degree of onsisteny of the automatially generated ontent,and in terms of the degree to whih the visualized sene orresponds to the original text (Setion6.5). We provide onlusions regarding the automated interpretation proess in Setion 6.6.6.1 Introdution6.1.1 Problem statementAnnotated text forms the intermediate representation of the �tion-to-animation proess. Giventhe existene of annotations identifying visual desriptions in �tion text, we investigate the inter-pretation of these annotations for reating orresponding virtual environments. This problem isharaterized as follows:1. Annotations (in ategories suh as those desribed in Chapter 4) identify sene related aspetsof the �tion text. These annotations must be interpreted for reating sene desriptions(suh as: the list of senes to be visualized; the ontents of eah sene; and the behaviour ofentities in eah sene) in a strutured manner.2. Given the presene of strutured sene desriptions, orresponding virtual environments mustbe instantiated and populated, a problem that inludes: hoosing appropriate visual ionsto represent entities desribed in the text; reating geometry that visualizes appropriatebakground senery; and visualizing the behaviour spei�ed by the annotations. This problemalso inludes the automati onstrution of multi-modal presentations of the �tion text.146



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 147Room:Anne slept in the next room. Julian ran in and shook her. "Wake up! It's Tuesday! And the sun's shining."Anne woke up with a jump and stared at Julian joyfully. "It's ome at last!" she said. "I thought it never would.Oh, isn't it an exiting feeling to go away for a holiday!"Outside:They started soon after breakfast. Their ar was a big one, so it held them all very omfortably. Mother sat in frontwith Daddy, and the three hildren sat behind, their feet on two suitases. In the luggage-plae at the bak of thear were all kinds of odds and ends, and one small trunk. Mother really thought they had remembered everything.London:Along the rowded London roads they went, slowly at �rst, and then, as they left the town behind, more quikly.Country:Soon they were right into the open ountry, and the ar sped along fast. The hildren sang songs to themselves, asthey always did when they were happy.Figure 6.1: Example deomposition of �tion text into senes, from the Famous Five 1: Five on aTreasure Island by Enid Blyton (1942).The virtual environments reated from the interpreted text should onform to the desriptions inthe original text. The above problems are investigated under the assumption that annotated textis available (produed with the aid of the mahine learning algorithm in Chapter 4).6.1.2 Problem formulationThe interpretation of annotated �tion text for reating virtual environments is subjetive to thehuman performing the task. Previous work interprets a �tion book as an aount of a virtualuniverse, where events in the book are reported out of order for dramati purposes (Glass andBangay, 2007a). The reation of a virtual universe means �unraveling� the order of events so thatthey our in the orret order in the 3D environment. Fition text does not always provide expliitindiations of event order, whih means that knowledge-rih reasoning must be used to automatethe unraveling proess (Ma and MKevitt, 2004a; Ma, 2006).We use an alternative interpretation that divides a book into a number of senes (the de�nitionof whih is provided in Chapter 5, De�nition 5.1 on page 107), eah of whih is independent andonsidered its own virtual universe. Sequenes of tokens in a �tion book desribe one partiularsene, examples of whih are presented in Figure 6.1. Textual triggers for Setting, Objet, Avatar,Transition, and Relation annotations within eah segment of text are interpreted only in the senein whih they our.The identi�ation of whih senes to instantiate forms the �rst part of the interpretation pro-ess. Subsequent tasks inlude interpreting annotations for identifying the entities that our ineah sene, and how these entities behave. We �rst speify these sene details on a high level,reognizing that ambiguity manifests during the interpretation of annotations. This allows forhuman intervention if required. For example, behaviour in a sene is �rst expressed using high-level abstrat onstraints that are human readable and onduive to review and modi�ation ifneessary.We design abstrat onstraints to allow diret onversion into symboli analytial equivalents.Solutions to these onstraints quantify behaviour in a virtual environment, and are determinedusing the interval-based quanti�ed onstraint optimizer (desribed in Chapter 5).Given strutured sene desriptions and quanti�ed sene behaviour, the �nal step in the inter-pretation proess instantiates animated 3D virtual environments. This inludes seleting geometry
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Figure 6.2: Illustration of the onstraint reation and sene reation modules in the �tion-to-animation proess.to represent entities in eah environment as well as applying the orret behaviour to entities ineah sene.Eah of the above three problems are investigated in this hapter, namely the interpretation ofannotations for speifying sene desriptions, the quanti�ation of behaviour in a sene, and theinstantiation and population of virtual environments.6.1.3 ContextThe interpretation task of the �tion-to-animation proess is investigated in this hapter. Theontext of this problem within the onversion proess is illustrated in Figure 6.2). We assumethe existene of annotated �tion text, the automati reation of whih is desribed in Chapter4. In this hapter we investigate the interpretation of these annotations in reating quanti�edonstraint systems, solutions to whih are found using the interval-based quanti�ed onstraintoptimizer desribed in Chapter 5.Tehniques for automatially populating a virtual environment from interpreted annotationsand quanti�ed behaviour are desribed in this hapter. The output of these proesses inludesmulti-modal animated 3D virtual environments, and orresponding animated �lms. The workpresented in this hapter is a more detailed desription of researh by the same author (Glass andBangay, 2008).6.2 High-level sene desriptions from interpreted annota-tionsWe use the term sene desription to olletively desribe: the list of senes to be instantiatedas virtual environments, the ontents of eah sene, and the behaviour of entities in eah sene.This information is expressed using high-level (but strutured) desriptions. This ensures that
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Figure 6.3: Illustration of the interpretation module for reating onstraints from annotated �tiontext."Mother, have you heard about our summer holidays yet?" said Julian, at the breakfast-table. "Can we go toPolseath as usual?""I'm afraid not," said his mother. "They are quite full up this year."The three hildren at the breakfast-table looked at one another in great disappointment. They did so love thehouse at <setting>Polseath</setting>. The <setting>beah</setting> was so lovely there, too, and thebathing was �ne."Cheer up," said Daddy. "I dare say we'll �nd somewhere else just as good for you. And anyway, Mother and Iwon't be able to go with you this year. Has Mother told you?"Figure 6.4: Example of text ontaining Setting annotations, from the Famous Five 1: Five on aTreasure Island by Enid Blyton (1942).sene desriptions are human readable (providing for manual modi�ation or for the injetion ofreativity), but are also onduive to further proessing using automated tehniques.We present a work-�ow of automated knowledge-poor tehniques for reating high-level senedesriptions from annotated �tion text. The di�erent ategories are illustrated in Figure 6.3, asare the knowledge-poor proesses used for their reation. This work-�ow permits human interven-tion for handling exeptions that our during interpretation not handled by the knowledge-poortehniques.The knowledge-poor tehniques for produing eah ategory of sene desription are disussedin the following setions.6.2.1 Sene segmentationAs desribed in Setion 6.1.2, eah sene orresponds to a single physial setting. Annotationategories suh as Setting (de�ned in Chapter 4) identify physial settings, and we use theseannotations to segment text into senes.Sene desriptions are not always expliitly mentioned in �tion writing, an example of whih ispresented in Figure 6.4. The initial setting in this example is not expliitly stated, and every tokenup until �Polseath� is automatially assigned a DEFAULT setting. Human intuition indiates thatthe desribed sene is likely to be ourring in a KITCHEN based on evidene from desribedobjets suh as �breakfast-table�. A human is able to speify the orret setting manually forexeptional ases suh as this.The next step in the abstrat onstraint reation proess is onerned with identifying entitiesin eah sene.



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 1506.2.2 Identi�ation of entitiesThe entities that appear in a sene are identi�ed using annotation ategories suh as Avatar andObjet, and we onstrut a list of entities identi�ed by these annotations for eah sene. Werepresent entities using entity desriptors, whih are sene-independent strutures that assoiateinformation (regarding instantiation in a virtual environment) with eah entity mentioned in abook. Desriptors ontain information unique to an entity, inluding the geometri model torepresent the entity graphially in a virtual environment, and the type of motion assoiated withthe entity.An entity desriptor is reated for every unique entity in the �tion book. Entities suh asavatars our in many di�erent senes, and the same entity desriptor for an entity is used arossdi�erent senes.When an entity desriptor is reated, a geometri model is automatially seleted to representthe entity in a virtual environment. We soure models from a library of geometri models. Eahmodel in the library is annotated with desriptive keywords that are mathed against the annotatedtokens. The types of model returned by the library depend on the ategory of annotation, and forAvatar and Objet ategories are as follows:
• Avatars: Avatars are assumed to be human, and only humanoid models are appropriate forthis ategory. The token annotated in this ategory is likely to be the name of the avatar andwe use a gazetteer of names to determine the gender, and selet the appropriately genderedmodel.
• Objets: The token annotated in this ategory is used as a searh term when querying themodel library, mathing the searh term with the desriptive keywords assoiated to eahmodel. In ases where no mathing keywords are found, we use synonyms of the annotatedtoken as searh terms (provided by WordNet Fellbaum (1998)). We also use hypernyms ofthe annotated token as a searh term, abstrating the tokens until no further abstration ispossible. If no mathing models are found, we use a default plaeholder objet (a ube) torepresent the objet visually.The aurate seletion of geometri models depends on the annotation onventions adopted forreating Objet and Avatar annotations. For example, in our annotated version of the FamousFive 1: Five on a Treasure Island by Enid Blyton (1942), the harater Timothy is annotated asan avatar, but Timothy is atually a dog. This exeption is orreted manually.We also use the annotation ategory to determine whether a model is stati or dynami in a vir-tual environment. Avatars are assigned trajetories that permit motion in the virtual environment,while the trajetories assigned to objets permit no movement.6.2.3 Co-referene resolutionAmbiguous referenes to entities exist in the annotated text. For example, anaphora is often usedto refer to entities (the use of �he� or �it�). Annotation ategories suh as Transition and Relationpotentially identify anaphori tokens as the subjet or objet of the behaviour, and these must beresolved to determine the entities that are involved in the behaviour desribed by the annotations.



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 151Entities:Avatars: Objets:ANNE COWDADDYAnne/ANNE didn't very muh like a big brown ow/COW who ame up lose and stared at her/ANNE, butit/COW went away when Daddy/DADDY told it/COW to.Figure 6.5: Illustration of an entity list and resolved o-referene.We resolve instanes of personal pronominal anaphora (suh as �he� and �she�) by keepingtrak of the last expliitly mentioned male and female avatars, and mathing the gender of theanaphori token with the orresponding gender-mathed avatar (avatar gender is determined usingthe method desribed in Chapter 3). Currently, we do not resolve non-gender spei� pronounssuh as �it� and we do not ater for general anaphori ases (for example, in the ase where theword �boy� indiretly refers to a spei� male avatar). Human intervention is permitted to resolvethese exeptions should they our. Future enhanements to this proess inlude the use of moresophistiated anaphora resolution tehniques (Lappin and Leass, 1994; Nasukawa, 1994; Kennedyand Boguraev, 1996; Mitkov, 1998; Mitkov et al., 2002; Castaño et al., 2002; Dimitrov, 2002) ando-referene resolution methods (Baldwin, 1997; Dimitrov, 2002).An example of an entity list reated for a sene from the Famous Five 1: Five on a TreasureIsland by Enid Blyton (1942) is presented in Figure 6.5, whih ontains entities in the ategory ofAvatar and Objet. The sentene ontains examples of resolved o-referenes with regards to theentities listed above. The pronoun �her� is automatially linked to the entity �Anne�. Pronounssuh as �it� are resolved manually to the �ow� entity.6.2.4 Abstrat onstraints for speifying behaviourWe reate a human readable summary of behaviour in a sene using abstrat onstraints. Abstratonstraints are phrased in terms of the entities involved, the type of behaviour that ours, as wellas the interval of time over whih the behaviour is to take plae. They are strutured to allow forautomati onversion into equivalent analytial expressions:De�nition 6.1. An abstrat onstraint spei�es a time-quanti�ed relation between two entitiesin an environment. Abstrat onstraints are de�ned in terms of the following �elds:
• Subjet: The entity responsible for the behaviour.
• Relation: The type of behaviour desribed by the onstraint.
• Objet: The referene entity or anhor point of the behaviour.
• Start-time: The time in the sene at whih the behaviour begins.
• End-time: The time in the sene at whih the behaviour terminates.Annotation ategories that desribe behaviour (suh as Transition and Relation) map diretlyto abstrat onstraints. The token in the subjet text-referene of the annotation is linked to anentity desriptor (this link is reated during the o-referene resolution step), and the identi�er



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 152Annotated text:He/JULIAN stole <transition subjet=�he� type=�INSIDE�>in</transition>. ...He tiptoed by him to the table/TABLE <relation subjet=�table� objet=�hair�type=�BEHIND�>behind</relation> his unle's hair/CHAIR.Corresponding abstrat onstraints:CONSTRAINT 1: CONSTRAINT 2:Subjet: JULIAN Subjet: TABLERelation: INSIDE Relation: BEHINDObjet: ROOM Objet: CHAIRStart-time: 5 Start-time: 0End-time: 30 End-time: 30Figure 6.6: Example abstrat onstraints derived from annotated behaviour in a �tion extrat.for the desriptor is used for the subjet �eld of the onstraint. The same applies for the objettext-referene and orresponding �eld in the onstraint. The type �eld for both Transition andRelation annotations is used in the relation �eld of the abstrat onstraint. An example of a setof abstrat onstraints is presented in Figure 6.6.Abstrat onstraints are reated from annotation ategories speifying behaviour (expliit on-straints), or are reated automatially to ensure physial believability in the sene (impliit on-straints). Impliit noCollide onstraints are added for every pair of entities in the sene to ensurethat entities do not interpenetrate. The one exeption is the ase where one entity is inside anotherentity (spei�ed by a Relation annotation). We also reate an impliit near onstraint for ertaintypes of Relation annotation, inluding inFrontOf , behind, toLeftOf , toRightOf , onTopOfand below.Temporal information is required for the start-time and end-time �elds. Assume a �tionbook is narrated in the audio modality (orresponding to being read aloud) using, for example,a speeh synthesizer. Language units in the book use a �nite interval of time when verbalized.Eah sene onsists of a sequene of language units, and the total time taken for the play-bak ofthe orresponding audio provides an indiation of sene duration, and a referene against whihthe time-�elds of abstrat onstraints an be spei�ed. We desribe a time-line derived fromaudio narrations as a presentation time-line beause it represents the original order of presentationintended by the author (and avoids the event �unraveling� problem desribed in Setion 6.1.2).Time information for abstrat onstraints is derived by alulating the time-value of an anno-tation trigger with respet to the presentation time-line. Speeh synthesis produes audio at thesentene level, and the timing for an annotation trigger is estimated in terms of the token's o�setin the sentene and the starting time of the sentene in the sene:
offset of trigger in sentence =

position of token in sentence

number of tokens in sentence
∗ audio length of sentence

start time of trigger = start time of sentence+ offset of trigger in sentence
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CHAPTER 6. POPULATION OF VIRTUAL WORLDS 1546.3 Quanti�ed behaviour in virtual environmentsAbstrat onstraints desribe behaviour on a high level, but do not provide preise numerialvalues for visualizing behaviour in a virtual environment. If abstrat onstraints are onverted intosymboli analytial expressions, then the interval-based quanti�ed onstraint optimizer desribedin Chapter 5 an be used to �nd these values.We de�ne entity behaviour in terms of loation, whih is expressed as a funtion of time so thatentities are apable of moving in the virtual world. We represent this behaviour using trajetoriesthat are de�ned in terms of a set of variables. These trajetories should onform to the behavioursummarized in the set of abstrat onstraints.6.3.1 Constrained model trajetoriesWe assume a sene exists over the time interval [t0, t1]. Eah modelM in the sene of dimension d isassoiated with a trajetory rM
d (t) = [r1(t), ..., rd(t)] parametrized aording to time t. Trajetoriesare de�ned as parametri urves over time, using for example, a Bezier urve of degree n (Buss,2003):

rM (t) =

n
∑

i=0

Bn
i (t)piwith the blending funtion Bn

i (t) = ti(1 − t)n−i. The ontrol points pi speify the shape of theurve, and onsequently the trajetory of the assoiated model in the sene. The problem ofquantifying behaviour is transformed into �nding values for the ontrol points so that the set ofonstraints is satis�ed over the duration of the sene.Abstrat onstraints express spatial relations between two entity models over an interval oftime. We de�ne an equivalent analytial onstraint as follows:De�nition 6.2. Quanti�ed Constraint : Let rM (t) and rN (t) be trajetories for two models Mand N respetively. A quanti�ed onstraint c(rM , rN , [tstart, tend]) is a symboli expression thatexpresses a relation between the two trajetories that exists for all time between tstart and tend.Quanti�ed onstraints are derived for eah abstrat onstraint. The formulation of the expres-sion depends on the relation �eld of the abstrat onstraint. In this exposition, the Transition andRelation annotation ategories are used to speify behaviour (and reate abstrat onstraints),and expressions must be derived for the di�erent types of behaviour in these ategories. Transi-tion annotations are de�ned as one of two semanti types, namely inside or outside, indiatingwhether the entity is inside or outside the sene (desribed in Chapter 4). A Relation annotationis one of several types, inluding inFrontOf , behind, toLeftOf , toRightOf , onTopOf , or below.Behaviour types are interpreted as spatial relationships between two entities.6.3.1.1 Spatial onstraintsLet M and N be the objet models for two items in a sene with dimension d. Assume that eahmodel is bound using a bounding sphere of radius aM and aN respetively. Let rM (t) and rN (t)be trajetories for the two models M and N respetively. We de�ne the spatial relations in termsof three anonial quanti�ed onstraints, namely near, noCollide, and directionRelation.
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Figure 6.8: Illustration of the spatial relationship desribed by the near onstraint.

Figure 6.9: Illustration of the spatial relationship desribed by the noCollide onstraint.Near The onstraint near(rM (t), rN (t), [tstart, tend]) spei�es that two models must be lose toone another over time interval t ∈ [tstart, tend], expressed in terms of the Eulidean distane asfollows:
||rM (t)− rN (t)||2 < (aM + aN + α)2 ∀t ∈ [tstart, tend]

||rM (t)− rN (t)||2 − (aM + aN + α)2 < 0 ∀t ∈ [tstart, tend]where α is the minimum distane onsidered to verify the term �near� (for instane, 1 meter). The
near senario is illustrated in Figure 6.8.Abstrat onstraints with the relation near or inside are onverted into expressions of thistype. For near onstraints, α is hosen as 1 meter, but for inside onstraints there must be nodistane between the two models, and so we use a value of α = 0 for onstraints of this type.NoCollide The onstraint noCollide(rM (t), rN (t), [tstart, tend]) spei�es that two models mustnot interpenetrate over time interval t ∈ [tstart, tend], expressed in terms of the Eulidean distaneas follows:

||rM (t)− rN (t)||2 > (aM + aN )2 ∀t ∈ [tstart, tend]

||rM (t)− rN (t)||2 − (aM + aN )2 > 0 ∀t ∈ [tstart, tend]The noCollide senario is illustrated in Figure 6.9. Abstrat onstraints with the relation noCollideare onverted into expressions of this type.DiretionRelation The onstraint directionRelation(rM (t), rN (t), [tstart, tend]) spei�es the lo-ation of M with referene to N . We de�ne u(t) as a diretion vetor of N , and v(t) as the vetorindiating the diretion from N to M , alulated as v(t) = rM (t)− rN (t). For simpliity, the timeparameter is not shown in the following formulations.
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Figure 6.10: Illustration of the spatial relationship desribed by the diretionRelation onstraint.Consider Figure 6.10. For model M to be related to N aording to the diretion u, the angle
ǫ should be less than a ertain value. This is also phrased in terms of the length of the vetor w,whih should be less than an amount α, that is ||w|| < α or:

||w||2 < α2

||w||2 − α2 < 0We alulate w using the projetion of v on u: w = v − projuv = v − u

||u||2 (u · v).Let ǫ be the angle between u and v, then α is expressed in terms of ǫ by the trigonometrirelation: sin(ǫ) = α/||v||. The onstraint above is rephrased as follows:
||w||2 − α2 < 0

w ·w − (v · v)sin2(ǫ) < 0
(

v||u||2 − u(u · v)
)

·
(

v||u||2 − u(u · v)
)

/||u||4 − (v · v)sin2(ǫ) < 0
(

(v · v)||u||4 − 2||u||2(u · v)2 + ||u||2(u · v)2
)

/||u||4 − (v · v)sin2(ǫ) < 0

(v · v)(1− sin2(ǫ))− (u · v)2/||u||2 < 0

||u||2||v||2cos2(ǫ)− (u · v)2 < 0The referene diretion of u depends on the type of diretional relation being spei�ed. Forexample, if an inFrontOf relation is spei�ed, then u is the forward faing diretion of the model
N . If rN (t) is of a degree greater than zero (dynami entity), then the forward diretion is thetangent of the trajetory, alulated using the derivative of rN (t). If N is a stati model, then uis an arbitrary vetor (default diretion, or spei�ed by a human).Constraints of type inFrontOf , behind, toLeftOf , toRightOf , onTopOf , or below are de-�ned using the same formulation of the directionRelation onstraint, but varying in the hoie of
u for determining the referene diretion.6.3.1.2 Constraint systemsEvery abstrat onstraint for a partiular sene is onverted into an equivalent quanti�ed onstraint,the result of whih is a system of onstraints. The mapping used to onvert abstrat onstraints to



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 157Abstrat relation Quanti�ed onstraint Parameters
M near N near(rM (t), rN (t), [t0, t1]) α = 1
M inside N near(rM (t), rN (t), [t0, t1]) α = 0
M noCollide N noCollide(rM (t), rN (t), [t0, t1]) -
M inFrontOf N
M behind N
M toRightOf N
M toLeftOf N
M onTopOf N
M below N

directionRelation(rM (t), rN (t), [t0, t1]) ǫ = 45◦

Table 6.1: Diret mapping between abstrat onstraints and quanti�ed onstraints.quanti�ed onstraints depends on the relation �eld of the abstrat onstraint and is summarizedin Table 6.1.We provide an example to illustrate the onversion of abstrat onstraints into quanti�ed on-straint systems. Consider the following set of abstrat onstraints:CONSTRAINT 1: CONSTRAINT 2: CONSTRAINT 3:Subjet: JULIAN Subjet: TABLE Subjet: CHAIRRelation: NEAR Relation: NOCOLLIDE Relation: INFRONTOFObjet: TABLE Objet: JULIAN Objet: TABLEStart-time: 0 Start-time: 0 Start-time: 0End-time: 5 End-time: 5 End-time: 5For the sake of illustration, we assume that entity desriptors exist for Julian, Table, andChair and that geometri models J, T, and C are assoiated with these respetive entities. Eahof these entities is assigned a trajetory, and as desribed in Setion 6.2.2, the avatar is dynami(trajetory of degree greater than 0), while the two objets are stati (degree 0):
• rJ (t) = (1− t)pJ

0 + tpJ
1

• rT (t) = pT
0

• rC(t) = pC
0In this example, we assume that the sene is de�ned in two dimensions, that is, eah ontrol pointis of the form pi = (xi, zi). The behaviour for this sene is therefore expressed in terms of eightvariables V = {xJ

0 , z
J
0 , x

J
1 , z

J
1 , x

T
0 , z

T
0 , x

C
0 , z

C
0 }. Constraint 1 is phrased in terms of these variablesusing the formulation of the near expression:

c1 : near(rJ (t), rT (t), [0, 5])

⇔ ||rJ (t)− rT (t)||2 − (aJ + aT + α)2 < 0 ∀t ∈ [0, 5]

⇔ ||(1− t)pJ
0 + tpJ

1 − pT
0 ||2 − (aJ + aT + α)2 < 0 ∀t ∈ [0, 5]

⇔ ((1− t)xJ
0 + txJ

1 − xT
0 ))2 + ((1− t)zJ

0 + tzJ
1 − zT

0 ))2 − (aJ + aT + α)2 < 0 ∀t ∈ [0, 5]



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 158Constraint 2 is phrased using the noCollide expression:
c2 : noCollide(rJ (t), rT (t), [0, 5])

⇔ ||rJ (t)− rT (t)||2 − (aJ + aT )2 > 0 ∀t ∈ [0, 5]

⇔ ||(1− t)pJ
0 + tpJ

1 − pT
0 ||2 − (aJ + aT )2 > 0 ∀t ∈ [0, 5]

⇔ ((1− t)xJ
0 + txJ

1 − xT
0 ))2 + ((1− t)zJ

0 + tzJ
1 − zT

0 ))2 − (aJ + aT )2 > 0 ∀t ∈ [0, 5]Constraint 3 is phrased in terms of the inFrontOf expression. The trajetories for both Tableand Chair are of degree zero, whih means that we annot use the derivative of rT (t) for theforward faing diretion u. We assume that u = (ux, uz) is a manually assigned default value.
c3 : directionRelation(rT (t), rC(t), [0, 5])

⇔ ||u||2||v||2cos2(ǫ)− (u · v)2 < 0 ∀t ∈ [0, 5]

⇔ ||u||2||rC(t)− rT (t)||2cos2(ǫ)−
(

u · (rC(t)− rT (t))
)2
< 0 ∀t ∈ [0, 5]

⇔ (u2
x + u2

z)||pC
0 − pT

0 ||2cos2(ǫ)−
(

u · (pC
0 − pT

0 )
)2
< 0 ∀t ∈ [0, 5]

⇔ (u2
x + u2

z)
(

(xC
0 − xT

0 )2 + (zC
0 − zT

0 )2
)

cos2(ǫ)−
(

ux(xC
0 − xT

0 ) + uz(z
C
0 − zT

0 )
)2
< 0 ∀t ∈ [0, 5]A system of onstraints C is the onjuntion of these onstraints:

C ⇔ c1 ∧ c2 ∧ c3Simultaneous solving is required to loate values for the ontrol points that verify all three of theseequations, a tehnique for whih is desribed in the following setion.6.3.2 Constraint system solving and optimizationA mehanism for solving systems of simultaneous quanti�ed onstraints using interval arithmetiis desribed in Chapter 5, namely the interval-based quanti�ed onstraint optimizer.Some sene-related benhmarks evaluated in Chapter 5 annot be solved using either a solvingor an optimization tehnique. In this respet, the apability of the solution �nding tehniqueditates the level of omplexity of the automatially reated onstraint systems. In this setionwe examine what harateristis a onstraint system should exhibit so that its solutions are foundin a feasible time using the optimizer presented in Chapter 5. These harateristis in�uene themanner in whih onstraint systems are reated from abstrat onstraints.Solution approximations are provided for benhmarks in Chapter 5 when no solutions are found.In ases suh as these, it is useful to have a measure of the quality for the approximate solution.In this setion we show how a quality metri is obtained during the optimization proess.6.3.2.1 The relaxation onstant as a quality metriThe interval-based quanti�ed onstraint optimizer uses the onept of relaxed onstraints in searh-ing for a solution. Eah onstraint ci is relaxed by a quantity δi, whih we all the relaxationonstant. If the onstraint expression is formulated orretly, then δi indiates the level of qualityof the approximate solution.For quality to have meaning, it must be expressed in terms of a unit that is relevant to thesene and that is ommon aross all onstraints. Distane is an example of suh a measure, where



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 159the level of relaxation indiates how far (for example, in meters) an approximate solution is froman atual solution. Our formulation of spatial onstraints in Setion 6.3.1 is expressed in terms ofdistane for this reason:
• near: this onstraint is expressed as the squared Eulidean distane between two entities(see Setion 6.3.1.1). A relaxed onstraint of this form replaes the zero on the right handside with a value represented by δ:

||rM (t)− rN (t)||2 − (aM + aN + α)2 < δIn this ase, δ is the squared distane of the approximate solution from the atual solution,and √δ indiates the distane in whihever unit the sene is spei�ed. The loser the valueof √δ is to zero, the loser the approximation is to the atual solution. Therefore, qualityfor onstraints of this type is:
quality =

√
δ

• noCollide: this onstraint is also expressed as the squared Eulidean distane between twoentities (see Setion 6.3.1.1), and has a relaxation onstant of the same formulation:
||rM (t)− rN (t)||2 − (aM + aN )2 > δQuality for onstraints of this type is also de�ned as:

quality =
√
δ

• directionRelation: this onstraint restrits the spatial distane between a model and thediretion vetor of the referene model. A relaxed onstraint appears as follows:
||u||2||v||2cos2(ǫ)− (u · v)2 < δThe above onstraint was formulated using zero on the right hand side, whih allowed mul-tipliation throughout by the ||u||2 value. Squared distane is expressed by δ/||u||2, whihmeans that quality is de�ned as:

quality =

√

δ

||u||2Eah of the above quality values measures the distane of an approximate solution from an atualsolution over a time interval.Quality for all three onstraint types is measured in the same unit (distane). The quality ofan approximate solution to a system of onstraints is evaluated as the sum of the quality for eahindividual onstraint in the system. The loser the total sum is to zero, the better the quality ofthe approximate solution.



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 1606.3.2.2 Analysis of quality in �tion-to-animation onstraint systemsWe investigate the idea of quality with respet to the �tion-to-animation benhmarks used inChapter 5, for answering the following questions:1. Does the quality metri re�et when an atual solution is loated?2. Does quality improve as the optimization progresses?3. What e�et does the degree of the trajetory and the dimensionality of the sene have on thequality of an approximate solution?4. What e�et does the number of onstraints have on the quality of an approximate solution?5. Is there evidene to support the hypothesis that quality re�ets the orretness of behaviourin a sene?We investigate these questions with respet to senes that ontain stati entities as well as senesontaining dynami entities.Quality in senes with stati entitiesWe use the Front, Sene, and Layout3 benhmarks to determine the relationship betweenquality and exeution time for senes without motion (tested in Chapter 5 and desribed in detailin Appendix D). We reord the quality metri every ten seonds and plot it against time, limitingthe total exeution time to 90 minutes (5400 seonds).The quality of intermediate approximate solutions is plotted against the exeution time of theoptimizer in Figure 6.11. These benhmarks are all onsistent, and quality reahes zero at thesame point at whih a solution is loated for eah benhmark. The quality re�ets the point atwhih solutions are loated, that is, when quality reahes zero as is expeted from the design ofthese onstraints.Improvement in quality with the progression of time is observed from the graph in Figure 6.11,indiating that approximate solutions get loser to atual solutions with added optimization time.The greatest improvement in quality ours early in the optimization proess for both the Frontand Sene benhmarks. This shows that termination of the optimization proess is possible beforesolutions are loated, resulting in solutions of improved quality in relation to the solutions loatedearlier.The solutions to the Front and Sene benhmarks are visualized in Figure 6.12, in whih theforward faing diretions manually assigned to eah model are indiated. The visualized layoutorresponds to the onstraints speifying eah sene.The Collision benhmark is a onstraint system speifying a sene that ontains an inreasingnumber of models, where every pair of models is onstrained to be near and noCollide. If more thanthree models are in the sene, then the onstraint system is inonsistent. We optimize onstraintsystems desribing senes that ontain two to eight models, and reord the quality at ten seondintervals for eah system.The quality ahieved is plotted against optimization time in Figure 6.13 for eah Collisionbenhmark. Solutions are quikly loated for the two onsistent systems (ontaining two and three
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Figure 6.11: Quality of intermediate solutions to benhmarks (without motion) as a funtion ofexeution time.

(a) Front (b) SeneB inFrontOf A B near A A inFrontOf B A near BC inFrontOf B C near B C behind B B near BD inFrontOf C D near C E toLeftOf B E near B* noCollide * F toRightOf D F near D* noCollide *Figure 6.12: Solutions to Front and Sene benhmarks depited graphially.
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* near ** noCollide *Figure 6.13: Quality of approximate solutions to inonsistent onstraint systems as a funtion ofexeution time.
(a) 3 Models (onsistent):Quality = 0 (b) 4 Models:Quality = 101.23 () 6 Models:Quality = 138.71 (d) 8 Models:Quality = 599.04Figure 6.14: Visualization of approximate solutions to inonsistent onstraint systems.models respetively). Only approximate solutions an be produed for inonsistent onstraintsystems, and the maximum improvement in quality is ahieved early in the optimization proess.Minor improvements are made given further exeution time.Figure 6.14 is a visualization of some of the approximate solutions found for the Collisionbenhmarks. More interpenetration ours as models are added to the sene, whih orrespondsto worsening levels of quality for eah sene. This evidene supports the hypothesis that qualityre�ets the visual orretness of behaviour in a sene.Quality in senes with dynami entitiesTo determine the relationship between quality and exeution time for senes with motion, we usethe Dynami1Stati1 and Dynami2 benhmarks tested in Chapter 5 and desribed in detailin Appendix D. We use trajetories of inreasing degree, and the onstraint systems are phrasedin senes of inreasing dimensionality. Every variable in these benhmarks begins with the range

[−10, 10]. We reord the quality metri every ten seonds and plot it against time, limiting the
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Figure 6.15: Quality of intermediate solutions to the Dynami1Stati1 benhmark as a funtionof exeution time.
Object B

Object A

(a) 0 seonds (b) 5 seonds () 6 seonds (d) 10 seondsA inFrontOf B ∀t ∈ [5, 6]A near B ∀t ∈ [5, 6]A noCollide B ∀t ∈ [0, 10]Figure 6.16: Visualization of the solution to the Dynami1Stati1 benhmark using a trajetoryof degree 1.total exeution time to 90 minutes (5400 seonds). We provide animated �lms that visualize thesolutions found for eah benhmark in Appendix F.The reorded quality for the Dynami1Stati1 benhmark is plotted against time in Figure6.15. No solution is loated for the onstraint system phrased over trajetories of degree 2 ina two-dimensional sene. This indiates that the larger the system beomes in terms of degreeand dimension (and onsequently the number of variables), the more di�ult the solution �ndingproess beomes. In spite of this, a high quality approximate solution is loated for this benhmarkearly in the optimization proess.The solution of the Dynami1Stati1 benhmark using a trajetory of degree 1 is visualizedin Figure 6.16. The inFrontOf onstraint is satis�ed visually at the orret point in the resultingmotion. An approximate solution of this benhmark using a trajetory of degree 2 is visualized inFigure 6.17. Errors are visible in these senes (interpenetration of the objets), re�eting the useof approximate solutions (and not atual solutions) to reate these senes. This demonstrates aorrelation between quality and the visual orretness of the derived behaviour.
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Figure 6.18: Quality of intermediate solutions to the Dynami2 benhmark as a funtion ofexeution time.Quality is plotted against time for the Dynami2 benhmark in Figure 6.18. The quality levelsahieved for this benhmark do not ome as lose to zero ompared to the quality ahieved with theDynami1Stati1 benhmark for trajetories of higher degree and dimension (minimum qualityof 6.86 for Dynami1Stati1, 217.10 for Dynami2). We attribute this to a greater number ofvariables in the Dynami2 benhmark (more trajetories of a higher degree).Two visualizations of the approximate solutions of di�ering quality are presented in Figure6.19 for the Dynami2 benhmark. The interpenetration is less pronouned in the visualizationprodued from the approximation of better quality. This demonstrates the orrelation betweenquality and the visual orretness of the derived behaviour.The above experiments demonstrate that the number of onstraints does not diretly in�uenethe di�ulty of the solution �nding problem (as is the ase with the number of variables). Thisis demonstrated by the fat that the Dynami2 benhmarks ontain fewer onstraints than the



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 165
Object A

Object B

x

z (a) 0 seonds (b) 5 seonds () 6 seonds (d) 10 seondsQuality = 161.32
Object A

Object B

x

z (e) 0 seonds (f) 5 seonds (g) 6 seonds (h) 10 seondsQuality = 25.08A inFrontOf B ∀t ∈ [5, 6]A near B ∀t ∈ [5, 6]A noCollide B ∀t ∈ [0, 10](the forward diretion is the diretion of motion of both models, indiated in the �rst image)Figure 6.19: Visualization of approximate solutions of inreasing quality for the Dynami2 benh-mark.Front benhmark, but no solution is found for the former beause of the greater number ofvariables.Summary of �ndings and suggestionsThe experiments detailed in this setion provide evidene to support the following onlusions(with respet to the questions posed at the beginning of this setion):1. The quality metri re�ets the disovery of an atual solution, that is, when a quality of zerois enountered.2. Quality improves as the optimization progresses.3. Quality re�ets the orretness of visual behaviour in a sene.4. The greater the number of variables (as a result of higher degree urves or senes of higherdimensionality) in a onstraint system, the longer the time required for loating a solutionusing the optimizer.5. The number of onstraints in a system does not impat the solution �nding proess as doesthe number of variables.Conlusions 1, 2, and 3 support the use of the quality metri for evaluating behaviour automatiallyquanti�ed for a sene, espeially when the optimization proess is terminated prematurely due to



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 166lak of time. Conlusions 4 and 5 in�uene the manner in whih we onvert abstrat onstraints intoonstraint systems for solving. Based on these onlusions we formulate the following guidelines:
• Trajetories of degree no higher than 2 should be used, to maximize the likelihood of �ndingatual solutions. Otherwise, we expet to terminate the optimization proess prematurelyand make use of an approximate solution.
• Senes must be spei�ed in a maximum of two dimensions, otherwise an approximate solutionis expeted.
• No restrition is plaed on the number of onstraints in a system.These guidelines disqualify potential onstraint systems that are automatially reated from ab-strat onstraints. For example, a model that moves bak and forth and between other objetsrequires a trajetory with a very high degree urve. It is unlikely that the onstraint optimizationproess will �nd a solution to a onstraint system over this trajetory within a feasible time-limit.The following setion desribes methods for overoming these shortomings of the optimizationproess, while still enabling omplex sene behaviour.6.3.3 Constraint system formulation for feasible optimizationSetion 6.3.2 indiates that onstraint systems with a large number of variables require a largeamount of optimization time to loate solutions of good quality. We redue the optimization timeby expressing motion as sequenes of low degree urves, and solving onstraint systems in aninremental fashion.6.3.3.1 Sequenes of low degree trajetoriesWe de�ne omplex behaviour to be entity motion that inludes a number of way-points in a sene.For example, the story �The man entered the room and approahed the table. .... He then movedtowards the hair.� desribes omplex behaviour. For illustration, we assume that this story isonverted into the following abstrat onstraints:man noCollide room ∀t ∈ [0, 5]man inside room ∀t ∈ [5, 30]man near table ∀t ∈ [9, 14]man near hair ∀t ∈ [14, 30]man noCollide {table;hair} ∀t ∈ [5, 30]table noCollide hair ∀t ∈ [0, 30]A trajetory of a high degree must be attributed to the �man� objet to ensure that the modelreahes all the way-points at the orret time. As observed in Setion 6.3.2, the higher the degreethe more di�ult the onstraint optimization proess beomes.We avoid using trajetories of high degree by onstruting a trajetory as a hain of low degreeurves (Christie et al., 2002). We �nd that there is a satisfatory trade-o� between optimizationperformane and solution quality using hains of �rst degree urves. We segment trajetories by
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Figure 6.20: Illustration of onstraint system segmentation.
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(a) 5 seonds (b) 8 seonds () 12 seonds (d) 18 seondsFigure 6.21: Visualization of a omplex trajetory as the sequene of low degree trajetories.identifying ontiguous segments of time in whih the behaviour of an entity is desribed by a singlelow-degree trajetory.A graphial illustration of a subset of the abstrat onstraints above is presented in Figure6.20, as well as an illustration of how the onstraints are segmented into a hain of 7 onstraintsystems. The duration of the sene is divided into ontiguous time intervals during whih no newonstraints apply. For eah interval a single set of onstraints is appliable over the full duration ofthat interval. A transitional system is inserted between adjaent intervals allowing a period duringwhih both sets of onstraints must be satis�ed so that model loations blend smoothly from oneinterval to the next.To failitate e�ient onstraint solving, the ending loations for eah interval are used as start-ing loations for solving the following onstraint system. If the solution renders the subsequentonstraint system inonsistent, then we use baktraking to loate alternate solutions to the pre-vious onstraint system.Figure 6.21 presents a visualization of a �nal solution found by the optimizer for the set ofsegmented onstraint systems derived in Figure 6.20. A solution is loated for every segmentedonstraint system, meaning that quality value zero is obtained in all ases.The segmentation method presented in this setion is a ompromise between ontext-free be-haviour quanti�ation and optimization performane. In Chapter 5 we argue that an analytialapproah to onstraint solving provides a non-inremental method for quantifying sene behaviour,whereas the idea of segmentation is inherently inremental. However, the onstraint optimization
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1 constraint 2 constraints 4 constraints(b) Three inrementally solved onstraint systemsFigure 6.22: Illustration of inremental system optimization.proess ours one for an entire sene. One a solution is found for all the onstraint systems, theontext-free advantage is maintained.6.3.3.2 Inremental system optimizationSome onstraint systems ontain a large number of variables despite the use of trajetory haining.To improve optimization e�ieny, we solve systems in an inremental fashion by �nding solutionsto only a subset of the onstraints at a time.Inremental system optimization is performed by plaing stati objets �rst, and thereafterquantifying the motion for dynami objets. Eah entity is assigned a weight based on its trajetorytype, as illustrated in Figure 6.22(a). The setting (room) is assigned weight of 1 (beause settingsare assumed to be loated at the origin), while stati objets are assigned weight of 2. Dynamiobjets (man) are assigned a weight of 3.Eah edge in the graph shown in Figure 6.22(a) represents a onstraint, and is assigned a weightalulated as the sum of the involved entities' weights. The edge with the lowest weight is seletedas the �rst onstraint to be solved, as illustrated in Figure 6.22(b), and the edge is removed fromthe graph. In the example, the solution to the �rst onstraint de�nes the loation of �table� for theremaining onstraint systems, removing its variables from any subsequent optimization proess.The proess ontinues iteratively, seleting the edge with the lowest weight as the next onstraintto be optimized until there are no more edges in the graph. At eah iteration a single edge is seletedthat identi�es the two entities for whih trajetories will be quanti�ed in the urrent iteration. Toavoid inonsisteny, any other onstraint involving both entities is also added to the onstraintsystem to be optimized at the urrent iteration. This proess is illustrated in Figure 6.22(b).This method is a ompromise between ontext-free and inremental behaviour quanti�ation.We �nd that eah onstraint system produed using the inremental method is solved rapidly usingthe optimizer. One all onstraints are solved, the overall solution is one that an be used to querythe sene behaviour in a ontext-free manner.6.3.3.3 Combination of segmentation and inremental optimizationThe restritions imposed on the omplexity of onstrain systems by the interval-based quanti�edonstraint optimizer are overome using onstraint trajetory haining and inremental optimiza-tion. A set of abstrat onstraints is �rst segmented into a hain of onstraint systems as desribed
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Figure 6.23: Illustration of the proess used to reate quanti�ed trajetories from an abstratonstraint set.in Setion 6.3.3.1 and then eah segmented onstraint system is solved in an inremental fashionas desribed in Setion 6.3.3.2. This proess is illustrated in Figure 6.23.In summary, this setion demonstrates that the interval-based onstraint optimizer is limitedin its ability to �nd solutions to sene-related onstraint systems. We overome these limitationsby formulating and optimizing onstraint systems in a areful manner, allowing us to exploit thestrengths of the analytial formulation of behaviour in a sene while maintaining the ability toquantify omplex behaviour in a virtual environment.6.4 Population of animated, multi-modal 3D environmentsThis setion desribes the strategies employed for on�guring a three dimensional environmentusing sene desriptions derived from the annotations. We investigate strategies for instantiatingvirtual environments and ombining audio and text-based modalities into a �nal multi-modalpresentation.6.4.1 Strategies for instantiating 3D virtual environmentsThe population of a 3D environment for eah identi�ed sene involves instantiating models inthe environment, plaing or animating these models aording to their quanti�ed behaviour, andinstantiating bakground senery in the environment.6.4.1.1 Objet modelsEah entity that appears in a sene (identi�ed using the proess desribed in Setion 6.2.2) isrepresented visually in the 3D virtual environment using the model spei�ed in the entity desriptor.Models soured from the library are standardized with respet to size and orientation, ensuringthat all objets are saled to �t within the unit ube (using automati normalization). All objets
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Figure 6.24: Default humanoid model from the library with orientation, loation and boundingbox illustrated.are oriented to fae the positive z-axis, with the up diretion faing the positive y-axis. Futureorientations of a model are alulated based on this fat.Eah model in the library is assoiated with a manually de�ned bounding box from whih aradius is derived for speifying a bounding sphere in the reation of quanti�ed onstraints. Thisbounding box need not be the hull of the model, beause ases exist where the hull produes anexaggerated radius. For example, the humanoid model illustrated in Figure 6.24 is assoiated witha bounding box that is not the hull of the model, but rather approximates the body of the humanoidbeause the arms exaggerate the width of the model.All objets in the library are pre-textured. The urrent implementation of the library ontainsonly a limited number of humanoid models, and we use variations in texturing for visual distin-tiveness between avatars. Verties omprising the model are grouped in terms of items of lothing,inluding shirt and trousers. The seletion of di�erent materials for these vertex groups providesa simple method for modifying the visual appearane of unique avatars. Desriptors ontain theindividual olour and saling fator for eah entity. At present, lothing olour is hosen at randomfor eah avatar, as is the saling fator.6.4.1.2 Model positioning and artiulationSolutions to the quanti�ed onstraint systems speify trajetories for every entity, and plaementin a virtual environment onsists of ensuring that the models follow the paths ditated by theorresponding trajetories.All models fae the positive z-axis by default, and urrently no onstraints are implementedthat speify the orientation of models in a sene. Orientations for dynami models are derivedusing the tangent of the trajetory at eah frame in the sene, automatially ensuring that thesemodels fae the diretion of motion.Loal artiulation is applied to human models in the form of motion apture for a set of threetypial human poses. This requires the following data to be assoiated with the models extratedfrom the library:
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(a) Rest position (b) Stand pose () Walk pose (d) Run poseFigure 6.25: Armature on�guration and illustration of the default avatar in the three standardposes.
• Skeleton: models are rigged with an appropriate armature, labeled in a standardized mannerso that multiple motion apture on�gurations an be applied. The standard bone strutureand labeling system we use is illustrated in Figure 6.25. Currently, eah bone is assigned to avertex group on the avatar mesh. If no skeleton is assigned to a model, then no artiulationis applied to the model in the sene.
• Motion Capture Data: Currently, the library of motion apture data ontains only threeposes for humanoid models, namely stand, walk, and run, illustrated in Figure 6.25. Theseare listed as optional motion apture assignments in the desription of a model in the modellibrary. The seletion of an appropriate pose for an avatar at a point in the sene is basedon the veloity of a model at that point. If the veloity is above an upper threshold, therun pose is seleted. If veloity is below a lower threshold, then the stand pose is seleted.Otherwise the walk pose is seleted.The addition of the three basi poses for humanoid models greatly improves the visual rihnessof the �nal sene, enhaning the reognition of the humanoid models as representations of people.The �nal result is a sene ontaining visual objets and artiulated avatars, an example of whihis provided in Figure 6.26. The trajetory of eah entity is represented by a oloured urve.6.4.1.3 SettingThe Setting annotation is used to onstrut surrounding geometry in the 3D environment. Thehallenge with interpreting the Setting annotation is that only a single token is annotated (futureannotation ategories potentially identify desriptive phrases regarding the setting).
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Figure 6.26: Illustration of a 3D environment ontaining models with assigned motion and artiu-lation.We use proedural modeling approahes for reating bakground senery beause they are ableto onstrut geometry of unlimited size and sale. This is opposed to a prede�ned model that is notlarge or detailed enough for every sene. Proedural methods also reate geometry that appearsunique at eah invoation, allowing for variation in the appearane of senery between di�erentsettings.Currently, we provide a proedural method for three ategories of setting, namely terrain,room, and ity. The annotated Setting token must be assoiated with one of these ategories forthe invoation of the appropriate proedure.WordNet (Fellbaum, 1998) provides a mehanism for ategorizing Setting annotations into oneof the three groups. If a Setting annotation is a hyponym of the term �geologial formation� or�geologial area�, it is lassi�ed as a terrain. Any term with the hypernym �urban area� is lassi�edas a ity, while any term with the hypernym �room� is lassi�ed as a room. For example, the word�study� is a hyponym of �room�, while the terms �London� and �ity� are hyponyms of �urban area�and are lassi�ed as ities.Entity positioning and loomotion is determined before the reation of the setting geometry,and so a proedural method must adapt to the behaviour of entities in a sene.Proedural terrain generation Proedural terrain generation is inspired by the work of Mus-grave et al. (1989) who pioneered this tehnique using frational Brownian motion and erosionsimulation tehniques. Reent work by Belhadj (2007) provides alternative methods for the proe-dural terrain generation that allows for the pre-de�nition of ridge and peak points, around whihterrain is onstruted automatially. This allows terrain to be reated at the orret height to �sup-port� the entities within the sene wherever they move, while the rest of the terrain is onstrutedin a natural-looking manner.At present, terrain geometry is textured with a �grass� material, but ontinued researh in thisarea is underway in terms of populating a terrain with rivers and �ora, and providing high levelsof detail for lose-up shots1.1See the researh page on this topi available at http://delta.ru.a.za/vrsig/urrentprojets/058proeduralterrain/index.html
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(a) Terrain (b) Room () CityFigure 6.27: Example settings generated proedurally.Proedural ity generation Proedural ity generation is inspired by the work of Parish andMuller (2001) and Muller et al. (2006), who desribe methods for the automati generation of urbanroad networks and buildings. We provide a ity generation method that produes only a grid-ironroad-network, representing buildings as textured ubes. The proedure ensures that no buildingsare plaed within the radius speifying the dimensions of the sene, so that the entities appear tofall within a square in the entre of a ity. The simple geometry produed by this module providesvisual indiation of an urban environment, and ontinued researh is underway in terms of thereation of autonomous agents for simulating pedestrians. This potentially adds visual rihness toa proedurally generated ity.Proedural room generation A proedure for reating senery indiating the inside of a roomis onstruted by reating geometry for four walls that surround the radius of the sene. Texturesfor the walls and �oor are hosen at random from a library. Entities enter or leave a room throughdoors that are reated wherever an avatar rosses the boundary of the sene. This approahfuntions well in most ases beause we observe that few transitions our within a single sene.In future, onstraints ould apply to the trajetory of a model that restrit entry and exit to asingle point.Future enhanements to proedural room generation inlude inserting models into the senethat typially would our in a spei� type of room. For instane, a �kithen� would generallyontain a table and some hairs, while a �bedroom� might ontain a bed and a upboard. Thisrequires further researh into the use of databases that provide this type of link between terms(Sproat, 2001), although suh methods would not be onsidered knowledge-poor.Visual examples of the three types of proedural setting for the 3D visualization system areprovided in Figure 6.27.6.4.2 Strategies for audioTwo options for reating audio representations of �tion text are investigated. The �rst optiongenerates an audio version of the narrative using a text-to-speeh synthesizer, while the seondoption inludes sound e�ets, or foleys, desribed in the text.



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 174He gave an exited yelp and rushed full-tilt at the surprised rabbit.Figure 6.28: Example foley desription from the Famous Five 1: Five on a Treasure Island byEnid Blyton (1942).6.4.2.1 Audio narrationsAudio versions of text are generated using standard text-to-speeh tehnology, suh as eSpeak2.However, we observe that the speeh generated is often monotonous and di�ult to follow. Whileimprovement in the prosody of the speeh synthesizer an address this to an extent, we believethat this problem is alleviated by hoosing voies appropriately for eah avatar in the story (Zhanget al., 2003). This adds an element of variation to the audio narrative.Fition text ontains quoted text representing speeh emitted by di�erent haraters in thestory. This information is provided in the form of Quote annotations in the �tion text, as identi�edin Chapter 4. Eah unique avatar identi�ed in the book requires a di�erent voie. Most speehsynthesizers provide a number of voies, usually inluding a male and female voie. While entirelynew voies an be reated for a speeh-synthesizer, experiene has shown this to be a tedious andtime onsuming proess (Hood, 2004). Instead, a range of voies is reated by hoosing a di�erentpith for eah avatar, within a range that is still appropriate to the spei�ed gender. Eah setionof quoted speeh is rendered with the appropriate voie, and reorded to an audio �le. Non-quotedspeeh is rendered using a default narrator voie.The use of avatar spei� voies adds valuable variation to the narrated output, and allowsavatars to be identi�ed by the listener even in dialogue where they are not expliitly named.6.4.2.2 FoleysSound e�ets are often desribed in �tion text, as illustrated in Figure 6.28. These desriptionsare potentially identi�ed using annotations reated by the hierarhial rule-based learning systemin Chapter 4. However, we urrently reate foley annotations using a speially designed knowledge-poor method.We identify nouns suh as �yelp� automatially by examining the hypernym (abstration) treeof the word provided by WordNet (Fellbaum, 1998). Any word related to �sound� is identi�ed as afoley, and a orresponding audio �le mathing the word is loated from an audio library. We usea foley library strutured in the same manner as the model library, where eah foley is assoiatedwith a number of keywords. A query to the library ontaining the triggering word is omparedagainst foley keywords, returning foleys where positive mathes our.Sound e�ets further improve the quality of the overall presentation by adding rihness to theaudio output.6.4.3 Strategies for subtitlesWe minimize the problem of mispronuniation in synthesized speeh by providing onurrent sub-titles. The text for eah segment is rendered as an image that is superimposed over the urrently2eSpeak: http://espeak.soureforge.net/ [aessed on 10 July 2008℄
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Figure 6.29: Example subtitle with speeh bubble, representing a quote from talking avatar Julian.displayed graphis. The times at whih subtitles appear are automatially derived from the loationof the orresponding audio �les in the presentation time-line.We enhane subtitles by wrapping the text in a speeh-bubble whenever quoted speeh isenountered, an example of whih is presented in Figure 6.29. A graphial representation of theappropriate avatar provides a visual identi�er unique to the talking harater. The use of a visualavatar simpli�es the identi�ation of the speaking entity, and provides a visual mehanism fordi�erentiating between narration and speeh.The visual omponent of the subtitles ould also serve to bene�t viewers with hearing de�ien-ies.6.4.4 Constrution of a multi-modal animated �lmVirtual environments are instantiated in the Blender modeling pakage 3, whih is an open soure3D modeling and animation tool that ontains a Python sripting interfae as well as a videosequening editor. The sripting interfae allows for the automati onversion of annotations andquanti�ed trajetories into 3D environments. The advantage of using a pakage suh as Blenderis the availability of a number of pre-implemented manipulation tools for omputer graphis thatare used to automate the sene reation proess.Positioning and motion within a 3D environment is ontrolled using Blender's interpolation(IPO) urve struture (Blender Foundation, 2008), whih de�nes a model's translation in a senein terms of an independent urve (hannel) for eah dimension. Eah hannel orresponds toa omponent of an entity's trajetory, and eah urve is onstruted by traing the quanti�edtrajetories for eah entity.Blender allows for the reation of multiple 3D environments, onveniently alled senes, math-ing our de�nition of the onept in Setion 5.1 on page 106 in Chapter 5. Every sene is a separate3D environment in Blender, from whih segments are rendered and plaed into the video sequeneralong with subtitles and audio. Timings in the 3D senes are all based on the audio rendering ofthe �tion text. Transitions between di�erent senes are realized using a basi �ut� tehnique.A example sequene produed automatially from annotated �tion text is presented in Figure6.30. Rendering the �nal sequene results in a multi-modal animated 3D �lm orresponding to theannotated �tion text.3Blender: http://www.blender.org/ [aessed on 12 July 2008℄
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Figure 6.30: Example sequene in Blender onstruted automatially from the Famous Five 1:Five on a Treasure Island by Enid Blyton (1942).6.5 Analysis of the sene reation proessWe investigate whether orresponding multi-modal animated 3D virtual environments and �lmsare reated using the proesses desribed in this hapter. Evidene validating the reation proessis supported by answers to the following questions:1. Are onsistent high-level sene desriptions derived from annotated text?This question determines whether onsistent high-level desriptions of the senes, their on-tents and behaviour are reated using the automated proesses we desribe.2. Are virtual environments populated onsistently using high-level sene desriptions?One a virtual environment is populated a human has the opportunity to diretly modify asene in a 3D modeling pakage. We report on the type and quantity of modi�ations madeby a human as an indiation of the onsisteny with whih these environments are populated.3. Are the automatially populated 3D environments representative of the orresponding text?This question annot be answered using quanti�ed methods, due to the subjetivity of lan-guage and visual interpretation. However, we provide examples of automatially reatedenvironments, and provide a subjetive evaluation of eah, whih is guided in terms of thefollowing questions:(a) Is behaviour spei�ed by annotations re�eted in the visual representation?(b) Can omplex behaviour (multiple way-points in a sene) be re�eted in a visual repre-sentation?() Does the proess support sequening of multiple senes?(d) Is appropriate media generated for representing the text?(e) Are the onversion proesses appliable to �tion books of di�erent type (author, series,readability)?This setion presents a suite of experiments for answering the above questions, and desribes testases used. Metris for measuring suess are de�ned, and possible soures of experimental errorare identi�ed.



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 177ReadabilityDesription Series: Book Author (year) Fog Flesh1 Cow sene Famous Five 1:Five of a Treasure Island Enid Blyton(1942) 5.2 96.22 Rabbit sene Famous Five 1:Five of a Treasure Island Enid Blyton(1942) 5.2 96.23 Study sene Famous Five 1:Five of a Treasure Island Enid Blyton(1942) 5.2 96.24 Travel sequene Famous Five 1:Five of a Treasure Island Enid Blyton(1942) 5.2 96.25 Follow sene World of Tiers 7:More than Fire Philip Jose Farmer(1993) 6.6 87.86 House sequene Chroniles of Narnia 2:The Lion, the With and the Wardrobe C.S. Lewis(1950) 6.9 90.5Table 6.2: Desriptions of the soure books and hosen senes.6.5.1 Test orpusWe use six extrats from three �tion books of di�erent type (aording to the de�nition in Chapter4, where books from di�erent series and authors are onsidered to be of di�erent type), listed inTable 6.2. We present the atual extrats with the visual results in Setion 6.5.4.Eah extrat is annotated using ategories desribed in Chapter 4, namely with Avatar, Objet,Setting, Transition, and Relation annotations. The annotations are assumed to be orret aordingto one human's pereption, but need not be orret aording to another's, nor are they guaranteedto be onsistent.The suite of extrats is hosen to illustrate features of the onversion proess:
• Extrats 1, 2, 3, and 5 demonstrate the automati quanti�ation of behaviour in a virtualworld.
• Extrat 4 and 6 are extended extrats desribing a number of di�erent senes. We use theseto demonstrate the reation of orresponding sequened animated �lms with multiple senes.
• All the extrats are used to demonstrate the automati insertion and plaement of appropriategeometry and audio material.The objetive evaluation of the above proesses is a poorly de�ned problem, whih we disuss inthe next setion.6.5.2 MetrisThe measurement of the suess of an automatially generated virtual world is a subjetive proessbeause of di�erent human interpretations of �tion text. The results produed by the senereation proesses are visual in nature, and it is unlear whih features in a visual sene should bemeasured for quantitative evaluation.The problem of evaluating automatially generated senes is enountered in other researh inthe text-to-graphis domain. Most related researh performs subjetive evaluations through theuse of visual examples (Coyne and Sproat, 2001; Lu and Zhang, 2002; Zeng et al., 2003; Joshi et al.,



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 1782004). In these ases, a small set of example images produed from the original text is provided,leaving evaluation to the disretion of the reader.The only other evaluation method we enounter in related text-to-graphis researh is userevaluation, where a group of human subjets is asked to rate the visual ontent produed by theautomati system (Johansson et al., 2005; Ma, 2006). However, Johansson et al. (2005) aknowledgethat suh studies do not provide a omplete re�etion on the apabilities of a system, and resultsvary greatly from one human to the next. We believe that this is beause suh studies do notobjetively evaluate the system. Rather, they evaluate both the human as well as the system.Subjetivity is involved in omprehending natural language and visual images. The proesses wedesribe are designed to improve in quality given additional time and patiene of the human. Thesefators introdue errors into a user-evaluation that are not neessarily aused by the automatedproess, and are therefore not measurable.We perform our evaluations using a subjetive (but quantitative) evaluation of the manualinterventions needed to ensure onsisteny in automatially generated ontent. The degree to whihautomatially produed ontent mathes the text is justi�ed through the use of visual examples.6.5.2.1 Consisteny of automatially generated ontentWe evaluate whether the ontent generated at eah step in the onversion proess requires modi�-ation and onsider ontent to be onsistent if the total amount of generated ontent exeeds theamount of manual modi�ations.We alulate the following metri to determine the level of onsisteny ahieved in the reationof high-level sene desriptions:
consistency =

total content items−manualmodifications
total content items

∗ 100The above metri, while providing numeri values, is subjetive in nature beause the manualmodi�ations are performed at the disretion of an individual human.We evaluate the onsisteny of automatially produed virtual environments aording to thetype of intervention performed. We ategorize manual intervention as deletions, modi�ations,and insertions, eah of whih vary in terms of manual e�ort. Insertions are onsidered the mostdi�ult operation beause they require the most e�ort and expertise in a 3D modeling environ-ment. Modi�ations are onsidered less di�ult beause only attributes of the sene are modi�ed,requiring an intermediate level of expertise and e�ort. Deletions are onsidered the least di�ultoperation beause little expertise is required for this operation. We present the number of eahtype of manual operation as an indiator of the degree of onsisteny.6.5.2.2 Corretness of visual ontentWe follow the methods used by WordsEye (Coyne and Sproat, 2001), Swan (Lu and Zhang,2002), and other text-to-graphis systems (Zeng et al., 2003; Joshi et al., 2004) in using visualexamples as evidene regarding the orretness of the automated ontent. We ritially evaluateeah visual example. However, we maintain that the true level of orretness varies from humanto human, or aording to the adage is �in the eye of the beholder�.



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 1796.5.3 Soures of experimental errorAs in Chapter 4, we aknowledge the omplexity of the English language and its understanding as asoure of experimental error. The manual annotations produed for the orpus of test data annotbe guaranteed to be onsistent or orret, and this potentially produes extraneous or surprisingartifats in the automatially generated senes.The subjetivity of image and �lm omprehension is also a soure of experimental error. Similarto language omprehension, omprehension of the visual and audio modalities is de�ned by humanexperiene. As suh, manual modi�ations and ritial evaluations provided for eah result areindependent to the evaluator, and need not orrelate with another human's opinion.Our implementation is restrited to partiular visual features that avoid potentially biasingthe pereived suess of the automation proess. We provide an indiation of the extent to whihertain features are implemented:
• The set of annotation ategories we use are restrited to Avatar, Objet, Setting, Transition,and Relation. Further visual desriptions inluding grasping of objets, poses, expressions,and olours are not yet implemented. These fators are not onsidered during the ritialevaluations of the visual results.
• Following the knowledge-poor theme of this researh, ertain semanti types assoiated withannotations suh as Transition and Relation are interpreted literally. For instane, the rela-tion type inside is interpreted literally in examples suh as �in his hair� and �in bed�. Theseexamples require detailed world-knowledge for orret interpretation, and we leave this tothe human.
• Camera ontrol is not onsidered during the sene generation proess, leaving this to futurework whih will take into aount the work already performed in this �eld (Druker andZeltzer, 1994; He et al., 1996; Christie et al., 2002; Nieuwenhuisen and Overmars, 2003).
• We produe graphial visualizations that are of intermediate quality in terms of rihness,so that the important aspets of the visualizations are not obfusated. We avoid the use ofspeial e�ets and other graphial enhanements in these evaluations.6.5.4 ResultsWe present experiments that investigate the questions posed at the beginning of this setion.6.5.4.1 Consisteny of high-level sene desriptionsWe investigate the onsisteny with whih high-level sene desriptions are reated from anno-tations using the proess desribed in Setion 6.2. In partiular, we investigate the followingquestions:
• Is the majority of the sene desriptions orretly reated from interpreted annotations?
• What is the nature of manual intervention in this proess?



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 180Extrat Sene segmentation Model desriptors Co-referene Abstrat onstraintsTotal Modi�ed Consisteny Total Modi�ed Consisteny Total Modi�ed Consisteny Total Modi�ed Consisteny1 1 0 100% 12 1 91.67% 12 2 83.33% 68 1 98.52%2 1 0 100% 8 2 75.0% 52 15 71.5% 41 1 97.56%3 1 1 0% 6 0 100% 40 8 80.0% 45 0 100%4 6 2 66.67% 10 0 100% 23 0 100% 41 9 78.0%5 1 0 100% 2 0 100% 11 0 100% 4 0 100%6 2 0 100% 8 0 100% 28 1 96.43% 44 0 100%Summary 12 3 83.33% 46 3 93.47% 166 26 84.33% 243 11 95.47%Table 6.3: Degree of onsisteny for the automati abstrat onstraint reation proess over sixextrats.We investigate these questions using eah of the six annotated extrats. We reord the amount ofautomatially generated ontent and ompare this with the amount of ontent that is modi�ed bya human.The type and degree of manual intervention with respet to eah step of the abstrat onstraintreation proess is listed in Table 6.3. Exat desriptions of the modi�ations are provided inAppendix E.Sene segmentation is onsistent in the majority of ases. Extrats in whih modi�ations aremade do not expliitly mention the sene, and human disretion is used to infer the setting.The reation of model desriptors is onsistent in the majority of ases, and only 3 of the 46automatially reated desriptors are modi�ed manually. The majority of these modi�ations areonerned with assigning a trajetory of higher degree to objets that are de�ned as stati bydefault.Co-referene resolution is ahieved at a high level of auray. Two senarios require manualintervention. The pronoun �it� is not handled by the urrent implementation, and must be manuallyresolved. General o-referenes, for example �boy�, are also not handled, and must be manuallymathed to the orret avatar is some ases. However, these senarios represent only a smallportion of the total onsistent o-referene items reated.Only a small number of the automatially generated abstrat onstraints require manual mod-i�ation. The greatest number of modi�ations are made for extrat 6. In this ase, onstraintsare added manually to ater for details not expliitly desribed in the �tion text. For example,in extrat 6 the harater Anne is desribed as �sleeping�, an ativity that a human assoiateswith a �bed�. This item of furniture is not expliitly stated in the extrat, and no orrespondingannotation is reated that identi�es it. A human manually inserts an abstrat onstraint: �Anne
inside bed�. This results in the automati plaement of a bed model in the sene. In spite of thesemanual modi�ations, the majority of automatially produed onstraints are onsistent.Sene desriptions are reated onsistently using the knowledge-poor interpretation proessesdesribed in Setion 6.2. The types of manual intervention ater for exeptions that require addi-tional world-knowledge from a human.



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 181Insertion Modi�ation Deletion1 0 1 32 0 1 03 0 1 14 0 8 15 0 1 06 0 1 2Summary 0 13 7Table 6.4: Summary of manual modi�ations to automatially populated virtual environments.6.5.4.2 Consisteny of virtual environment populationWe investigate the onsisteny with whih the population of virtual environments is ahieved usingthe proess desribed in Setion 6.4. We investigate the following questions:
• Do instantiated and populated virtual environments require signi�ant manual modi�ation?
• What is the nature of manual intervention in this proess?We investigate these questions by populating virtual environments for eah of the six annotatedextrats. We indiate the number and type of eah manual intervention in the virtual environment.The extent of human intervention in reating virtual environments for eah extrat is listedin Table 6.4. No insertions are made to any of the virtual environments, but some modi�ationsand deletions are performed. This indiates that our proess is apable of produing a minimumamount of visual ontent for a sene, but in some ases it produes more visual ontent than isneessary.The majority of the modi�ations made to the virtual environments are onerned with ameraplaement, a funtion not atered for by the urrent implementation. The other modi�ations aredisretionary, suh as modifying the material of entities in the sene.The primary ause for deletions in a virtual environment is the reation of ontent that shouldnot be visually represented. In all these ases, extraneous ontent is the result of annotations thatare inonsistent. In this respet, the visualization proess is orretly representing the annotatedtext, but is not reating a orret visualization aording to one human's opinion. This point isillustrated by the inlusion of a model for �hildren� in the sene shown in Figure 6.31(a) and ().This entity is marked as an avatar in the extrat, but it does not make sense in the visual sene,and is removed by hand. Not all senes require deletions, an example of whih is illustrated inFigure 6.31(b).Automatially populated virtual environments do not require signi�ant manual modi�ations,indiating that they are reated onsistently. Manual intervention ours only in the form ofmodi�ations and deletions in the virtual environment.6.5.4.3 Visual representation of behaviourWe ondut two experiments to determine if behaviour desribed by Transition and Relationannotation ategories is visualized orretly in a sene. We investigate the following questions:
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(a) Extrat 1 (b) Extrat 2 () Extrat 3Figure 6.31: Illustration of automatially generated virtual environment without manual interven-tion.

• Is the behaviour desribed by Transition and Relation annotations visualized in the virtualenvironment?
• Is quanti�ed behaviour (behaviour de�ned over an interval of time) visualized in a virtualenvironment?We use two extrats from di�erent books in the investigation of the above questions.Cow sene The ow sene, drawn from the Famous Five 1: Five on a Treasure Island by EnidBlyton (1942) is annotated as follows:The pini was lovely. They had it on the top of a hill, in a sloping �eld that looked down into asunny <setting>valley</setting>. <avatar>Anne</avatar> didn't very muh like a big brown <ob-jet>ow</objet> who <transition type=�INSIDE� subjet=�ow�>ame</transition> up <re-lation type=�near� subjet=�ow� objet=�her�>lose<relation> and stared at her, but it <transi-tion type=�OUTSIDE� subjet=�it�>went</transition> away when <avatar>Daddy</avatar> toldit to. The <avatar>hildren</avatar> ate enormously, and Mother said that instead of having a tea-piniat half-past four they would have to go to a tea-house somewhere, beause they had eaten all the tea <ob-jet>sandwihes</objet> as well as the lunh ones!"What time shall we be at Aunt Fanny's?" asked <avatar>Julian</avatar>, �nishing up the very last <ob-jet>sandwih</objet> and wishing there were more."About six o'lok with luk," said <avatar>Daddy</avatar>. "Now who wants to streth their legs a bit?We've another long spell in the ar, you know." The <objet>ar</objet> seemed to eat up the miles as itpurred along.A sequene of images taken from the resulting animated �lm is presented in Figure 6.32 (whihis available for viewing in Appendix F). The ow enters and exits the sene at the orret mo-ments aording to the onurrent subtitles and audio, indiating the suessful onversion of theTransition annotations to visual behaviour. The setting is interpreted orretly in providing abakground suitable for the desription �valley�, and the appropriate geometri models appear inthe virtual environment.Follow sene The following sene, taken from the World of Tiers 7: More than Fire by PhilipJose Farmer (1993), provides an example indiating the strength of phrasing onstraints in terms
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Figure 6.32: Cow sene from the Famous Five 1: Five on a Treasure Island by Enid Blyton (1942).



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 184of ontiguous intervals of time:"THIS'LL BE IT!" <avatar>KICKAHA</avatar> SAID. "I KNOW IT, KNOW IT! I CAN feel the foresshaping themselves into a big funnel pouring us onto the goal! It's just ahead! We've �nally made it!"He wiped the sweat from his forehead. Though breathing heavily, he inreased his pae.<avatar>Anana</avatar> was a few steps <relation type=�BEHIND� subjet=�Anana� ob-jet=�him�>behind</relation> and below him on the steep <setting>mountain</setting> trail. Shespoke to herself in a low voie. He never paid any attention to her disouraging-that is, realisti-words, anyway."I'll believe it when I see it."The above extrat spei�es a �following� motion, where the model representing Anana must be
behind the moving Kikaha model over a time interval.Snapshots from the �nal animated sene are presented in Figure 6.33 (the �lm is available forviewing in Appendix F). When the sentene �Anana was a few steps behind...� is enountered, thebehaviour quanti�ed by the behind Relation is visualized. The Anana avatar moves to a position�behind� the Kikaha model. This spatial relation between the two moving entities is maintainedfor the entire time interval, illustrated by the last four snapshots in Figure 6.33.These examples demonstrate that the behaviour spei�ed by Transition and Relation annotationategories is visualized appropriately. Quanti�ed behaviour is visualized orretly in a virtualenvironment.6.5.4.4 Complex behaviourThis setion investigates the visualization of omplex behaviour in a sene. We de�ne omplexbehaviour as trajetories that inlude a number of way-points, spei�ed as a hain of low degreeurves (desribed in Setion 6.3.3). We investigate the following question:
• Is the omplex behaviour desribed by Transition and Relation annotations visualized in avirtual environment?We use two extrats in the investigation of the above question.Rabbit sene The Rabbit sene from the Famous Five 1: Five on a Treasure Island by EnidBlyton (1942) demonstrates omplex motion with respet to three di�erent entities in the sene,namely a rabbit, the avatar Timothy, and the avatar George (we use ellipsis to indiate where text
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Figure 6.33: Follow sene from the World of Tiers 7: More than Fire by Philip Jose Farmer (1993).



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 186is omitted):"Look! There's a rabbit!" ried <avatar>Dik</avatar>, as a big sandy <objet>rabbit</objet>lolloped slowly aross the <setting>yard</setting>. It <transition type=�OUTSIDE� sub-jet=�It�>disappeared</transition> into a hole on the other side. Then another rabbit <transitiontype=�INSIDE� subjet=�rabbit�>appeared</transition>, sat up and looked at the hildren, and then<transition type=�OUTSIDE� subjet=�rabbit�>vanished</transition> too. A third rabbit <transi-tion type=�INSIDE� subjet=�rabbit�>appeared</transition>. It was a small one with absurdly big ears...... But this was too muh for <avatar>Timothy</avatar>. ... . He gave an exited <foley>yelp</foley>and rushed full-tilt<relation type=�NEAR� subjet=�He� objet=�rabbit�>at</relation> the surprisedrabbit. ...Then it turned itself about and tore o� at top speed, its white bobtail going up and down as it boundedaway. It disappeared <relation type=�UNDER� subjet=�It� objet=�bush�>under</relation> agorse <objet>bush</objet> near the hildren. <avatar>Timothy</avatar> went after it, vanish-ing <relation type=�UNDER� subjet=�Timothy� objet=�bush�>under</relation> the big <ob-jet>bush</objet> too. ..."Tim! Do you hear me! Come out of there!" shouted <avatar>George</avatar>. "You're not to hase therabbits ...... <avatar>George</avatar> went to feth him. Just as she got up<relation type=�near� subjet=�she�objet=�bush�>to</relation> the gorse <objet>bush</objet> the sraping suddenly stopped.This extrat ontains a number of Transition annotations desribing the behaviour of the Rabbitentity. A number of di�erent behaviours are also spei�ed by Relation annotations: Timothyrushes towards the Rabbit; the Rabbit moves under a bush; and Timothy follows the rabbit to thebush. The ombination of these di�erent behaviour types results in omplex motion in the virtualenvironment.Snap-shots of the �rst portion of the Rabbit sene are presented in Figure 6.34 ontainingan outdoor sene with rabbits, some avatars, a bush, and the dog Timothy (the animated �lm isavailable for viewing in Appendix F). The rabbit model moves in and out of the sene appropriately.The sequene of snapshots is ontinued in Figure 6.35, illustrating the motion of Timothy towardsthe rabbit and the subsequent motion of the rabbit towards the bush. The images visualize Timothyfollowing the rabbit into the bush, as well as the subsequent movement of George to the bush.Study sene The study sene from the Famous Five 1: Five on a Treasure Island by EnidBlyton (1942) is an extrat desribing omplex behaviour, as well as desribing stati sene layout:He stole <transition type=�INSIDE� subjet=�He�>in</transition>. His <avatar>unle</avatar>still snored. He tiptoed by him <relation type=�NEAR� subjet=�he� objet=�table�>to</relation>the <objet>table</objet> <relation type=�BEHIND� subjet=�table� ob-jet=�hair�>behind</relation> his unle's <objet>hair</objet>. He took hold of the<objet>box</objet>. And then a bit of the broken wood of the box fell to the �oor witha <foley>thud</foley>! His unle stirred <relation type=�INSIDE� subjet=�unle� ob-jet=�hair�>in</relation> his <objet>hair</objet> and opened his eyes. Quik as lightningthe boy rouhed down <relation type=�BEHIND� subjet=�boy� objet=�hair�>behind</relation>his unle's <objet>hair</objet>, hardly breathing."What's that?" he heard his unle say. <avatar>Julian</avatar> didn't move. Then his unle settled downagain and shut his eyes. Soon there was the sound of his rhythmi <foley>snoring</foley>!"Hurrah!" thought <avatar>Julian</avatar>. "He's o� again!" Quietly he stood up, holding thebox. On tiptoe he rept to the Frenh window. He slipped <transition type=�OUTSIDE� sub-jet=�He�>out</transition> and ran softly down the garden path. He didn't think of hiding the box. Allhe wanted to do was to get to the other <avatar>hildren</avatar> and show them what he had done!



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 187

Figure 6.34: Rabbit sene (1) from the Famous Five 1: Five on a Treasure Island by Enid Blyton(1942).
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Figure 6.35: Rabbit sene (2) from the Famous Five 1: Five on a Treasure Island by Enid Blyton(1942).



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 189The above extrat desribes the motion of the avatar Julian as he sneaks into his unle's study,to the table (whih is desribed as being behind his unle's hair). The boy then exits the sene.Snap-shots of the �nal animated �lm are presented in Figure 6.36 and Figure 6.37 (availablefor viewing in Appendix F). The model representing Julian enters the sene, moves towards thetable, moves behind the hair, and exits the room in a manner that orresponds to the onurrentsubtitles. Quentin moves to his hair at the appropriate moment. This example demonstrates thatomplex behaviour is visualized in the form of orret movement through multiple way-points.We identify problems with Figure 6.36, suh as the fat that the box is not plaed on thetable. This fat is never expliitly stated in the text however, and the reated sene is orretaording to the annotations. One �aw is the initial loation of Quentin, who should be in the hairthroughout the sene. This onstraint is only implemented from the point at whih the annotationis enountered in the text, resulting in the movement of Quentin to his hair only midway throughthe sene. The visualized sene is also missing artiulation desribed in the text, but we do notevaluate the sene on behaviour that inludes rouhing, piking up the box, dropping it, or takingthe box out of the sene. These kinds of desriptions are not identi�ed using the urrent set ofannotation ategories.The results presented in this setion demonstrate that omplex trajetories are visualized ap-propriately in a virtual environment.6.5.4.5 Conseutive senesThis setion investigates whether multiple senes are visualized in one ontinuous animated pre-sentation:
• Is a presentation reated that swithes orretly from one sene to the next?We use two extrats in the investigation of the above question.House sequene The following extrat from the Narnia series, The Lion, the With and theWardrobe by C.S. Lewis (1950) desribes two di�erent senes:They were sent to the <objet>house</objet> of an old <avatar>Professor</avatar> who lived inthe heart of the <setting>ountry</setting>, ten miles from the nearest railway station and two milesfrom the nearest post o�e. He had no wife and he lived in a very large house with a housekeeper alled<avatar>Mrs Maready</avatar> and three servants. (Their names were Ivy, Margaret and Betty, butthey do not ome into the story muh.) He himself was a very old man with shaggy white hair whih grewover most of his fae as well as on his head, and they liked him almost at one; but on the �rst evening whenhe <transition type=�INSIDE� subjet=�he�>ame</transition> out to meet them at the front doorhe was so odd-looking that <avatar>Luy</avatar> (who was the youngest) was a little afraid of him, and<avatar>Edmund</avatar> (who was the next youngest) wanted to laugh and had to keep on pretending hewas blowing his nose to hide it.As soon as they had said good night to the <avatar>Professor</avatar> and gone upstairs on the �rstnight, the boys <transition type=�INSIDE� subjet=�boys�>ame</transition> into the girls' <set-ting>room</setting> and they all talked it over."We've fallen on our feet and no mistake," said <avatar>Peter</avatar>. "This is going to be perfetlysplendid. That old hap will let us do anything we like.""I think he's an old dear," said <avatar>Susan</avatar>."Oh, ome o� it!" said <avatar>Edmund</avatar>, who was tired and pretending not to be tired, whihalways made him bad-tempered.
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Figure 6.36: Study sene (1) from the Famous Five 1: Five on a Treasure Island by Enid Blyton(1942).
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Figure 6.37: Study sene (2) from the Famous Five 1: Five on a Treasure Island by Enid Blyton(1942).
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Figure 6.38: House sequene from Narnia 2: The Lion, the With and the Wardrobe by C.S. Lewis(1950).The above extrat begins by desribing the loation of the Professor's house and the initialmeeting of the haraters outside it. The setting then hanges to inside the house, in one of therooms. A unique sene should be reated for eah setting, and eah sene should be displayed atthe orret moment in the animated �lm.Snapshots from the �nal animated �lm are presented in Figure 6.38 (available for viewing inAppendix F). The �rst sene ours in an outdoor setting, with a model representing a house.The hange in sene is shown from the third snapshot onwards, where the setting is automatiallyhanged to the room in whih the avatars are having a onversation.



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 193Travel sequene The following extrat from the Famous Five 1: Five on a Treasure Island byEnid Blyton (1942) desribes a number of suessive sene hanges:<avatar>Dik</avatar> and <avatar>Julian</avatar>, who shared a <setting>room</setting>,woke up at about the same moment, and stared out of the nearby window."It's a lovely day, hurrah!" ried <avatar>Julian</avatar>, leaping out of <objet>bed</objet>. "Idon't know why, but it always seems very important that it should be sunny on the �rst day of a holiday. Let'swake Anne."<avatar>Anne</avatar> slept in the next <setting>room</setting>. <avatar>Julian</avatar> ran<transition type=�INSIDE� subjet=�Julian�>in</transition> and shook her."Wake up! It's Tuesday! And the sun's shining." Anne woke up with a jump and stared at<avatar>Julian</avatar> joyfully. "It's ome at last!" she said. "I thought it never would. Oh, isn't itan exiting feeling to go away for a holiday!"They started soon after breakfast. Their <objet>ar</objet> was a big one, so it held them all veryomfortably. <avatar>Mother</avatar> sat in front with <avatar>Daddy</avatar>, and the three<avatar>hildren</avatar> sat behind, their feet on two <objet>suitases</objet>. In the luggage-plae at the bak of the ar were all kinds of odds and ends, and one small <objet>trunk</objet>.<avatar>Mother</avatar> really thought they had remembered everything.Along the rowded <setting>London</setting> roads they went, slowly at �rst, and then, asthey left the <setting>town</setting> behind, more quikly. Soon they were right intothe open <setting>ountry</setting>, and the <objet>ar</objet> sped along fast. The<avatar>hildren</avatar> sang songs to themselves, as they always did when they were happy."Are we piniking soon?" asked <avatar>Anne</avatar>, feeling hungry all of a sudden."Yes," said <avatar>Mother</avatar>.Snap-shots of the automatially produed animated �lm are presented in Figure 6.39 (availablefor viewing in Appendix F). Two visually distint room settings are produed automatially: a itysetting representing London; and an outdoor setting representing �ountry�. Eah sene appearsorretly aording to the onurrent subtitles, suessfully demonstrating the sequening abilityof the onversion proess.This results in this setion demonstrate that a sequene of sene desriptions in �tion text issuessfully onverted into a orresponding presentation that ontains appropriate visual hanges.6.5.4.6 Appropriate mediaWe investigate whether the automated onversion proess reates appropriate media for presentingthe story:
• Are geometri models seleted that adequately visualize the entities and bakground seneryin an environment?
• Does ontent in di�erent modalities (graphis, audio) represent the �tion text and is italigned orretly in the �nal animated presentation?We do not perform an individual experiment for this investigation, but refer to results from previousexperiments as evidene for answering the above questions.All the experiments detailed previously in this setion produe visual results that depit ap-propriate visualizations of the entities desribed in the extrats. This inludes the appropriatevisualization of avatars and objets. Eah virtual environment reated automatially in theseexperiments also ontains bakground senery appropriate to the desribed setting. These obser-vations are made with one reservation in mind, namely that the appropriate seletion of models isdependent on the variety of models available in the model library.
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Figure 6.39: Travel sequene from the Famous Five 1: Five on a Treasure Island by Enid Blyton(1942).



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 195All the aforementioned experiments result in animated �lms that provide evidene in supportof the use of audio narrations, the use of di�erent voies for di�erent avatars, as well as the useof visually enhaned subtitles. The digital animations available in Appendix F inlude the audiomodality for eah �lm, demonstrating the suessful synhronization between the audio (narrationsand foleys), the subtitles, and the behaviour in the graphial sene.These examples demonstrate that the automated proess appropriately selets and reatesgeometry for visualizing the desribed senes, and supports the reation of presentations thatontain multiple orretly aligned modalities.6.5.4.7 Appliability to di�erent types of booksEvidene presented in Chapter 4 suggests that books of di�erent type (di�erent author and read-ability index) impat the suess of the automated onversion proess. We investigate the followingquestion:
• Is the automated proess for reating multi-modal animated 3D �lms from annotated �tiontext appliable over books of di�erent type?We do not perform an individual experiment for this investigation, but refer to results from previousexperiments.The suite of extrats presented in this setion are soured from 3 di�erent �tion books ofdi�erent type. Consistent virtual environments and animated �lms are produed from all threesoures. This demonstrates that the automated proess is appliable over books of di�erent type,for the ategories of annotation used in these experiments.6.5.5 Summary of �ndingsWe onlude that orresponding multi-modal animated 3D virtual environments and �lms arereated using the proesses desribed in this hapter. This onlusion is supported by the followingobservations from the experiments onduted in this setion:1. The reation of high-level sene desriptions (inluding the identi�ation of senes, theirontent, and behaviour) is performed onsistently, requiring minimal human modi�ation.2. Virtual environments are populated in a manner that requires little signi�ant modi�ation.3. Automatially generated virtual environments are representative of the input text, spei�allywith regards to the following aspets:(a) Behaviour spei�ed by annotation ategories suh as Transition and Relation is visual-ized orretly in a virtual environment.(b) Complex behaviour is visualized orretly in a virtual environment.() Visual sequenes ontaining multiple senes are reated that orretly represent desrip-tions in the input text.(d) Appropriate media is hosen for di�erent modalities of representation, inluding theseletion and reation of visual geometry, and the insertion of audio narrations andsound e�ets.



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 196(e) The automated proess supports the reation of multi-modal animated 3D virtual en-vironments and �lms aross di�erent types of books.6.6 ConlusionThis hapter presents a proess that suessfully interprets annotated �tion text to reate orre-sponding multi-modal animated 3D virtual environments and �lms. We summarize this proessin terms of three stages, namely the automati reation of high level sene desriptions fromannotated �tion text, the quanti�ation of behaviour in virtual environments (using onstraintformulation and optimization), and the instantiation and population of the virtual environmentsusing automated tehniques.We draw the following onlusions with regards to the original problems stated in Setion 6.1.1:1. The interpretation of annotations is performed suessfully in the reation of high-level stru-tured sene desriptions using knowledge-poor approahes.(a) The set of annotation ategories de�ned in Chapter 4 provide for the automati spei-�ation of sene detail. Setting annotations orretly identify the senes to portray vi-sually, while Objet and Avatar annotations suessfully identify the entities ontainedin eah sene. Transition and Relation annotations speify the behaviour of entities ineah sene. This shows that the limited set of annotation ategories we de�ne providessu�ient detail to speify senes in a strutured and omplete manner.(b) The de�nition of a sene as a �nite spae that exists over a ontiguous interval of time(provided in Chapter 5, De�nition 5.1 on page 107) is fundamental to the interpreta-tion of a book as a olletion of independent virtual environments. This justi�es thesegmentation of text aording to physial loation.() Visual onsisteny regarding the representation of entities in di�erent environments isahieved using entity desriptors, whih are sene-independent instantiations of eahentity. These desriptors provide for the assignment of unique visual attributes to eahentity, inluding a representative visual ion, olouring, and motion type.(d) The link between instantiated entities and the annotations is maintained through theuse of o-referene. A knowledge-poor method suessfully reates these links (usingthe gender spei�ity of personal pronouns), whih are used for attributing behaviourto entities in a sene.(e) Abstrat onstraints are fundamental for summarizing time-quanti�ed behaviour in astrutured manner, while still permitting human review and orretion. They alsoprovide a means through whih impliit physial restritions (suh as gravity and inter-penetration) an be de�ned.(f) Time is derived in a knowledge-poor fashion using synthesized audio equivalents of the�tion text. This method quanti�es behaviour in a manner that translates to visualiza-tions orresponding to the desriptions in the text.



CHAPTER 6. POPULATION OF VIRTUAL WORLDS 197(g) Abstrat onstraints are diretly translated into analytial onstraints due to their stru-tured nature. In this manner, a human need not be onerned with omplex low levelbehaviour reasoning. However, manual ontrol over behaviour is still provided throughthe human readable abstrat onstraints.(h) The phrasing of onstraints in terms of distane provides a valuable ability to measurethe quality of the quanti�ed behaviour during the optimization proess (using the opti-mizer desribed in Chapter 5). This is partiularly useful where the desribed behaviouris inonsistent, or the time permitted for onstraint optimization is limited. This pro-vides the designer with an indiation of the quality of the urrent spei�ed behaviour,allowing optimization to be terminated prematurely if quality is su�iently high for thedesigner's needs.(i) The disadvantage of the use of analytial onstraints for quantifying sene behaviouris the lak of solving tehniques apable of �nding solutions to onstraints ontaininglarge numbers of variables. This problem is overome by expressing trajetories assequenes of low degree urves (resulting in redued numbers of variables in eah on-straint system), and inremental solving. Complex behaviour is produed e�iently,while maintaining the bene�ts of environment-independent spatial reasoning (desribedin Setion 5.2.3 on page 112).2. Virtual environments are suessfully instantiated and populated from sene desriptionsusing automated tehniques. There is no need for repetitive 3D modeling and animation,and rih virtual environments are reated rapidly.(a) Entities in virtual environments exhibit visual onsisteny in relation to size and orien-tation by using 3D models that are standardized in these respets. Entity visualizationis enhaned through the use of motion-apture for realisti artiulation.(b) Detailed bakground senery of unlimited size is suessfully produed using proeduralmethods.() The derivation of time from audio representations of the text provides an auratetime-line against whih multiple modalities (visual, audio, and text) are aligned.(d) The automated methods support the reation of multiple virtual environments as wellas a oherently sequened multi-modal animated �lm presentation.The virtual environments reated from automatially interpreted text visually onvey the envi-ronments and behaviour desribed. This is supported by the range of experiments onduted inSetion 6.5. In summary, multi-modal animated 3D virtual environments and �lms are reatedsuessfully using the tehniques desribed in this hapter.The tehniques presented in this hapter ontribute novel innovations regarding the text-to-graphis task:
• This work presents the �rst use of text soured from popular �tion books as input for thereation of animated 3D graphis.
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• We use a knowledge-poor approah that allows human intervention in the onversion pro-ess. This is di�erent to existing text-to-graphis researh whih fouses on providing fullyautomati knowledge-entri proesses.
• The use of orresponding audio �les for deriving temporal information for quantifying be-haviour is innovative in the domain of text-to-graphis.
• We present the �rst use of interval-based onstraint optimization for determining quanti�edsene behaviour. This method is innovative in its ability to measure the quality of derivedbehaviour, and no evidene exists in related researh regarding similar metris.
• The methods desribed in this hapter ontribute to the �eld of virtual reality by providing amehanism for automatially instantiating and populating virtual environments. Our methodreates virtual environments without the need for extensive manual e�ort in 3D modeling,environment design and motion quanti�ation.A number of aspets of the automati onversion proess stand to bene�t from future improve-ment. Our primary fous is on expanding support for di�erent ategories of annotation, inludingdesriptive phrases that speify visual features suh as olour and emotion, as well as artiulatedbehaviour that inludes posing avatar models.



Chapter 7ConlusionThis hapter summarizes our approah for automating the �tion-to-animation task (Setion 7.1).Conlusions drawn from this researh are presented in Setion 7.2. We desribe signi�ant ontri-butions and innovations in Setion 7.3.7.1 SummaryWe view the onversion of �tion text into multi-modal animated virtual environments as two prob-lems: the analysis of the natural language text to reate a strutured intermediate representation;and the interpretation of this intermediate representation for reating a orresponding animatedvirtual environment.Text analysis begins with the reation of surfae annotations, whih involves identifying thestrutural and syntati properties of �tion text. We use a ustom-built text tokenizer andsentene splitter for identifying strutural properties. Publily available tools provide syntatiinformation inluding parts-of-speeh, syntati funtion, and phrasing. Auraies of greaterthan 95% an be expeted for every ategory of surfae annotation.We use annotated �tion text as the strutured intermediate representation of a �tion book.We reate these annotations using a pattern-based mahine learning approah. Rules are induedfrom manually provided examples (supplemented with automatially generated surfae annota-tions). The result is a model that reates annotations spei� to the style of the human whoprovides the examples. We believe that error potentially introdued by inorret surfae anno-tations is aommodated by the indution of speial-ase rules, and has minimal impat on thereation of semanti annotations. Models are indued that reate orret annotations in di�erentategories, and suess varies aording to the ategory (we report auray levels ranging be-tween 51.4% and 90.4%). We observe that the greater the number of examples provided, the moreaurate the automatially produed annotations beome.The interpretation of the annotated �tion text involves formulating strutured sene desrip-tions, quantifying entity behaviour in a virtual environment, and populating orresponding virtualenvironments.We use knowledge-poor tehniques for formulating sene desriptions from annotations. Senedesriptions inlude: a list of the di�erent senes to visualize (using the Setting annotation);199
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Figure 7.1: Summary of the problems and automated proesses that solve them for the omplete�tion-to-animation task.entities that populate eah sene (using Avatar and Objet annotations and a library of geometrimodels); and strutured desriptions of entity behaviour in eah sene (by translating Transitionand Relation annotations into time-based onstraints). Time values that quantify behaviour areaquired from audio representations of the text. We observe that between 83% and 96% of theautomatially reated sene desriptions (from a set of extrats from �tion text) require no humanmodi�ation, validating our knowledge-poor tehniques.Behaviour is quanti�ed in a virtual environment by formulating symboli time-quanti�ed on-straints, and subsequently searhing for solutions. Constraints are produed automatially, andare potentially inonsistent due to ambiguity in the text or erroneous annotations. Interval-basedquanti�ed onstraint optimization automates the searh for onstraint solutions, and providesapproximate solutions for inonsistent onstraints. This method outperforms existing onstraintsolving approahes for the types of onstraints produed by our �tion-to-animation system.Strutured sene desriptions and quanti�ed behaviour are used to automate the populationof virtual environments. One virtual environment is reated for eah sene in a book. We auto-matially selet 3D geometri models from a library and proedurally generate geometry for thebakground senery of eah environment. Geometry is animated aording to the quanti�ed be-haviour. Additional modalities are automatially synhronized, inluding an audio version of thenarration and textual subtitles.Error introdued by inonsistent semanti annotations has little impat on the interpretationmehanisms. We provide opportunities for human intervention where errors potentially our (suhas diret modi�ations to the virtual environment), but proesses suh as quanti�ed optimizationenable sene reation even where inonsistenies our. We provide a suite of multi-modal animatedexamples to demonstrate that the automatially generated presentations orrespond to the original�tion extrats.The omplete �tion-to-animation proess is illustrated in Figure 7.1 (�rst presented as Fig-ure 1.7 on page 8 in Chapter 1), and is augmented with the innovative methods we use for aom-plishing eah task.



CHAPTER 7. CONCLUSION 2017.2 ConlusionsThe onversion of �tion text into orresponding virtual environments is automated using thetehniques we have developed. Automated proesses replae repetitive manual tasks in text analysisand interpretation, and as a result of this we maintain that:The proess of onverting a �tion book into an animated 3D �lm an be automated.With referene to the original problem statement in Setion 1.2 on page 3, we onlude:1. Text analysis is automated using hierarhial rule-based learning.This method automatially reates semanti annotations that omprise the strutured in-termediate representation of the �tion book. This is signi�ant beause we now have anautomated method for identifying di�erent ategories of visual desription in �tion text, asoure previously onsidered as too unstrutured and omplex to use in the text-to-graphisontext. In this manner we replae the repetitive tasks of manually reading and ompre-hending the text.2. Virtual environments are populated using tehniques that interpret semanti an-notations.Interpretation methods automatially derive sene desriptions from semanti annotations,quantify behaviour in a virtual environment, and populate virtual environments with ge-ometry. This is signi�ant beause it rapidly and deterministially onstruts rih virtualenvironments that ontain both visual detail and dynami entity interations. The need forrepetitive tasks suh as manual sene planning, 3D modeling and animation is eliminated.The onsequene of this work is a system that redues the manual e�ort in performing the �tion-to-animation task, and whih an be used as a labour saving devie in existing animation work-�ows.It reates virtual worlds and �lms quikly and heaply, without requiring speialist expertise.Annotated �tion textThe entral feature of our approah to the �tion-to-animation task is the use of annotated textas the intermediate representation. Annotated �tion text is bene�ial in a number of respets:
• The human readable format supports a boot-strapping proess for training the hierarhialrule-based learning system. This failitates the manual reation of examples for the indutionproess, and also supports review and orretion of automatially produed annotations.
• Annotations are interpreted using automated proesses, as a result of the strutured for-mat. This is signi�ant beause it provides the mehanism that diretly enables portions ofunstrutured free text to be used as parameters for proedures that automatially produeorresponding visual geometry.
• Annotations maintain a diret link between the soure text and the resulting interpretation.This is advantageous for deriving timing information (for behaviour) from annotated trig-gers, and providing a mehanism for synhronizing multiple modalities. This link is also



CHAPTER 7. CONCLUSION 202signi�ant beause it exposes the relationship between fragments of text and orrespondingvisualizations.
• Multiple ategories of visual desription are identi�ed using annotations. This provides arih array of strutured visual desriptions, whih is easily extensible when required.
• Annotations qualify visual desriptions with other fragments of text, or with semanti in-formation. Quali�ers parametrize subsequent interpretation modules, resulting in uniquevisualizations that orrespond to individual desriptions.The signi�ane of our work in text-analysis and interpretation is disussed in the following setions.7.2.1 Text analysisThe proesses we desribe reate an intermediate representation of the �tion text:1. Surfae annotations are reated for natural language with high levels of auray. This limitsthe error that is introdued into the subsequent automati reation of annotations.2. Aurate models for reating annotations are indued from manual examples using hierar-hial rule-based learning. The impliation is that our automated mehanism an be re�nedto math to a human's annotation style, and produe similar annotations to the examplesprovided.(a) Tree-strutures enapsulate the strutural and syntati properties of text, and gener-alize onepts to make them more appliable. These provide an e�etive mehanism forexpressing patterns in the English language that identify annotations in �tion text.(b) A model onsists of a set of hierarhial rules, and is apable of desribing the widerange of senarios peuliar to a ategory of annotation. This is signi�ant in that bothommon and rare senarios an be aommodated in a single model. The set is alsoextensible, whih provides for future re�nement of the model by adding rules to dealwith speial ases if needed.() A generalized rule-set reates orret annotations in unseen text. This demonstratesthat the indued patterns model the underlying priniples used by humans to representa partiular annotation ategory.(d) Rule-strutures an be tailored for di�erent annotation ategories, without modifyingthe ore learning algorithms. Aurate models are indued for multiple ategories ofannotation, resulting in a more desriptive intermediate representation. This limitsoptimizations to a�et only the rule-struture if there is a need to improve the aurayof an indued model in a partiular ategory.(e) Aurate rule-sets are indued for qualifying annotations with text-referenes and se-manti onepts. This strategy provides semanti information without the need for anexternal knowledge base.



CHAPTER 7. CONCLUSION 203We believe that hierarhial rule-based learning indues models that express fundamental rulesin a human's ognition of English. The provision of enough examples will result in a model thatis appliable to general �tion. However, it is impossible to determine what quantity would besu�ient for ahieving this state given the abundane of available �tion titles.7.2.2 InterpretationThe proesses we desribe reate animated virtual environments and �lms from annotated �tiontext:1. Aurate sene desriptions are derived from annotated �tion text. This validates our knowl-edge poor approahes for interpreting semanti annotations, and shows that the limited setof annotation ategories we de�ne provides su�ient detail to speify senes. The impliationis that visualizations an be enhaned with the addition of further annotation ategories.(a) A book an be interpreted as a olletion of independent virtual environments (senes).The onept of a sene provides an elegant method for presenting a onsistent orderingof events, beause time is one ontiguous interval in eah sene. This eliminates the needto �unravel� the ordering of events (as would be the ase if the entire book is interpretedas one virtual universe).(b) Visual onsisteny between di�erent senes is maintained using entity desriptors. Thisis important for the multi-sene property of �tion writing, and ensures that entitieshave the same appearane in eah virtual environment. This is also signi�ant from avirtual reality perspetive, in that one unique entity is instantiated for representing thatentity in any potential environment.() Annotations are linked orretly to instantiated entities (desriptors) using a knowledge-poor o-referene tehnique. This enables behaviour to be attributed to the orretentities in eah sene, regardless of the type of book.(d) Abstrat onstraints summarize time-quanti�ed behaviour in a strutured manner, whilestill maintaining a human readable format. This provides opportunity for human re-view and orretion, while enabling subsequent use of automated tehniques. Abstratonstraints also provide a means through whih impliit physial restritions (suh asgravity and interpenetration) an be expressed.(e) Behaviour that orresponds to the text is quanti�ed (in terms of time) using synthesizedaudio. This is signi�ant in that temporal information is provided without the need forknowledge-based reasoning.(f) Abstrat onstraints are diretly translated into analytial onstraints, due to theirstrutured nature. In this manner, a human need not be onerned with omplex lowlevel behaviour reasoning. However, manual ontrol over behaviour is still providedthrough the human readable abstrat onstraints.(g) The phrasing of onstraints in terms of distane provides a valuable ability to measuresolution quality during the optimization proess. This provides the designer with anindiation of the quality of the urrent spei�ed behaviour, allowing optimization to beterminated prematurely if quality is su�iently high for the designer's needs.



CHAPTER 7. CONCLUSION 204(h) A disadvantage of using analytial onstraints is the limited salability of solution �ndingmethods with respet to the number of variables. Expressing trajetories as sequenesof low degree urves (reduing the number of variables) and inremental solving over-omes this limitation. Complex behaviour is produed e�iently, while maintaining thebene�ts of environment-independent spatial reasoning (desribed in Setion 5.2.3 onpage 112).2. Interval-based quanti�ed onstraint optimization loates solutions that speify time-basedbehaviour in a virtual environment. This means that oherent visual behaviour an bespei�ed between dynami bodies in our virtual environments.(a) Constraints formulated over ontiguous intervals of time and spae are represented ef-fetively using interval arithmeti. This enables diret solving of symbolially phrasedonstraints, and removes the need to transform systems into disrete representationsmore suitable for onventional omputer-based solving tehniques.(b) Solutions are guaranteed to be onsistent over the ontiguous time interval. This ensuresthat no errati behaviour is produed in a sene that ould potentially result fromaliasing when using disrete solving methods.() Relaxed onstraints and iterative tightening narrows the searh spae in a manner thattends towards atual solutions. This is signi�ant beause it redues searh time (par-tiularly for �tion-to-animation problems), but also establishes a orrelation betweensearh time and the proximity of the proess to an atual solution. The onsequene isthat if a designer has patiene to wait then a higher quality solution is likely (as opposedto solving methods where this orrelation does not apply).(d) There is a trade-o� between loating sound solutions and the amount of available searhtime. If pressed for time a designer is able to use an approximate solution for subsequentsene population proesses, but is able to inorporate better quality solutions at a laterstage if the optimization is left to ontinue onurrently.(e) The interval-based quanti�ed onstraint optimizer ensures a behaviour spei�ation(even for inonsistent onstraint systems) through the provision of approximate solu-tions. The signi�ane is that it enables the automati reation of onstraints from text,without the need for semanti onsisteny heking. This provides for the populationof subsequent virtual worlds, regardless of inonsistenies in the text or annotations.3. Multi-modal virtual environments are populated automatially. There is no need for repeti-tive 3D modeling and animation, and results in the rapid reation of rih virtual environmentsontaining both visual and behavioural visualizations.(a) Entities in virtual environments are represented visually in a oherent and onviningfashion. The automatially produed environments ontain enough basi ontent tovisually portray onepts in the text.(b) Multiple modalities (visual, audio, and text) are aligned orretly. We an generatealternative ombinations of modalities for produing varied presentations of the text,inluding oherently sequened multi-modal animated �lm presentations.



CHAPTER 7. CONCLUSION 205Virtual environments produed from annotated �tion text are signi�ant in that they not onlyontain desribed entities, but they also portray plot-line through the animated behaviour. Thisability is further enhaned by the inlusion of other modalities. We believe that this ability bene�tsother appliations besides the reation of �lms, inluding populating environments for virtualreality appliations suh as interative storytelling, eduation or massive multi-player games.7.3 ContributionsWe make a number of novel ontributions in the text-to-graphis and assoiated domains.The use of a knowledge-poor paradigm for solving the text-to-graphis problemExisting text-to-graphis systems rely on the existene of a pre-onstruted knowledge base. Ourresearh shows that knowledge-poor tehniques are e�etive in produing oherent animated graph-is, using only minor human intervention to provide world-knowledge. In all existing researh hu-man intervention is avoided at all osts, usually at the expense of sari�ing ertain sene reationapabilities due to limitations in the quantity of enoded world knowledge (Coyne and Sproat,2001; Lu and Zhang, 2002; Ma, 2006). Our researh ontributes to the text-to-graphis domainby demonstrating that the bulk of repetitive manual e�ort is eliminated. The restritions onknowledge-entri approahes are removed.The use of text soured from popular �tion books as a soure of inputMost text-to-graphis researh uses restrited or ontrived language as input (Lu and Zhang,2002; Zeng et al., 2003; Johansson et al., 2005; Ma, 2006). We soure language diretly frompopular �tion books, without simplifying or paraphrasing the text. This represents a signi�antontribution to the text-to-graphis domain.Annotated text as an intermediate representationOur approah of using annotated �tion text as an intermediate representation is novel. Otherexisting intermediate representations (suh as semanti frames (Coyne and Sproat, 2001) or lexialvisual semanti representations (Ma, 2006)) seldom support automati reation and interpretationwhile simultaneously exhibiting human-readability.Annotated text is signi�ant in its ability to be extended to di�erent visual ategories. Our de�-nition of annotation ategories inluding Avatar, Objet, Setting, Transition and Relation providesa starting point for future �tion-to-animation development.Pattern-based mahine learning for performing the text analysis taskExisting text-to-graphis systems use widely varying methods for text analysis. The most populartrend is the ombination of syntati analysis with enoded world knowledge. We use an alter-native tehnique based on information extration. CarSim (Johansson et al., 2005) is the onlytext-to-graphis system that uses information extration, employing a statistial mahine learning



CHAPTER 7. CONCLUSION 206approah. Our approah is innovative beause it is the only pattern-based learning mehanism forperforming text analysis.The hierarhial rule paradigm is novel in the �eld of pattern-based information extration.Our use of tree-strutures for representing patterns, and our tehniques for generalizing thesepatterns by pair-wise omparison and insertion of wild-ards is a novel approah to induing rulesregarding the English language. The ability to indue patterns for di�erent annotation tasks (suhas identifying text fragments in a ategory, identifying relationships between text fragments, andassoiating semanti information) is a signi�ant ontribution.Interval arithmeti for quantifying time-based behaviourThe majority of related text-to-graphis approahes speify behaviour using enoded world-knowledge(Coyne and Sproat, 2001; Lu and Zhang, 2002; Ma, 2006). Few systems use onstraint-basedtehniques that do not require detailed knowledge bases (Johansson et al., 2005). We develop apreviously unexplored tehnique that uses interval-based onstraint optimization.Our method for optimizing universally quanti�ed onstraint systems extends the state of theart in quanti�ed onstraint solving. This method is innovative in its ability to provide approximatesolutions to inonsistent quanti�ed onstraint systems, as well as provide a quantitative measureof the quality of these approximations.We develop a novel approah that overomes the limitations of solution �nding mehanisms(in terms of salability with respet to the number of variables). This approah phrases behaviouras sequenes of low degree trajetories and solves onstraint systems in an inremental fashion,thereby ensuring that the number of variables remains small enough for e�ient solving.A knowledge-poor approah to deriving time from �tion textExisting text-to-graphis systems that speify time-based behaviour use knowledge-rih analysisof the input text to derive temporal information (Lu and Zhang, 2002; Ma and MKevitt, 2003,2004; Johansson et al., 2005). Our use of audio representations is a ontribution in this respetbeause it avoids omplex reasoning and analysis, and also reates behaviour that orrespondsvisually to the onurrent presentation of the original text.More e�ient development proesses for virtual reality and �lm produtionThe �tion-to-animation system presented in this researh demonstrates that the transformationof a �tion book into an animated �lm is automated using omputer tehnology. Our automatedsystem removes the requirement for repetitive manual e�ort in onverting the �tion text intoorresponding virtual environments. This is signi�ant beause it allows human e�ort to be exertedelsewhere in the reative proess, resulting in environments and �lms that ontain rih visual detailfor less ost or e�ort.7.4 Future workA weakness in our urrent implementation of the �tion-to-animation proess is the limited rangeof annotation ategories. Fition text ontains types of desriptions beyond the ategories used in
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Figure 7.2: Comparative ratings of apabilities for related text-to-graphis systems.this exposition, inluding desriptions of entity features and emotion, the identi�ation of posesand ations of entities in the sene, as well as setting-related detail. Hierarhial rule-based learningis e�etive for reating di�erent ategories of annotation, and will assist in the reation of largeorpora of �tion text ontaining additional annotated visual desriptions.The urrent methods for reating virtual environments are limited in their ability to add visualdetail. This limitation is deliberate in this exposition so as not to obfusate the results produedwith irrelevant speial e�ets. However, tehniques stand to be inluded that add additionalvisual bene�t with minimum human e�ort. We plae emphasis on tehniques that produe visualgeometry proedurally, and we believe that suh methods ontribute towards solving the problemof limited libraries of visual media. More advaned forms of model artiulation, speial e�ets,texturing, lighting and rendering are andidates for adding detail to virtual environments.Future investigations also inlude appliations that bene�t from the tehnology presented inthis researh. We believe that these tehniques are of use in teahing language onepts, as wellas in automatially reating ontent for eduational and entertainment purposes.7.5 State of the art in text-to-graphis researhThe �tion-to-animation system surpasses existing text-to-graphis researh in its ombined apa-bility to handle large quantities of input with little restrition on sentene omplexity, and produemulti-modal presentations onsisting of a number of unique senes. Our approah is superior toany single related approah in terms of the ombination of its input and output apabilities, il-lustrated using omparative ratings in Figure 7.2. In this respet our �tion-to-animation systemrepresents a signi�ant ontribution to the text-to-graphis domain.
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Appendix AProperties of raw textWe impose the following requirements regarding the input text:
• Charaters that our in the input are soured only from the standard ASCII domain;
• Paragraphs in the text are separated by a blank line;
• Puntuation that is not part of a reognized set (listed in Table A.1) does not our in thetext;
• Diret-speeh is indiated by inverted ommas (�...�) only;
• Diret-speeh whih spans multiple paragraphs only uses a single set of inverted ommas, atthe start of the quote, and after the last token inside the quote.It is aknowledged that the raw text needs pre-proessing to ensure onformane to the aboverequirements. Pre-proessing is ahieved using existing regular expression and ommand-line tools.

Puntuation --- -- ... ; : , � # $ % ( ) � � ` ' ~ . ! ? { } [ ℄Apostrophe n't 's 're 'm 've 'd 'll 'SenteneTerminators ... . ! ?Table A.1: Reognised puntuation, apostrophe and sentene termination symbols.226



Appendix BCoarse tag-set and mappings
B.1 Coarse tag-setThe oarse tag-set used by the �tion-to-animation system is listed in Table B.1. It is a derivativeof the Penn tag-set (Marus et al., 1994).B.2 Mappings to the oarse tag-setMappings between the oarse tag-set and the Penn, LOB and SUSANNE tagsets are listed in TableB.2. The * symbol denotes a wild-ard.
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Tag Desription1. CC Co-ordinating Conjuntion2. CD Cardinal Number3. DT Determiner4. EX Existential there5. FW Foreign word6. IN Preposition or subordinating onjuntion7. JJ Adjetive8. MD Modal9. NN Noun10. NNP Proper Noun11. PRP Pronoun12. RB Adverb13. RP Partile14. TO To15. UH Interjetion16. VB Verb17. VBD Verb, past tense18. VBG Verb, gerund or present partiiple19. VBN Verb, past partiiple20. VBZ Verb, third person singular present21. WDT Wh-determiner22. WP Wh-pronoun23. WRB Wh-adverb24. �COPY� PuntuationTable B.1: Coarse tag-set, adapted from the Penn tag-set.
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CoarseTag
PennTreeban
kLOB
SUSANNE

CCCC
CC*
CC*

CDCD
CD*;OD*
MC

DTDT
;PDT
AT*;DT*
AT*

EXEX
EX
EX

FWFW
&FO
FW*

ININ
CS*;IN*
I*

JJJJ;
JJR;JJS
AP*;JJ*
J*

MDMD
MD
MD*;VM*

NNNN
;NNS
NN*;NR*;PN
*
NN*

NNPNN
P;NNPS
JNP;NNP*;N
P*
NP*

PRPPR
P;PRP$
PP*
PN*;PP*;AP
P*

RBRB
;RBR;RBS
ABL;Q*;R*
R*

RPRP
RP
FB;RP*

TOTO
TO*
TO;IIt

UHUH
UH
UH*

VBVB
BE;DO;HV;
VB*
VB0;VD0;VV
0*

VBDVB
D
BED;BEDZ;
DOD;HVD;V
BDVBDZ;
VBDR;VDD;
VHD;VVD*

VBGVB
G;VBP
BEG;BEM;B
EP;HVG;VB
GVBG;V
DG;VHG;VV
G*;VBR;VB
M;VH0

VBNVB
N
BEN;HVN;V
BN;
VBN;VDN;V
HN;VVN*

VBZVB
Z
BEZ;DOZ;H
VZ;VBZ
VBZ;VDZ;V
HZ;VVZ*

WDTW
DT
WDT*
DDQ*

WPWP
;WP$
WP*
PNQ*

WRBW
RB
WRB
RRQ*

�COPY�
Puntuation
Puntuation
Y*;G*

Table B.2: Mappings between the oarse tag-set and the Penn, LOB and SUSANNE tag-sets.



Appendix CAlgorithms in quanti�ed onstraintsolving
C.1 Methods for onstraint propagationConstraint propagation is ahieved over onstraints using interval arithmeti and narrowing algo-rithms. Eah is based on the �xpoint algorithm.C.1.1 Fixpoint algorithmThe �xpoint algorithm shown in Algorithm C.1 (Benhamou et al., 1994; Benhamou, 1995) imple-ments the proess of haoti iteration. This proess ontinues to apply narrowing operators to aset of onstraints until no further narrowing ours over the variable domains.The problem with Algorithm C.1 is that it works only with primitive onstraints. That is, theonstraint c : x+y∗z = t needs to be deomposed into primitive onstraints suh as cdec = {y∗z =

α, x+ α = t}. The introdution of the new variable α leads to poor domain tightening, espeiallywhen the same variable ours multiple times in the same onstraint.Algorithm C.1 Fixpoint algorithm.
fixpoint(in: {C1, ..., Cn}; inout: B)begin
Q← {C1, ..., Cn}while size(Q) 6= 0 do
C ← removeF irst(Q) %%pop from stak
B′ ← narrow(C,B) %%narrow B with respet to Cif B′ 6= B then

B← B′Add all onstraints (exept C) ontaining variables whosedomains are narrowed in B to Qreturn Bend
230
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Constraint: 2x = z − y2Figure C.1: Forward evaluation of a onstraint (as illustrated by Benhamou et al. (1999)).Algorithm C.2 Forward evaluation algorithm (adapted from Benhamou et al. (1999)).
forwardEvaluation(in: node; inout: B)begin
t← type(node)ase (t) of:

♦: %An operationforeah hild c of node do
forwardEvaluation(c,B)node.r←Interval extension of ♦ operator, usinginterval r of hild-nodes as operands

α: %A onstantnode.r← [α, α]
Vk: %A variablenode.r← domaink(B)endC.1.2 Hull onsistenyThe algorithm for ahieving hull onsisteny is named HC4 and is de�ned by Benhamou et al.(1999). The proess is divided into two setions, namely forward evaluation and bakward propa-gation of the evaluation tree of the onstraint expressions.Forward Evaluation The forward evaluation proess is illustrated in Figure C.1, where thetree is traversed from the leaves to the root, evaluating the interval extension of eah sub-term. Thealgorithm reursively traverses down the tree until the leaves are met, where the initial intervals ofthe variables and onstants are loaded into a temporary variable r in eah node. On the upwardrun the values for the inner nodes are alulated using the values from the hildren with respetto the interval extension of the operator at the urrent inner node. Algorithm C.2 implementsforward evaluation.Bakward Propagation The proess of bakward propagation is illustrated in Figure C.2. Thetree is traversed from the root node downwards. At eah inner node the hildren are alulatedaording to the projetion operator of the urrent node. The narrowing operation uses the urrentvalues of the hildren, as well as the value of the urrent node (whih was modi�ed as a result of
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Constraint: 2x = z − y2Figure C.2: Bakward propagation of a onstraint (as illustrated by Benhamou et al. (1999)).Algorithm C.3 Bakward propagation algorithm (adapted from Benhamou et al. (1999)).
backwardPropogation(in: node; inout: B)begin
t← type(node)ase t of:

♦: %An operation
D′ ←box onstruted from r interval of eah hildforeah hild of node dohild.r← πi(ρc ∩D′) %% Projetion operator for operand of ♦

backwardPropogation(hild, B)
Vj: %Variable
Bj ← Bj∩node.r %% interset domain of variable jendthe propagation of its parent). Eventually, the propagation reahes the leaf nodes, where the �nalintervals of the variables are assigned. If the variable ours more than one, then all intervalsreturned for that variable are interseted. Bakward propagation is presented in Algorithm C.3.Further details regarding forward and bakward propagation are desribed by Benhamou et al.(1999).Algorithm HC4Revise The forwardEvaluation and backwardPropogation algorithms �t to-gether into an algorithm alled HC4Revise, whih is presented in Algorithm C.4. This implementsthe onstraint narrowing operator for the HC4 algorithm.Algorithm C.4 HC4Revise (adapted from Benhamou et al. (1999)).

HC4Revise(in: onstraint c; inout: box B)begin
forwardEvaluation(root(c),B)
backwardPropagation(root(c),B)return Bend



APPENDIX C. ALGORITHMS IN QUANTIFIED CONSTRAINT SOLVING 233Algorithm C.5 HC4 (as desribed by Benhamou et al. (1999)).
HC4(in: {c1, ..., cm}; inout: box B)begin
S ← {c1, ..., cm}while size(S) 6= ∅ and B 6= ∅ do
c←removeF irst(S) %%pop onstraint from stak
B′ ←HC4Revise(c,B)if (B′ 6= B) then %%box is narrowedAdd all onstraints (exept c) ontaining variables whosedomains are narrowed in B′ to S

B← B′elseRemove c from Sreturn BendAlgorithm HC4 TheHC4 algorithm presented in Algorithm C.5 is designed by Benhamou et al.(1999) for ahieving hull onsisteny over a set of onstraints. In a set of onstraints, a variable
x may our in more than a single onstraint at a time (for example, x may our in onstraint
c1 and c2). If x's domain is narrowed over onstraint c1 then this may lead to further narrowingof other variables in c2. Algorithm C.5 uses haoti iteration to ahieve a �xpoint, that is, a boxfor whih hull onsisteny is ahieved over all onstraints. A funtion HC4Revise is exeutedthat performs the forward and bakward propagation steps. A list of onstraints is maintainedwhih indiates whih onstraints to use for further narrowing of the input box. Constraints areremoved from the list when idempotene is ahieved after using the HC4Revise operator (that is,no hange results from narrowing the onstraint). If however, the box is modi�ed by HC4Revise,then all onstraints that ontain variables whose orresponding intervals in the box were modi�edare added to the end of the list.C.1.3 Box onsistenyBox onsisteny was reated to overome the problem of a onstraint ontaining more than oneinstane of a variable. This is done by forming a set of univariate onstraints for an input onstraint,where eah variable in a univariate onstraint is replaed with its domain in the input box, exeptfor one variable. For box onsisteny, the left-most and right-most roots de�ne the global boundsof all possible roots for the funtion (Benhamou et al., 1994).We use the shrinkLeft and shrinkRight algorithms to loate the left-most and right-mostroots of a univariate funtion. The former is de�ned as Algorithm C.6. This algorithm evaluatesthe funtion over the initial interval, disarding it if it ontains no roots. If roots are found then theinterval is split, and eah sub-division is pushed onto a stak for future root heking. The orderin whih the subdivisions are pushed onto the stak determine whether the left-most or right-mostroot is to be found. If a anonial interval is found that still ontains zero, then this is assumed tobe the left-most (right-most) root, and the algorithm returns suessfully. This method is di�erentfrom the Newton method for loating roots.
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shrinkLeft(in: univariate funtion F; inout: interval I)begin
S ← {I}while size(S) > 0 do
In ← removeF irst(S) %%pop off stak
X ← F (In) %%Evaluate univariate funtion over Inif [0, 0] ⊂ X then

V ← split(In)if size(V ) > 0 thenPush intervals in V onto stak Selsereturn In %%preision reahed, root foundreturn FAIL %% No roots are foundendDetermining box onsisteny for a onstraint is a matter of �nding the left-most and right-mostroots of eah univariate funtion. If either one of the methods returns FAIL then no root exists.Algorithm BC3Revise The algorithm that reates the set of univariate onstraints and exeutes
shrinkLeft and shrinkRight is alled BC3Revise. If this algorithms returns FAIL then boxonsisteny over the onstraint is not possible (Benhamou et al., 1994).Algorithm BC3 Box onsisteny over a set of onstraints is ahieved in a similar manner tohull onsisteny, that is, box-narrowing is repeated until no hange ours in the box of domains(Benhamou et al., 1994, 1999). Algorithm BC3 is idential to HC4, exept that BC3Revise isused instead of HC4Revise.Algorithm BC4 Algorithm C.7 is a more e�ient method for box onsisteny over a set ofonstraints. Initially hull onsisteny is ahieved for all the onstraints. One hull onsisteny isahieved over the set, box onsisteny is applied (Benhamou et al., 1999).C.1.4 Inner ontrating operatorAlgorithm C.8 implements the inner ontrating operator presented by Benhamou et al. (2004).
ICO2 uses an outer ontrating operator implemented as the BC3Revise algorithm. The initialbox is narrowed using BC3Revise, and if a universally quanti�ed variable is narrowed, then nosolutions exist. If none are narrowed, then the set of inverted onstraints are narrowed using
BC3Revise over B′. The box set di�erene between B′ and B′′ forms the solution to the onstraintset. If further solutions are required, then B′′ is split and proessed reursively. If B′′ beomesanonial the algorithm stops (in this ase, if the average width of the box is less than a spei�edthreshold α).
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Algorithm C.7 BC4 (adapted from Benhamou et al. (1994)).

BC4(in: set of onstraints C; inout: box B)beginrepeat
B′ ← Bdo
notF inished← falseforeah c ∈ C do

B′′ ← B

HC4Revise(c,B)
notF inished←true if any variables in B′′ that our one are narrowed,false if B′′ = FAIL or notF inished already falsewhile notF inishedif (B 6= ∅) then

BC3(C,B)until B′ = B or B = ∅return Bend
Algorithm C.8 Inner ontrating operator adapted from Benhamou et al. (2004).

ICO2(in: onstraint C,box B;out: S ontaining solution boxes)begin
B′ ← BC3Revise(C,B)if universally quantified domains not shrunk then

B′′ ← BC3Revise(C,B′)
S ←box set differene where no shrinking inuniversally quantified variablesif width(B′′) < α thenreturn Selse

(B1, ...,Bk)← splitk(B′′)apply ICO2(C,Bj) for eah split box, add solutions to Sreturn Selsereturn FAILend



Appendix DBenhmark onstraint systems
D.1 Example onstraint �leConstraint systems are desribed in a onstraint �le that symbolially represents the onstraints:########## Objet 1 in front of Objet 0 ###############CONSTRAINT{VARS{xo0p0xo1p0yo0p0yo1p0t1*}EXPR{(0.707*(xo1p0-xo0p0))+(-0.707*(yo1p0-*yo0p0)))^2 -0.8*(((xo1p0-xo0p0)^2 + (yo1p0-yo0p0))^2) * (0.707^2+(-0.707)^2)}OPERATOR{>}BOUNDARY{0}}########## Objet 1 near Objet 0 ###############CONSTRAINT{...}BOX{xo0p0: -10, 10xo1p0: -10, 10yo0p0: -10, 10yo1p0: -10, 10...t1: 0.5, 0.6} 236



APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 237D.2 Non-quanti�ed benhmarksThe three benhmarks used in Chapter 5 for verifying the underlying algorithms are de�ned asfollows:D.2.1 CLPRevisitedThis benhmark is used as a toy example by Benhamou et al. (1994), and is onerned with �ndingthe roots of eah of the following funtions:
f1(x) = x4 − 12x3 + 47x2 − 60x

f2(x) = x4 − 12x3 + 47x2 − 60x+ 24

f3(x) = x4 − 12x3 + 47x2 − 60x+ 24.1 (inonsistent)In all three ases x is assigned the initial domain [−10, 20].D.2.2 Broyden Banded funtionThis example is used as a benhmark by Benhamou et al. (1994) and is onerned with �nding theroots of the following funtions:
fi(x1, ..., xn) = xi(2 + 5x2

i ) + 1−
∑

j∈Ji

xj(1 + xj) (1 ≤ i ≤ m)where Ji = {j|j 6= i & max(1, i− 5) ≤ j ≤ min(m, i+ 1)}.All domains of xi are initially the interval [−1, 1]. Benhmark systems are reated for n =

{5, 10, 20, 40, 80}.D.2.3 More-Cosnard exampleThis example is used as a benhmark by Benhamou et al. (1994) and is onerned with �nding theroots of the following funtions (1 ≤ k ≤ m):
fk(xi, ..., xm) = xk +

1

2



(1− tk)

k
∑

j=1

tj(xj + tj + 1)3 + tk

m
∑

j=k+1

(1− tj)(xj + tj + 1)2



where tj = jh and h = 1/(m + 1). Every xi begins with the initial domain [−4, 5]. Benhmarksystems are reated for m = {10, 20, 40, 80}.D.3 Quanti�ed benhmarksThe following benhmarks are used for testing the ability to solve onstraint systems ontaininguniversally quanti�ed variables.



APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 238D.3.1 Parabola FittingUsed by Jardillier and Languénou (1998) and Benhamou et al. (2004), this benhmark is onernedwith �nding parabolas above a line:
∀t ∈ [0, 2] : at2 + bt+ c ≥ 2t− 1where the initial domains for a, b and c are [0, 1].D.3.2 CirleA ollision avoidane problem de�ned by Benhamou et al. (2004):

∀t ∈ [−π, π] :
√

(r1sint− x)2 + (r1cost− y)2 ≥ d1where the initial domains of x and y are [−5, 5], d1 = 0.5 and r1 = 2.5.D.3.3 SatelliteA ollision avoidane problem de�ned by Benhamou et al. (2004). If
fi(t) =







xi(t)

yi(t)

zi(t)






=







dicosθisinωit+ φi

di (sinψisinθisin(ωit+ φi) + cosψicos(ωit+ φi))

di (−cosψisinθisin(ωit+ φi) + sinψicos(ωit+ φi))





then the onstraint system is de�ned as:
∀t ∈ [−π, π] :































distance (f1(t), fj(t)) ≥ s
distance (f2(t), fj(t)) ≥ s...
distance (fn(t), fj(t)) ≥ swhere s is the minimum distane between satellites (we use s = 1). Three satellites are used inthe benhmark, so n = 3. Eah satellite is parametrized as follows:Parameter Satellite 1 Satellite 2 Satellite 3

di 5.0 5.0 5.0
ωi 1.0 1.0 1.0
φi 0.0 1.0 2.0
θi 0.0 1.0 1.5
ψi 0.0 1.0 1.5The unknowns to be omputed are for a fourth satellite j = n+1, where parameters θj , φj ,ψj ,ωjall begin with domain [0, 2π].



APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 239D.3.4 RobotA ollision problem de�ned by Benhamou et al. (2004):
∀t ∈ [0, 2] :

√

(x− Px(t))2 + (y − Py(t))2 ≥ dwhere
Px(t) = d1sinα1(t) + d2sin (α1(t) + α2(t)− π) + d3sin (α1(t) + α2(t) + α3(t))

Py(t) = d1cosα1(t) + d2cos (α1(t) + α2(t)− π) + d3cos (α1(t) + α2(t) + α3(t))

α1(t) = t+ π/4

α2(t) = 2t− 1

α3(t) = 0.2t+ 0.1The initial domains for x and y are [0, 5], d = 0.5, d1 = 1.0, d2 = 2.0 and d3 = 1.0.D.3.5 PointPathA motion planning problem used by Jaulin and Walter (1996) and Benhamou et al. (2004):
∀t ∈ [0, 1] :







(x(t)− 4.8)
2

+ (y(t)− 1)
2 ≥ 1

y(t) ≥ sin (x(t))where M(t) =

(

x(t)

y(t)

) and
M(t) = M0B

3
0(t) + P1B

3
1(t) + P2B

3
2(t) +M1B

3
3(t)where Bernstein polynomials are:

B3
0(t) = (1− t)3, B3

1(t) = 3t(1− t)2, B3
2(t) = 3t2(1− t), B3

3(t) = t3Initial domains for P1 and P2 are [−10, 10], M0 = (−1,−0.6)T and M1 = (6, 0)T .D.3.6 Robust 1De�ned by Ratshan (2006, 2008):
∀p ∈ [0, 1] :



















9 + 48p+ 48q + 32pq > 0

1 + p+ q > 0

−16p− 16q + 16p2 + 16q2 + 7 > 0where q has the initial domain [−2, 2].



APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 240D.4 Fition-to-animation benhmarksThe following benhmarks are de�ned for evaluation in terms of �tion-to-animation onstraints:
• Near: Four objets, eah onstrained to appear inFrontOf and near one of the others.
noCollide onstraints over all objets.

• Sene: Six objets arranged with using toRightOf , toLeftOf , inFrontOf , behind, noCollideand near onstraints.
• Layout3: Three objets arranged with the noCollide onstraint.
• WayPoints: One objet onstrained to pass through 3 �xed way-points, using the nearonstraint over 3 di�erent time-intervals.
• Dynami1Stati1: One objet stati, the other dynami having trajetories of inreasingdegree in eah dimension. near and inFrontOf applied over sub-interval of time, noCollideapplied over entire interval of time.
• Dynami2: Both objets dynami, having trajetory of inreasing degree in eah dimension.
near and inFrontOf applied over sub-interval of time, noCollide applied over entire intervalof time.

• Collision: n objets, eah onstrained to be near and noCollide with every other objet.Inreases in omplexity with addition of eah objet, and for n > 3 no solution exists.The exat onstraints that omprise eah benhmark are de�ned in the following setions. Atualformulations for eah type of onstraint (suh as inFrontOf and near) are presented in Chapter 6.



APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 241D.4.1 FrontObjets Dimensions Degree Quanti�ed variables Initial Domains4 4 0 0 [−10, 10]

• Trajetory A: rA(t) = pA
0 =







x0cp0 (x− dimension)

z0cp0 (z − dimension)

• Trajetory B: rB(t) = pB
0 =







x1cp0 (x− dimension)

z1cp0 (z − dimension)

• Trajetory C: rC(t) = pC
0 =







x2cp0 (x− dimension)

z2cp0 (z − dimension)

• Trajetory D: rD(t) = pD
0 =







x3cp0 (x− dimension)

z3cp0 (z − dimension)Constraints:B InFrontOf A uA = (0.707, 0.707)B Near AC InFrontOf B uB = (0.707,−0.707)C Near BD InFrontOf C uC = (0.707, 0.707)D Near CB NoCollide AC NoCollide AD NoCollide AC NoCollide BD NoCollide BD NoCollide C



APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 242D.4.2 SeneObjets Dimensions Degree Quanti�ed variables Initial Domains6 2 0 0 [−20, 20]

• Trajetory A: rA(t) = pA
0 =







x0cp0 (x− dimension)

z0cp0 (z − dimension)

• Trajetory B: rB(t) = pB
0 =







x1cp0 (x− dimension)

z1cp0 (z − dimension)

• Trajetory C: rC(t) = pC
0 =







x2cp0 (x− dimension)

z2cp0 (z − dimension)

• Trajetory D: rD(t) = pD
0 =







x3cp0 (x− dimension)

z3cp0 (z − dimension)

• Trajetory E: rE(t) = pE
0 =







x4cp0 (x− dimension)

z4cp0 (z − dimension)

• Trajetory F: rF (t) = pF
0 =







x5cp0 (x− dimension)

z5cp0 (z − dimension)Constraints:A InFrontOf B uB = (1, 0) C NoCollide BA Near B D NoCollide BC Behind B uB = (−1, 0) E NoCollide BC Near B F NoCollide BE ToLeftOf B uB = (0, 1) D NoCollide CE Near B E NoCollide CF ToRightOf D uD = (0,−1) F NoCollide CF Near D E NoCollide DB NoCollide A F NoCollide DC NoCollide A F NoCollide ED NoCollide AE NoCollide AF NoCollide A



APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 243D.4.3 Layout3Objets Dimensions Degree Quanti�ed variables Initial Domains3 2 0 0 [−20, 20]

• Trajetory A: rA(t) = pA
0 =







x0cp0 (x− dimension)

z0cp0 (z − dimension)

• Trajetory B: rB(t) = pB
0 =







x1cp0 (x− dimension)

z1cp0 (z − dimension)

• Trajetory C: rC(t) = pC
0 =







x2cp0 (x− dimension)

z2cp0 (z − dimension)Constraints:A NoCollide BA NoCollide CB NoCollide CD.4.4 WayPointsObjets Dimensions Degree Quanti�ed variables Initial Domains1 2 2 3 [−100, 100]Trajetory A (degree 2), for the time interval t = [0, 1]:
rA(t) = (1−t)2pA

0 +t(1−t)pA
1 +t2pA

2 =







(

(1− t)2 ∗ x0cp0
)

+ (t ∗ (1− t) ∗ x0cp1) +
(

t2 ∗ x0cp2
)

(

(1− t)2 ∗ z0cp0
)

+ (t ∗ (1− t) ∗ z0cp1) +
(

t2 ∗ z0cp2
)Constraints:A Near B ∀t1 ∈ [0, 0.01] B at (−7.29,−18.98)A Near C ∀t2 ∈ [0.5, 0.51] C at (−17.28, 0.0)A Near D ∀t3 ∈ [0.99, 1.0] D at (10.0,−10.0)



APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 244D.4.5 Dynami1Stati1Objets Dimensions Degree Quanti�ed variables Initial Domains2 1 to 2 0 to 2 2 [−10, 10]The following provides the example in 2 dimensions, degree 1 urves, for the time interval
t = [0, 1]:
• Trajetory A: rA(t) = (1− t)pA

0 + tpA
1 =







((1− t) ∗ x0cp0) + (t ∗ x0cp1) (x− dimension)

((1− t) ∗ z0cp0) + (t ∗ z0cp1) (z − dimension)

• Trajetory B: rB(t) = (1− t)pB
0 + tpB

1 =







x1cp0 (x− dimension)

z1cp0 (z − dimension)Constraints:A InFrontOf B ∀t1 ∈ [0.5, 0.6] uB =
d

dt
rB(t1)A Near B ∀t1 ∈ [0.5, 0.6]A NoCollide B ∀t2 ∈ [0, 1]D.4.6 Dynami2Objets Dimensions Degree Quanti�ed variables Initial Domains2 1 to 2 0 to 2 2 [−10, 10]The following provides the example in 2 dimensions, degree 1 urves, for the time interval

t = [0, 1]:
• Trajetory A: rA(t) = (1− t)pA

0 + tpA
1 =







((1− t) ∗ x0cp0) + (t ∗ x0cp1) (x− dimension)

((1− t) ∗ z0cp0) + (t ∗ z0cp1) (z − dimension)

• Trajetory B: rB(t) = (1− t)pB
0 + tpB

1 =







((1− t) ∗ x1cp0) + (t ∗ x1cp1) (x− dimension)

((1− t) ∗ z1cp0) + (t ∗ z1cp1) (z − dimension)Constraints:A InFrontOf B ∀t1 ∈ [0.5, 0.6] uB =
d

dt
rB(t1)A Near B ∀t1 ∈ [0.5, 0.6]A NoCollide B ∀t2 ∈ [0, 1]



APPENDIX D. BENCHMARK CONSTRAINT SYSTEMS 245D.4.7 CollisionObjets Dimensions Degree Quanti�ed variables Initial Domains2 to 8 2 0 to 1 0 [−10, 10]The following provides an example of 4 stati objets, although the experiment ranges from 2to 8 objets, with stati or dynami trajetories.
• Trajetory A: rA(t) = pA

0 =







x0cp0 (x− dimension)

z0cp0 (z − dimension)

• Trajetory B: rB(t) = pB
0 =







x1cp0 (x− dimension)

z1cp0 (z − dimension)

• Trajetory C: rC(t) = pC
0 =







x2cp0 (x− dimension)

z2cp0 (z − dimension)

• Trajetory D: rD(t) = pD
0 =







x3cp0 (x− dimension)

z3cp0 (z − dimension)Constraints:B Near A B NoCollide AC Near A C NoCollide AD Near A D NoCollide AC Near B C NoCollide BD Near B D NoCollide BD Near C D NoCollide C



Appendix EDetails of manual modi�ationsThe modi�ations made to the automatially produed sene desriptions and virtual environmentsare listed here.E.1 Cow sene
• Coreferene orretions (indiated in bold):valley. Anne/ANNE did n't very muh like a big brown ow/COW who ame up lose and stared ather/ANNE, but it/COW went away when Daddy/DADDY told it/COW to. The hildren/CHILDRENate enormously, and Mother/MOTHER said that instead of having a tea-pini at half-past four they wouldhave to go to a tea-house somewhere, beause they had eaten all the tea sandwihes/SANDWICHES aswell as the lunh ones! "What time shall we be at Aunt Fanny's?" asked Julian/JULIAN, �nishing upthe very last sandwih/SANDWICH and wishing there were more. "About six o'lok with luk," saidDaddy/DADDY. "Now who wants to streth their legs a bit? We've another long spell in the ar, youknow." The ar/CAR seemed to eat up the miles as it purred along.
• Abstrat onstraint reation proess:Sene detail: Modi�ations:Sene segmentation: - NoneModel desriptors: - Cow trajetory inreased to degree 1 (from 0)Coreferene: - As shown above.Abstrat onstraints: - None
• Modi�ations in 3D modeling environment:Modi�ation Type: Modi�ations:Insertion - NoneModi�ation - Camera positioningDeletion - Removal of �sandwihes� plaeholder ube;- Removal of �sandwih� plaeholder ube;- Removal of �hildren� model246
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• Coreferene orretions (indiated in bold):" Look ! There 's a rabbit ! " ried Dik/DICK , as a big sandy rabbit/RABBIT lollopped slowly aross theyard . It/RABBIT disappeared into a hole on the other side . Then another rabbit/RABBIT appeared ,sat up and looked at the hildren/CHILDREN , and then vanished too . The hildren/CHILDREN werethrilled . They had never seen suh tame rabbits/RABBITS before . A third rabbit/RABBIT appeared .It/RABBIT was a small one with absurdly big ears , and the tiniest white bob of a tail . It/RABBITdid n't even look at the hildren/CHILDREN . It/RABBIT bounded about in a playful way , and then, to the hildren/CHILDREN 's enormous delight , it/RABBIT sat up on its/RABBIT hind legs , andbegan to wash its/RABBIT big ears , pulling down �rst one and then another . But this was too muhfor Timothy/TIM . He/TIM had wathed the other two bound aross the yard and then disappear withoutso muh as barking at them . But to see this youngster atually sitting there washing its/RABBIT earsunder his/TIM very nose was really too muh for any dog/TIM . He/TIM gave an exited yelp and rushedfull-tilt at the surprised rabbit/RABBIT . For a moment the little thing did n't move . It/RABBIT hadnever been frightened or hased before , and it/RABBIT stared with big eyes at the rushing dog/TIM .Then it/RABBIT turned itself about and tore o� at top speed , its/RABBIT white bobtail going upand down as it/RABBIT bounded away . It/RABBIT disappeared under a gorse bush/BUSH nearthe hildren/CHILDREN . Timothy/TIM went after it/RABBIT , vanishing under the big bush too .Then a shower of sand and earth was thrown up as Tim/TIM tried to go down the hole after the rabbitand sraped and srabbled with his/TIM strong front paws as fast as he/TIM ould . He/TIM yelpedand whined in exitement , not seeming to hear George/GEORGE 's voie alling to him/TIM . He/TIMmeant to get that rabbit ! He/TIM went almost mad as he/TIM sraped at the hole , making it bigger andbigger . " Tim/TIM ! Do you hear me ! Come out of there ! " shouted George/GEORGE . " You 're notto hase the rabbits here . You know you must n't . You 're very naughty . Come out ! " But Tim/TIMdid n't ome out . He/TIM just went on and on sraping away madly . George/GEORGE went to fethhim/TIM . Just as she/GEORGE got up to the gorse bush/BUSH the sraping suddenly stopped .
• Abstrat onstraint reation proess:Sene detail: Modi�ations:Sene segmentation: - NoneModel desriptors: - Rabbit trajetory inreased to 1 (from 0);- Timothy assigned �dog� model (from humanoid model)Coreferene: - As shown above.Abstrat onstraintorretions: - 1 orreted onstraint - TIM NEAR RABBIT, end time redueduntil start of RABBIT UNDER BUSH onstraint.
• Modi�ations in 3D modeling environment:Modi�ation Type: Modi�ations:Insertion - NoneModi�ation - Camera positioningDeletion - None
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• Coreferene orretions (indiated in bold):He/JULIAN stole in . His/JULIAN unle/QUENTIN still snored . He/JULIAN tiptoedby him/QUENTIN to the table/TABLE behind his/JULIAN unle/QUENTIN 's hair/CHAIR .He/JULIAN took hold of the box/BOX . And then a bit of the broken wood[Remove℄ of the box/BOXfell to the �oor with a thud ! His/JULIAN unle/QUENTIN stirred in his/QUENTIN hair/CHAIR andopened his/QUENTIN eyes . Quik as lightning the boy/JULIAN rouhed down behind his/JULIANunle/QUENTIN 's hair/CHAIR , hardly breathing . " What 's that ? " he/JULIAN heard his/JULIANunle/QUENTIN say . Julian/JULIAN did n't move . Then his/JULIAN unle/QUENTIN settled downagain and shut his/QUENTIN eyes . Soon there was the sound of his/QUENTIN rhythmi snoring ! "Hurrah ! " thought Julian/JULIAN . " He/JULIAN 's o� again ! " Quietly he/JULIAN stood up , holdingthe box/BOX . On tiptoe he/JULIAN rept to the Frenh window . He/JULIAN slipped out and ransoftly down the garden path . He/JULIAN did n't think of hiding the box/BOX . All he/JULIAN wantedto do was to get to the other hildren/CHILDREN and show them what he/JULIAN had done !
• Abstrat onstraint reation proess:Sene detail: Modi�ations:Sene segmentation: - Manual delimitation of this sene, sine no expliit indiator existsModel desriptors: - NoneCoreferene: - As shown above.Abstrat onstraintorretions: - None
• Modi�ations in 3D modeling environment:Modi�ation Type: Modi�ations:Insertion - NoneModi�ation - Camera positioningDeletion - Deletion of �Children� model
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• Coreferene orretions (indiated in bold):Dik/DICK and Julian/JULIAN , who shared a room , woke up at about the same moment , and staredout of the nearby window . " It 's a lovely day , hurrah ! " ried Julian/JULIAN , leaping out of bed/BED. " I do n't know why , but it always seems very important that it should be sunny on the �rst day of aholiday . Let 's wake Anne/ANNE . " Anne/ANNE slept in the next room . Julian/JULIAN ran in andshook her/ANNE . " Wake up ! It 's Tuesday ! And the sun 's shining . " Anne/ANNE woke up witha jump and stared at Julian/JULIAN joyfully . " It 's ome at last ! " she/ANNE said . " I thoughtit never would . Oh , is n't it an exiting feeling to go away for a holiday ! " They started soon afterbreakfast . Their ar/CAR was a big one , so it held them all very omfortably . Mother/MOTHERsat in front with Daddy/DADDY , and the three hildren/CHILDREN sat behind , their feet on twosuitases/SUITCASES . In the luggage-plae at the bak of the ar/CAR were all kinds of odds and ends, and one small trunk/TRUNK . Mother/MOTHER really thought they had remembered everything .Along the rowded London roads they went , slowly at �rst , and then , as they left the town behind, more quikly . Soon they were right into the open ountry , and the ar/CAR sped along fast . Thehildren/CHILDREN sang songs to themselves , as they always did when they were happy . " Are wepiniking soon ? " asked Anne/ANNE , feeling hungry all of a sudden . " Yes , " said Mother/MOTHER.
• Abstrat onstraint reation proess:Sene detail: Modi�ations:Sene segmentation: - Manual delimitation for setting ANNES_ROOM and OUTSIDE(sene diretly after)Model desriptors: - NoneCoreferene: - As shown above.Abstrat onstraintorretions: - Insertion of JULIAN INSIDE BED; JULIAN NO_COLLIDE BEDto ahieve motion of Julian getting out of bed.- Insertion of BED INSIDE ANNES_ROOM; ANNE_INSIDE BEDto ahieve the idea of Anne being in bed (not expliitly state)- Insertion of JULIAN NO_COLLIDE BED; JULIAN NEAR BEDto ater for implied onstraints required for the addition of the newBED objet to the sene.- Change MOTHER NO_COLLIDE_CAR; DADDYNO_COLLIDE CAR; CHILDREN NO_COLLIDE CAR toMOTHER INSIDE CAR; DADDY INSIDE CAR; CHILDRENINSIDE CAR to ensure avatars inside ar, sine it is not expliitlystated in a simple manner in the text.
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• Modi�ations in 3D modeling environment:Modi�ation Type: Modi�ations:Insertion - NoneModi�ation - Camera positioning in 6 senes (modi�ation)- Removal of �BOYS� objet (deletion)- Material adjustments in 2 senes (modi�tion)Deletion - Deletion of �Children� modelE.5 Follow sene
• Coreferene orretions (indiated in bold):" THIS'LL BE IT ! " KICKAHA/KICKAHA SAID . " I KNOW IT , KNOW IT ! I CAN feel the foresshaping themselves into a big funnel pouring us onto the goal ! It 's just ahead ! We 've �nally made it ! "He/KICKAHA wiped the sweat from his/KICKAHA forehead . Though breathing heavily , he/KICKAHAinreased his/KICKAHA pae . Anana/ANANA was a few steps behind and below him/KICKAHA onthe steep mountain trail . She/ANANA spoke to herself/ANANA in a low voie . He/KICKAHA neverpaid any attention to her/ANANA disouraging-that is , realisti-words , anyway . " I 'll believe it whenI see it . "
• Abstrat onstraint reation proess:Sene detail: Modi�ations:Sene segmentation: - NoneModel desriptors: - NoneCoreferene: - As shown above.Abstrat onstraintorretions: - None
• Modi�ations in 3D modeling environment:Modi�ation Type: Modi�ations:Insertion - NoneModi�ation - Camera positioningDeletion - None
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• Coreferene orretions (indiated in bold):They were sent to the house/HOUSE of an old Professor/PROFESSOR who lived in the heart of the ountry, ten miles from the nearest railway station and two miles from the nearest post o�e . He/PROFESSORhad no wife/MRS BEAVER and he/PROFESSOR lived in a very large house/HOUSE with a house-keeper alled Mrs/MRS MACREADY Maready/MRS MACREADY and three servants . ( Their nameswere Ivy , Margaret and Betty , but they do not ome into the story muh . ) He/PROFESSOR him-self/PROFESSOR was a very old man with shaggy white hair whih grew over most of his/PROFESSORfae as well as on his/PROFESSOR head , and they liked him/PROFESSOR almost at one ; but onthe �rst evening when he/PROFESSOR ame out to meet them at the front door he/PROFESSOR wasso odd-looking that Luy/LUCY ( who was the youngest ) was a little afraid of him/PROFESSOR ,and Edmund/EDMUND ( who was the next youngest ) wanted to laugh and had to keep on pretendinghe/EDMUND was blowing his/EDMUND nose to hide it . As soon as they had said good night to the Pro-fessor/PROFESSOR and gone upstairs on the �rst night , the boys/PETER ame into the girls/GIRLS 'room and they all talked it over . " We 've fallen on our feet and no mistake , " said Peter/PETER . " Thisis going to be perfetly splendid . That old hap will let us do anything we like . " " I think he/PETER 'san old dear , " said Susan/SUSAN . " Oh , ome o� it ! " said Edmund/EDMUND , who was tired andpretending not to be tired , whih always made him/EDMUND bad-tempered .
• Abstrat onstraint reation proess:Sene detail: Modi�ations:Sene segmentation: - NoneModel desriptors: - NoneCoreferene: - As shown above.Abstrat onstraintorretions: - None
• Modi�ations in 3D modeling environment:Modi�ation Type: Modi�ations:Insertion - NoneModi�ation - Camera positioningDeletion - Removal of �Girls� model and �Professor� model



Appendix FMulti-modal animated �lmsThe aompanying DVD ontains rendered �lms.Behaviour QualityThe following videos are provided as desribed in Chapter 6, Setion 6.3.2.2:
• Dynami1Stati1, degree 1
• Dynami1Stati1, degree 2
• Dynami2, degree 2 (Quality = 25.08)
• Dynami2, degree 2 (Quality = 161.32)Animated �lmsThe following videos are provided as desribed in Chapter 6, Setion 6.5.4:1. Cow sene2. Rabbit sene3. Study sene4. Travel sequene5. Follow sene6. House sequeneVideos and snapshots are also available at the projet web-site:http://www.s.ru.a.za/researh/g05g1909/

252


