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Abstract

Persistent and exponential growth in global communication, especially relating to activity

on the Internet, continues to drive research and innovation in the field of data visuali-

sation. Traditional approaches used for the capture and analysis of network traffic have

become superfluous due to the sheer size of traffic datasets. As a result, there is a high

demand for network traffic visualisation systems that offer both efficiency and reliably

when working with datasets of a large magnitude.

In 2005, Rhodes Master’s student, Jean-Pierre van Riel, succeeded in implementing In-

etVis, a visualisation tool which, at the time, satisfied the demands of visual traffic mon-

itoring. When significant advancements in computer hardware (observed over the five

year span between the original InetVis implementation and the currently enhanced re-

implementation) were coupled with the constant rise in network traffic, the InetVis tool

suffered major performance issues and could no longer achieve acceptable results.

To resurrect the visualisation tool, we enhanced the underlying structure in a variety

of ways. A client server model improves memory and processor usage while at the same

time, offers flexibility through modularization, thus allowing easy integration and up-

date capabilities. Multi threading optimizes processing and a redesigned graphical user

interface exploits the potential of large screen sizes while maintaining full functionality.

These enhancements not only revive the InetVis concept, they offer a means to adapt

the efficiency of the tool to allow for its survival within a rapidly-expanding network

environment.
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Chapter 1

Introduction

Computer Security is evolving as an increasingly vital component of the Internet. Due to

the rapid growth of internet threats and vulnerabilities, an increasing demand for security

professionals is emerging. The trouble with security is that any host computer connected

to the Internet is vulnerable to an attack and the majority of the users of these hosts

are oblivious to the vast amount of malicious traffic their computers receive[11]. Most of

these users unfortunately lack the security background to identify malicious activity.

A strong mechanism which can be used to overcome the need for specialised network

traffic understanding is data visualization[8]. Visualization techniques are powerful due

to their ability to exploit the high-bandwidth visual recognition capabilities of the human

eye[19]. It is far easier to identify abnormal network events from a visual model as op-

posed to traditional techniques which include the sequential analysis of text based log files.

Research in the field of data visualisation propelled Stephen Lau to develop a visuali-

sation tool, named ’The Spinning Cube of Potential Doom’, which delved into the visual

representation of network traffic in the form of a 3 dimensional cube[15]. Lauś concept

was later adapted and enhanced by J.P. van Riel as part of his master’s research at Rhodes

University in 2005. The resulting tool, labeled InetVis (Internet Visualisation)[21],[23],

successfully achieved its goal of providing functionality to carry out visual network secu-

rity analysis.

7
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1.1 Central Thesis Outline

The advances in computer hardware and the expansion of malicious activity manifesting

on the Internet have had a serious impact on the performance of the InetVis tool. As

a result, investigation into the enhancement of InetVis resulted in the necessity of an

enhanced re-implementation of the tool being identified. Optimization of InetVis will al-

low for more efficient processing and representation of significantly larger data sets. The

user interface is another area which requires an upgrade as it occupies a large portion of

desktop real estate, restricting the representation size of the cube. With advancements in

design and modeling of graphical user interfaces, a new interface offering identical func-

tionality and improved design would be included.

1.2 Research Methodology

The proposed re-implementation of the InetVis tool will be labeled ’dotNetVis’. This is

significant due to the re-implementation being done in the .NET framework. The key

differences and upgrades to the InetVis tool are outlined below.

Firstly, the major difference is that dotNetVis is structured around a client-server model

implementation. The reason behind this separation is that often, the input into a network

traffic visualization tool is provided through a network telescope in the form of capture

files. Instead of relocating capture files, the dotNetVis server processes the capture file

and transmits only the data required to represent packets to the dotNetVis client, where

the visualization will be rendered. This means that processing of the packets is handled

on a host separate from the machine used to generate and render the cube, thus providing

exclusive processing power to the individual components.

The next upgrade is the advancement away from a static representation of network traf-

fic. By adding the functionality to allow for interactive exploration of the dataset, packet

data can be viewed by selecting the packet within the cube. This feature will enable the

user of the dotNetVis client to view important information related to any plotted packet

within the cube. This will prove useful in the case where the packet being viewed is part

of some malicious activity targeting the host subnet.
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XNA is used for the implementation of the dotNetVis client as it is more suited to the

.NET framework. The XNA client offers the availability of a full screen mode to further

extend the maximum data set that can be represented in the cube without obfuscation.

A tab-based Windows Forms control is used as a substitute for the controls found in the

original InetVis implementation. The new control implementation allows for more efficient

and flexible screen real estate utilisation in addition to the improved XNA component.

1.3 Document Overview

In brief summary, this document progresses as follows:

• Background of key concepts vital to understanding the problem domain.

• A review of the InetVis tool which will undergo optimization, including a full spec-

ification of its functionality, results and performance issues.

• Development of the dotNetVis tool, outlining enhancements implemented to over-

come the InetVis performance drawbacks.

• A conclusion summarising the outcome of the re-implementation in terms of perfor-

mance contrasts and processing ability.

In chapter 2, background is given into the area of data visualisation and the detection

of malicious activity. Chapter 3 lists some of the design considerations that had to be

investigated to identify the cause of the performance issues of the InetVis tool. The next

three chapters discuss the design and implementation of the dotNetVis application, mov-

ing from the server implementation through network communication to implementation

of the client application. The final chapter discusses the overall success of the project

with reference to usage and performance improvements.



Chapter 2

Background

Before investigation of the InetVis tool can occur, key concepts surrounding the imple-

mentation and usage of such tools within a security environment need to be explored.

Covering the process of data visualisation, from necessity to malicious activity identifi-

cation, this chapter serves to provide a concrete foundation on which concepts in later

chapters can be discussed. Reference to current visualisation tools, particularly the In-

etVis tool which is the focus of this project, is used to enforce understanding of the

concepts.

2.1 Security and the Internet

The Internet has grown tremendously in the past decade, as illustrated in Figure 2.1.

[1] suggests that this trend will continue as global IP traffic is expected to quadruple by

2014. While this growth offers benefits in terms of convergence, quality of life and global

development, it also presents an epic challenge to the field of security.

To understand the problems faced by security professionals, it is important to be aware

of the vast extents of Internet that require security integration. [21] mentions a global

population usage of the Internetin 2005 totalling 14.9%. According to the latest statistics

presented by [3], this percentage has risen to 28.7%, nearly doubling in just five years. [3]

indicates that population penetration of the internet has increased by 444.8% since 2000.

10
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Figure 2.1: Global IP Traffic Growth Forecast

Figure 2.2: New Malicious Code Signatures

It becomes fairly obvious, looking at the growths outlined above, that the existence of

malicious activity on the Internet will follow suit. The graph shown in Figure 2.2, pro-

vided by Symantec, illustrates the extent to which malicious activity has grown in the

past few years. Methods to control the creation and spreading of this malicious activ-

ity are non-existent due to the dynamic nature of the Internet itself. As a result, the
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only countermeasures available must be implemented on the targeted host. This is where

security professionals play an important role. Through understanding and inspection of

traffic received, a security professional should be able to sanitize incoming traffic and

prevent harm to the destination host. A shortage of security professionals prevents this

from being a viable solution due to the magnitude of the Internet. Without an in depth

understanding of security in relation to computer networks, an individual will find it im-

possible to identify malicious activity through the use of conventional network monitoring

techniques (such as reading log file data in a text editor). Fortunately, research in the

field of data visualisation has provided techniques to develop a solution which will address

these issues[24],[20].

2.2 Security Data Visualisation

At its heart, security visualisation depends upon graphically presenting security-related

data in ways that provide useful and actionable insight[9]. The concept of data visual-

isation exploits the high-bandwidth visual recognition capabilities of the human eye[9].

This allows for more efficient detection of malicious activity as well as easier pattern and

anomaly recognition in comparison to using traditional computing techniques and text-

based log files[9]. The Internet has turned the digital world into a dangerous place and

security has become a vital component. With continual attacks taking place, the volume

of available security data from devices connected to the internet is increasing and this

flood of information is obfuscating users perceptions of their security status. Through

this confusion, security becomes vulnerable and malicious activity can go unnoticed[9].

Due to the high rate of false positives, traversal of log data becomes tedious. This signif-

icantly affects the success rate of a security system[19]. What security data visualisation

hopes to provide is a means of aggregating this flood of data into useful information. This

is done by drawing graphs, specially crafted for the exact needs of the security system.

These graphs provide an extra level of insight and can be used for, but are not limited to,

port scans, network sweeps and Denial of Service attack detection[19]. Examples of such

graphs are detailed in section 2.3.2 and 2.4.1.

2.3 Network Telescopes

A network telescope is an assigned portion of routed IP address space that is used solely to

observe inbound internet traffic[17]. The telescope acts as a dummy host on an isolated
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network range which means that within the allocated IP address space, no legitimate

traffic should exist[13]. This isolated environment allows the telescope to detect and log

malicious traffic which could arrive in various flooding of denial-of-service attacks, infec-

tion of hosts by Internet worms, and network scanning[17]. Because no legitimate traffic

is active on this so called darknet, the majority of packets captured are a result of mali-

cious activity[7]. The typical network telescope will log traffic it receives by storing the

packets as capture files. A capture file contains all the information pertinent to each

packet received in a given time. The raw packets are aggregated and stored in this format

so that a stand-alone tool, such as InetVis, can later read in the capture file and process

each raw packet of data so that a more intuitive representation of the network traffic can

be generated[19]. The InetVis tool discussed later uses capture files as one of the ways to

generate a visualisation.

A class C network telescope is in operation within the Rhodes University IP space and in

August 2005, 867 085 packets were captured and used as a testing input for the InetVis

tool[22]. A screenshot of the InetVis tool displaying this dump file can be seen in Figure

2.3. The benefits of using a visualisation tool to view captured packets should be apparent

in the given screen capture. The horizontal lines seen in the lower section of Figure 2.3 are

caused by network probes which are used to scan an address range to locate vulnerable

hosts which will undergo further scans upon discovery. Because the telescope is passive

in nature [10], no nodes exist within the address range[22].

2.3.1 Areas of high traffic

In Figure 2.4, an orthographic view along the blue x-axis (representing the network tele-

scope address space), groupings of plotted traffic become apparent. This indicates that

those particular address ranges are a rich source of malicious traffic and as such, precau-

tions can then be put into place to protect against those hostile ranges.

2.3.2 Malicious signatures

With a visualization of such large magnitude, some common signatures begin to emerge.

As seen in Figure 2.5, anomalous diagonals are apparent. An orthographic view along

the z-axis shows targeted ports as well as targeted IP Addresses. The diagonal lines that

are visible in Figure 2.5 are caused by a scan known as a barber pole [15]. This scan type
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Figure 2.3: InetVis displaying telescope traffic from August 2005

Figure 2.4: Groupings form along the IP source range highlighting hostile ranges

is discussed in more detail later on. Two other scan types are visible as well. These are

shown in Figure 2.6 and Figure 2.7 respectively. Figure 2.6 represents a step scan whilst
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Figure 2.5: Anomalous diagonals

Figure 2.7 represents a creepy crawly scan[22].

Figure 2.6: Step scan signatures

Figure 2.7: Creepy crawly scan shown at different intervals

A step scan divides a target network range into blocks. It starts at the first block and

scans a specific port. When it reaches the end of the block, it selects a new destination

port number and scans the following block. It repeats this until all network addresses

within the network range it has set out to scan, have been scanned [22].
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A creepy crawly attack works in a similar way. Its goal is to scan a designated IP range.

It divides the range up into segments and then scans a subset of these segments simulta-

neously. This gives the dashed line effect shown in Figure 2.7. The three different time

intervals, t1, t2 and t3, all show the dashed line pattern and when the traffic is viewed

over the duration of the scan, a solid line will be noticeable [22].

2.4 InetVis

Having looked at network telescopes and the strength of data visualisation, it is time

to explore the InetVis tool in detail. InetVis is a 3D animated scatter plot network

traffic visualisation tool. The function of the InetVis tool is to transfer an input of IP

layer packets into a three dimensional cube visualisation which plots packets according

to source and destination IP addresses as well as the destination port number. Figure 6

shows an InetVis visualisation of an NMap gridsweep scan with decoys. The lines that

can be seen running parallel to the blue x-axis are scans that are taking place on common

listening ports across a subset of the home IP Address space. As can be seen, there are

four identical bands coming from four different source IP addresses. This is because three

of the four scans are spoofed decoys. Only one of the scans is legitimate. The fading

effect that is visible is a feature of the InetVis tool which fades packets as they age. The

plotted packets are coloured based on their destination port number [22].

2.4.1 Concept

InetVis is based on a similar implementation by Stephen Lau which is called The Spinning

Cube of Potential Doom [22]. Laus primary reason for creating the cube was to provide

a means of education to those who are not experts in the field of computer security [15].

Lau wanted to create an application that could highlight the overall extent of malicious

traffic on the Internet.

It is reasonable to note that the majority of computer users are blissfully unaware of

the amount of malicious traffic circulating the internet on a daily basis. This lack of

awareness is an issue that needs to be addressed in the field of computer security and

Laus cube has made an attempt at satisfying that need. Through visualisation, data can

be represented in such a way that merely observing the visualisation will allow a user to

identify malicious activity [16].
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Figure 2.8: InetVis displaying an NMap generated gridsweep with decoys

Laus cube leverages off the Bro IDS [7] which monitors TCP connections and logs source

and destination IPs as well as port numbers. Laus cube uses these logs as an input to plot

each packet according to the following layout: The X-axis is used to plot the home network

(which the IDS is monitoring). This is typically a subnet in an organisation. The Z-axis

represents all possible IP address space (from 0.0.0.0 to 223.255.255.255 which excludes

multicast traffic). The Y-access represents the port number. Using these axes, certain

types of malicious activity can be identified. Various visual signatures are discussed below.

Port Scan

A port scan occurs on a single host. Attackers can use port scans to acquire critical

information about a hosts machine [18]. A port scan will usually report a list of open

ports on the targeted machine. These ports are essentially tunnels into the secure host

and with appropriate tools some ports can be used to gain unauthorised access into the

host machine. A port scan can be identified by observing the traffic between a monitored

network node and the source IP address of the packets that that node is receiving. If a

single source IP address is seen communicating to multiple ports on a host machine, then
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it is highly probable that a port scan is taking place.

Figure 2.9: A port scan
signature with Laus Cube

There are many tools that can be used to carry out a port

scan and some of the more clever tools attempt to be as

discreet as possible [18]. This is achieved by varying the delay

between packets sent to the host. This makes it difficult to

see the overall port scan signature as packets do not arrive

uniformly. There are other methods that can be used to

hide a port scan as well but that is beyond the scope of this

thesis. A typical port scan is shown in Figure 2.9 which

is a screenshot of a visualisation achieved using Lau’s cube.

A visible horizontal line is formed which indicates that a

single source IP address has sent traffic to a multitude of

port numbers on a single host.

Barber Pole Scan

Barber pole scans occur across an array of hosts and they

are harder to trace due to the fact that they vary their des-

tination port number and destination host machine simulta-

neously. A text based intrusion detection system will have

difficulty in identifying this kind of an attack [19], but when

represented as a visualisation, such an attack is clearly visible. A barber pole signature

is shown in Figure 2.10 and it is identified by distinct diagonal lines.

Figure 2.10: A Barber Pole signature with Laus Cube

Tools that are able to perform these scans are sophisticated in a sense that they have the

ability to skip IP addresses and port numbers as well as scan more than one port on a
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target host [15]. This flexibility decreases the detection rate as fuzzy patterns become

more prominent.

Lawnmower Scan

Figure 2.11: A Lawnmower signa-
ture with Laus cube

A lawnmower attack occurs across a wide range of

contiguous ports and hosts. There is no discretion

when one of these scans takes place. The tool used

to initiate the scan will typically proceed to sequen-

tially scan an address range by targeting a specific

port identical to a port scan algorithm. Once the

range has been traversed, the destination port is

changed and the scan repeats [15]. As shown in

Figure 2.11, the lawnmower scan signature is highly

visible in a visualisation environment. The only dif-

ficulty in detecting a lawnmower scan is that the

time it takes to execute is variable, as with any other

scan. Because of this, the visualisation may decay

before any visual signatures can be inferred.

2.4.2 Implementation

Although InetVis is based on Laus cube, it differs in many regards. InetVis was created as

an extension of Laus work and it includes useful features such as variable playback rate,

an adjustable time window and filtering via the Berkley Packet Filtering method [22].

InetVis uses a network telescope as its primary source of data. The capture files which

are created by the telescope can be visualised within InetVis through an animated 3D

scatter plot. Laus cube uses the Bro IDS as its source of network traffic input [2]. InetVis

has been tested on a class C network telescope set up in the Rhodes University IP space

and it passively monitors traffic received within this space. InetVis is not limited to the

input of historic traffic (in a sense that the traffic is not monitored in real time) as it has

the ability to monitor live network traffic as well [22]. This is done by capturing traffic

received on the local network adapter of the machine on which the InetVis application is

executed.
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Plotting Scheme

Figure 2.8 illustrates the plotting scheme of InetVis. The purpose of the cube is to

visualise packets captured within a predefined network range, having received them from

any source IP address. Packet inputs read into the InetVis tool for processing are handled

by libpcap, a library used for the low level capturing of packets in a network environment

[5]. InetVis plots traffic found at the IP layer which includes TCP and UDP as well as

ICMP traffic. The latter type has no port dimension so packets of this type are plotted

on a flat ICMP plane under the InetVis cube. TCP and UDP packets are plotted within

the 3D cube environment. The location of a plotted point in the cube depends on three

variables. The x-axis of the cube is mapped to the IP range of the home network (i.e.,

the destination IP address of the captured packet). The z-axis of the cube is used to

map the source IP address of each packet. The y-axis maps the destination port range of

the packets captured; provided they are of the type UDP or TCP. InetVis colours points

according to the destination port of a packet. A useful feature is that points can be

coloured based on other dimensions, such as packet size, source port numbers or protocol

type [22]. The size of each plotted point can be changed based on the visualisation needs.

This allows for efficient visualisation of large and small sets of network traffic data.

Features

Perhaps the most useful feature of InetVis is the ability to visualise capture files at flexible

playback rates [22]. This enables users to navigate through a capture stream in an efficient

manner, allowing them to skip periods of non-interest as well as playback an important

time slice at sufficiently slow speeds. InetVis allows replay rates to range between 0.001

times (one millisecond per second) adn 86400 times (one day per second) normal speed

[22].

The concept of a variable time window is also included and its usage is first seen in

VisFlow-Connect [25]. The concept of a time window allows an event to exist for a spec-

ified length of time after it has occurred. This is a very important feature for a tool like

InetVis as scans take place over varying time periods. Some scans progress over the course

of a month, whilst others may execute in a matter of seconds. Due to this flexibility, a

time window is considered a valuable component. The OpenGL cube which is generated

by InetVis would be fairly useless if there were no way to navigate the 3D environment.

Following in the line of the Space Shield visualisation [10], InetVis adopts a simple 3D
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navigation implementation which allows the user to navigate the 3D environment by using

the mouse to zoom, rotate and move.

The OpenGL component of InetVis also supports both orthographic and perspective pro-

jection modes. Perspective viewing allows for a sense of depth and a more realistic feel to

the cube. The orthographic projection mode allows for a more accurate and meaningful

geometric representation. This means that any line going in the same direction in a given

dimension will be parallel to its counterpart. This view is more appropriate for making

assumptions based on the visual representation of the traffic.

Apart from the actual 3D navigation and time window components, support for Berkley

Packet Filter (BPF) expressions is also included. These BPF expressions allow filtering

of the captured packets which decongests the amount of data displayed simultaneously.

This is useful for when monitoring of a specific host is required. Reference axes are in-

cluded as optional displays which are designed to assist the user in dividing the cube into

subsections. These options, along with all other mentioned features are available through

the control panel and plotter settings windows of the InetVis tool.

Performance Scalability

As shown above in Figure 2.3, a test involving all the traffic captured on a class C network

telescope over August 2005 (some 857085 packets) was used to show that InetVis can

display large data sets correctly. Tests detailed in [21] reveal at maximum replay speed

(86400 times), an approximate 30000 packets were displayed each second [22]. This was

achieved on a machine with just 1 GB of RAM and a single core 3.0GHz Pentium IV

processor. According to van Riel [22], a framerate of 25 frames per second was achieved

until approximately 450000 events had been plotted. InetVis could not maintain the

86400x speedup after this much data was being displayed [22].

2.5 Chapter Summary

The central concept surrounding the necessity of visualisation tools has been defined and

it is evident that the trends followed by network growth and malicious activity are push-

ing for the implementation of innovative visualisation tools. InetVis has been discussed

and it becomes evident, through analysis of the performance of InetVis in lieu of large
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dataset representation, that various enhancements need to be implemented to optimise

the underlying visualisation tool.



Chapter 3

Design Considerations

This chapter serves to identify general design considerations that must be explored before

the re-implmentation of InetVis can ensue. These design considerations are relevant to the

overall structure and environment of the resulting implementation. Technological abilities

are discussed, and the chosen architecture is then outlined.

3.1 Hardware Advancements

The InetVis tool has proven to be successful in providing a means to solve the problem

of malicious activity identification. The performance issues plaguing the implementation

are merely the result of technological advances, thus the underlying concept portrayed

in InetVis suffers no loss in its usefulness. In fact, the technological advancement, which

is the reason behind the performance issues faced by InetVis, presents the opportunity

to solve the underlying problems. Processor technologies offer a high degree of support

for multithreaded applications which can be used to optimise data processing of large

datasets. A substantial increase in memory capacity offers faster storage and manipula-

tion of these large datasets. By combining the available memory capacity and processing

power with optimized techniques tailored for large dataset manipulation, the performance

barriers evident in InetVis can be overcome.

The other issue surrounding the InetVis implementation is the lack of efficient desk-

top space usage. Larger datasets will need to occupy a larger screen space. The size of

monitors available today differ significantly from what was on offer five years ago. By

23
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extending the InetVis tool to include fullscreen support, very large datasets can be repre-

sented visually without the issue of data overlap (When the scale required for visulisation

exceeds the number of pixels available).

3.2 Development Environment

As a further extension to the InetVis tool, flexibility, in terms of future extension imple-

mentation, will be a key focus area in the new design. The InetVis tool overcomes many

of the problems faced in the process of identifying malicious network activity but it lacks

in certain areas. The problem is that the InetVis implementation is not easily extendible

due to its underlying architecture. To offer the flexibility of modularized development, as

well as trivial integration of enhancements without a tradeoff in performance, the .NET

framework was chosen for its re-implementation.

While cross platform development is not natively supported by the .NET framework,

the flexibility offered is far better than can be achieved in C++. Development of applica-

tions is rapid and graphical interfaces are easily implemented. This will aid in the future

integration of enhancements to the re-implementation.

In response to the necessity of an enhanced design of the graphical user interface (GUI),

C# offers a flexible and rapid approach to GUI construction, as well as a rich collection

of professional GUI controls. In contrast to C++, the .NET framework offers substantial

support and a large collection of custom libraries, enforcing the rapid development ap-

proach.

Furthermore, the rendering component used for the visualisation is implemented in XNA,

a natively supported 3-D engine for .NET. A wrapper class allowing openGL develop-

ment in .NET was also considered, however it lacked the full functionality required for an

exact re-implementation. The XNA game development library was used instead and its

integration with the system was easily achieved.
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3.3 Underlying System Model

To successfully offer the flexibility to allow future integration, the underlying model of

InetVis required revision. Firstly, the InetVis application comprises two general compo-

nents. Input is gathered from a capture device and an output visualisation is generated

using this data. By separating these two components, a more distinct process is formu-

lated. Input is handled by one component and output is handled by another. Due to the

resulting independence of the components in terms of processing separation, the model

can be extended further to include a network component following the client server model

approach.

This model is favored for a number of reasons in the context of dotNetVis. The main

advantage of adopting such a model is that the processing requirements and memory man-

agement of a complex system can be distributed amongst the independent hosts making

use of that system. In the case of InetVis, data flow is relatively straight forward in terms

of dissection. Data are read in from a capture file or from the local host. The data are

then processed and filtered based on intrinsic network parameters. Following the process-

ing, the relevant data are then sent to a rendering module and an output visualisation

is generated. Through the identifiable modularization of the data flow from source to

sink modules, it is evident that the application can be broken into two independent data

processing components. By isolating these two components, namely data aggregation

and data visualisation, on two separate machines linked by a valid Ethernet connection,

more processing power can be provided and more efficient processing techniques can be

implemented to allow for a more flexible system.

3.3.1 Structure

The capturing of network traffic is handled by a third party application that utilizes a

darknet1. The server component of dotNetVis is used only to process network traffic,

extracted either from the capture file provided by the third party application such as

tcpdump [4] or wireshark [6], or captured from a live traffic stream on the local host,

provided by the local network adapter. The server component will evaluate each network

1A darknet is equivalent to a network telescope. See the section ’Network Telescopes’ in Chapter 2
for a definition
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Figure 3.1: Representation of the client server model within the dotNetVis system

packet it receives and for each IP packet identified, it will transmit the pertinent data

required to plot the packet, to the client application.

Communication between client and server applications is handled by the dotNetVis Pro-

tocol (dVP), a standard specifically engineered to handle requests and responses between

dotNetVis client and server instances provided that there is a standard Ethernet link

between the two components.

The dVP API is then used by the requesting2 client instance to gather the server-processed

data. These data are then stored in an ordered collection based on the original IP packet’s

time stamp. A manager object is used to move subsets of the stored data from the client’s

dVP receiver library to the rendering component, as requested by the client application’s

user. The rendering component will then use the subset of data it receives to generate a

2A client component must request streaming of data from the server by specifying the data source
(capture file or live monitoring). The server thus operates on client demand rather than on supply from
a capture device. This gives control to the user of the client instance
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scatter plot visualisation to display the network packets belonging to that subset.

3.3.2 Implications

The client server model approach will allow for easy future implementations (in terms of

integration) of either the dotNetVis client or the dotNetVis server component. Due to

the server component being a stand alone application, any server implementation which

makes use of the dotNetVis Protocol (dVP) library’s functionality will be able to com-

municate with the server instance through the use of the available dVP methods. Full

details regarding the library are given, and the dVP methods are detailed, in a later

section of this paper. The dVP library allows for effortless integration and modularized

development of future client and server applications, thus allowing flexibility to create

specialized server applications which can independently handle data collection; as well as

specialized client rendering applications which can, independent of the server application,

run on any platform or technology which supports the dVP library. This flexibility on

both sides allows the dotNetVis tool to be tailored to application-specific needs.

3.4 Chapter Summary

The client server model has been identified as a highly adaptive approach to modular-

ization of the dotNetVis system. By implementing this model, performance benefits are

increased beyond the potential of parallelism techniques. With the structure defined, the

next few chapters will discuss development of the separate components in detail.



Chapter 4

Server Application Development

The dotNetVis server has been implemented as a console application using Microsoft’s

C# development language. Due to the simplicity of the server application in terms of user

input, a graphical user interface would be superfluous in terms of necessity and hardware

utilization. The only input required at the initialization stage of the server application is

textual. This input defines the operation of the server and it should be provided by the

user at one of two stages.

The user can specify the input settings via command-line parameters when starting the

server application from a command-line shell. The command line entry will take the form

’dVServer x’ where ’x’ can be one or more of the parameters outlined below.

• Server port

The port on which the server will broadcast data and accept client connections

can be set using ’-p portNumber’, where ’portNumber’ represents the number of

the port on which the user requires broadcasting to take place. A value outside of

the allowed port range, or a port that is already in use, will not be accepted and the

server will indicate to the user that a different port number needs to be specified.

If a port is not manually set by the user, the default port value1 will be used.

1The default port value is defined in the server source code and is set to port 31337. The default value
cannot be altered in the current version of dotNetVis

28
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• Server Address

This value is used to specify the IP Address that will be used by clients to connect

to the host machine on which the server application is executing. The argument

used to specify a server address is of the form ’-a ipNum’ where ’ipNum’ is used to

specify an IPv4-standard IP Address in dot-decimal notation2.

The server will parse the specified address and it will attempt to match the ad-

dress to an available networking interface on the local host machine. If there are

no matches for the specified IP Address, the user will be prompted to specify a

different IP Address. If the address is not specified manually, the server will use

a simple domain name resolution service to list the IP Addresses of all the valid

network interfaces available on the local host. The user must then select an address

to use for client-server communication from the list provided.

• Default capture file

The dotNetVis server makes use of a default capture file directory to keep track

of, and retrieve capture files. The server also maintains a default capture file name

which is used when a dotNetVis client makes a request for a capture file. This

removes the necessity of specifying which capture file to process with every capture

file request.

To change the default capture file directory, the argument ’-cd directory’ can be

used. The ’directory’ parameter must represent the location (relative or absolute)

of the newly selected default directory in which capture files will be located. If the

directory does not exist, the server will request that the user specify a valid direc-

tory. If no directory is specified, the default location3 will be used. It is important

to note that once the dotNetVis server is running, the default directory for capture

files cannot be changed.

The name of the default capture file is used when a capture file request is received.

The server will always process the capture file specified by the default name. To

2An IPv6 IP Address cannot be specified using command-line parameters in the current version of
dotNetVis. The alternative method to select a network adapter must be used in the case where an IPv6
address is required

3The default directory (relative address) is ’.
cap files
’
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change the default name on startup, the argument ’-cf capFile’ can be used. The

parameter ’capFile’ specifies the name of the default capture file to be used. If the

file does not exist in the default directory, the server will prompt the user to enter

a valid capture file name.

The dotNetVis client application has primary control over the default capture file

value. A client application can request a listing of capture files available in the

server’s default capture file directory. A user on the client side can then select a

capture file for visualisation from the list of available capture files. The client will

send a request to the server which will change the default capture file to the one

chosen by the client application’s user. When a capture file request is received from

the client application, the newly specified default capture file will be processed.

The alternative method available for configuring the server is on server request. Once

started, the server will begin initialization and it will use default values for all the options

outlined above, except for the server address. The user will have to select an IP Address

from the list of addresses displayed. Once specified, the server will be ready to accept

clients on its default port.

The first method of input offers two advantages to the user. Firstly, startup and initial-

ization of the server application can be automated using a script or batch file. Secondly,

the server can be fine-tuned to meet the requirements of the user.

4.1 Application Flow

When the application is started, a console window will appear and the server will enter a

waiting state, where it will listen on the specified port for a client connection request.

When a client connects, the server will listen for client requests. Requests that alter

server settings will be processed and a response stating the success of the alteration will

be sent to the client. When a request to process a capture file is received, the server
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will determine the network source that the client has chosen and it will initialize the cap-

ture device accordingly. The request will trigger the creation of a new packet-processing

thread which will handle the processing of network traffic on the specified capture device.

Once the capture is completed, the packet-processing thread will terminate. The server

will indicate to the client that processing is complete and the client will disconnect. The

server will revert to its waiting state until a client connection request is received. This

flow is shown in Figure 4.1.

Figure 4.1: Anomalous diagonals

4.2 Capturing Packets

The implementation of the network monitoring and packet capturing component of the

dotNetVis server follows the same structure as that of the WinPcap/libpcap component

used in the InetVis application. The WinPcap library is a port of the libpcap library,

which was developed for the purpose of low-level packet capture, capture file reading and

capture file writing.

Tamir Gal developed a packet capture framework for the .NET environment called Sharp-

Pcap. The SharpPcap library is an adaptation of the WinPcap library and its sole pur-

pose is to provide an API for capturing, injecting, analyzing and building network packets

within the .NET framework.

The dotNetVis server makes use of the SharpPcap library [12] to inject processed network

traffic into the visualisation component of the dotNetVis client. There are two ways in

which the SharpPcap library can provide this functionality. The library can either be used

to monitor live network traffic on a local network adapter, or it can be used to examine

and interpret the contents of a capture file, the contents of which represents a collection

of past network traffic in the form of packet events.
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The first step in the process of capturing network traffic, regardless of the source, is

to select an appropriate packet capture device. The device will either represent a physical

network adapter or it will take the form of an off-line packet capture device, in which case

it would represent a capture file located on the system’s hard disk.

4.2.1 Monitoring traffic on a chosen device

Once a device has been specified, the SharpPcap library can then open the device and

begin the capture process. The flexibility of the library provides two functions that can

be used to start capturing packets on the device. The first variant will create a separate

thread which will continue capturing packets on the device until it is explicitly stopped

by the parent thread. The other variant requires an integer parameter to be specified,

which indicates the number of packets that the device should process before it terminates

the capture process. Capturing packets on a separate thread will allow the parent thread

to continue execution. The latter variant will block execution of the main thread until

the specified number of packets is processed.

An implementation of either of the methods to capture packets will allow two options

for reading in individual packets. The first option is to register an event handler on the

capture device. The ’PcapOnPacketArrival’ event will trigger on every packet that is

captured by the device. This event-driven approach will give control over the processing

of packets to the capture device since packets are processed on supply.

The alternative method, namely ’PcapGetNextPacket’, will return the next available

packet in the capture device’s data stream. By implementing this approach, direct con-

trol over the processing of packets is maintained in the user application. The drawback

however is that an explicit call to receive a packet is required, thus introducing the issue

of buffer overflow in the device’s capture buffer. For example, if the device is monitoring

live traffic (let’s say on average it receives 10 packets per second) and the call to retrieve

a packet from the device for processing occurs once every second (due to complex packet

processing), then the device’s buffer will increase by 9 packets every second, inevitably

resulting in buffer overflow. In this scenario, the explicit retrieval of packets is not a viable

solution. Of course, the complex packet processing in this scenario is the bottleneck and
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it would make sense to use a multi-threaded approach to solve the issue, but the scenario

demonstrates the issue with the explicit retrieval of packets. The dotNetVis server ap-

plication uses the explicit function call variant to parse capture files as the packets don’t

require real time processing.

Another useful feature that dotNetVis takes advantage of is the packet filter that can

be applied to a capture device. Since the dotNetVis client application is designed to ren-

der only IP traffic, efficiency can be extended at the server level by applying an IP filter

to the capture device. The following code listing shows how the dotNetVis server filters

traffic and only captures packets that conform to the IPv4 standard:

Listing 4.1: Filtering packets for IPv4

string f i l t e r = ” ip ” ;

//Assoc ia te the f i l t e r with t h i s capture

dev i ce . PcapSetF i l t e r ( f i l t e r ) ;

By applying such a filter, packets that are not relevant to the visualisation component

can be ignored and processing of these packets can be skipped. All packets that are

successfully retrieved on the capture device will undergo processing once they have been

cast as SharpPcap-defined Packet objects.

4.2.2 The Packet Processing Process

At this point in the dotNetVis server’s execution, IPv4 packets are being received piece-

meal by the capture device. The packet object then undergoes processing so that the

pertinent information required to represent the packet on the client side can be extracted.

The most important value contained within the packet is the packet’s identifier. This

value is merely the index of the captured packet, obtained from a counter that increments

with each processed packet4. The rest of the information is extrapolated from the packet

object. The arrival time of the packet is represented by the .NET System.DateTime ob-

ject. The source and destination addresses as well as the destination port of every packet

4The captured packets are a subset of the capture file due to the filtering that occurs once the device
has been opened. To clarify, if a packets identifier value is 68, then that packet is the 68th packet in the
subset of packets that meet the criteria of the applied packet filter (e.g., in the subset of IPv4 packets).
The identifier does not represent the packets index in the capture file
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are also extracted. This 5-tuple packet representation is then transmitted over the net-

work via the dVP transmitter library.

This process is repeated for each packet that is captured by the capture device until

all packets have been processed, or until the device terminates capture. Differentiation

between packet types and the extraction of pertinent data is illustrated in the following

code listing. The last line of code shows the usage of the dVP API to transmit the 5-tuple:

Listing 4.2: Packet processor: identifying and transmitting packets

IpPacket ipPacket = ( IpPacket . GetEncapsulated ( Packet . ParsePacket ( packet ) ) ) ;

i f ( ipPacket != null )

{
switch ( ipPacket . Protoco l )

{
case IPProtocolType .TCP:

{
TcpPacket tcpPacket = (TcpPacket ) ipPacket . PayloadPacket ;

//∗∗∗ 5− t u p l e q u a l i f i c a t i o n : ∗∗∗
long id = ++count ;

DateTime time = ipPacket . Timeval . Date ;

IPAddress srcAddress = ipPacket . SourceAddress ;

IPAddress dstAddress = ipPacket . Dest inat ionAddress ;

ushort dstPort = tcpPacket . Dest inat ionPort ;

//use dVP l i b r a r y to send the t up l e

Transmitter . Transmit (0 , // standard t up l e t ransmiss ion

Transmitter . ver s ion ,

id ,

s rcAddress . ToString ( ) ,

dstAddress . ToString ( ) ,

dstPort ,

time ) ;

break ;

}

4.3 Chapter Summary

Having completed this chapter, the process of input capture and transmission to the client

should be well defined. With complete understanding of the server component, the next

component can now be investigated.



Chapter 5

Client Server Communication

The client server model that the dotNetVis system has adopted, primarily offers flexibil-

ity in terms of independent client and server implementation. As mentioned previously,

this allows for the development of flexible, platform independent variations on both the

server and client components, allowing for customization of the tool without requiring a

complete re-implementation of the system.

Despite the modularization and the independence of the components, both client and

server applications, regardless of the underlying platform, design and hardware, must

make use of one very important component: the dotNetVis protocol API. The necessity

of this interface was realized when a flexible standard of communication could not be

identified for the purpose of dotNetVis client-server interaction. As a result, the dVP

library was designed and an API that encapsulates the library was built.

5.1 The dotNetVis Protocol

The dVP is an application layer protocol ([14]) which uses TCP as its underlying trans-

port layer protocol to ensure guaranteed dVP packet delivery. The dVP is designed to be

independent of the transport layer protocol and can be extended with additional capabil-

ities. Implementation of the dVP is still in its infancy and thus the benefits it currently

offers to the dotNetVis system are primitive in contrast to its future potential.

35
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Figure 5.1: dVP Packet Structure

Figure TODO shows the basic structure of a dVP packet. The size of a dVP packet

header is 64 bits in total. The two message types used by the dVP are request messages

and response messages. The payload size varies according to the message type being used.

The header fields for all dVP packets are outlined below:

• Marker

The marker field is a single byte which is used as a flag to indicate the arrival

of a valid dotNetVis packet at the receiver. The same marker must appear at the

end of all dotNetVis packets to validate their authenticity. If a packet does not

satisfy both conditions, it will be discarded. This will prevent the receiver from

attempting to process invalid packets, to a certain extent, the exception being when

an invalid packet happens to start with an identical byte. The default marker value

is 0xFF and it is defined in the dVP library.

• Version
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The first two bytes of the version field indicate the dVP’s major version number

and the second two bytes indicate the dVP’s minor version number. This is to en-

sure compatibility between client and server dVP libraries in the case of a version

change.

• Method

There are a number of methods available for use by both client and server ap-

plications. The following table summarizes the different method types:

0x00 Indicates that the payload represents a processed IP packet which

must be added to the client application’s list of scatter plot points.

0x01 Indicates that the message is a request for the server application to

begin processing the default capture file. The payload is empty.

0x02 Indicates that the server application has completed processing pack-

ets from the specified capture device. The payload is empty.

• Payload Size This token indicates the size of the payload data in bytes, represented

as an integer value. It is used to indicate how many bytes should be read by the

receiver before the marker byte is checked.

All dVP packets are crafted and managed within the dVP library. The dVP API defines a

multitude of methods that can be used to provide a communications infrastructure within

the dotNetVis system. Full library code is provided in Appendix A. The library offers

reliable connection management between client and server applications through the use of

buffered data streams, single sockets1, and TCP listener objects, all of which are defined

in the standard Windows System library.

The dVP library is packaged as a dynamic link library (.dll) file which is theoretically

supported across multiple platforms2. By encapsulating the library in an assembly, the

difficulty when integrating dVP functionality into a client or server re-implementation is

kept to a minimum. This approach further enforces the independence of the client and

1Single socket implies that the utilisation of sockets on any dotNetVis application instance, be it server
or client, will be limited to a single socket object at any given time. Concurrent socket objects are not
allowed

2For Linux use: ensure that the dVP.dll as well as the windows System.dll libraries are registered in
the Global Assembly Cache (GAC). Compile the dotNetVis source files, ensuring reference to the libraries
is specified, by using the mono compiler
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server applications.

5.2 dVP API Usage

While many functions are defined in the dVP library, the external use of these functions

is limited through an abstraction of the dVP’s full functionality. The interaction between

the server and client components of the dotNetVis system and the dVP API requires

careful explanation to ensure that the procedure of communication is well defined.

5.2.1 Server Communication

The server component of dotNetVis will have the ability to collect data in some speci-

fied way that is completely up to the developer of the server component. It is then the

job of the dVP to provide a means of transport to deliver the data to the client application.

The functionality exploited by the server application is merely to receive client connections

and requests, stream input data, and send status responses.

Client Connections

The server will enter a waiting state at various points in its life cycle. Client instances

establish non-persistent connections based on distinct requests. Once the server has been

configured, it will create a dVP.Transmitter object which requires the server address and

port number on which transmission will take place as initialization parameters. During

initialization, the transmitter object will initialize a new TCP listener object for TCP

communication.

The server will enter its waiting state by calling the dVP API’s static ’wait()’ method.

The transmitter will listen on the port until a valid TCP connection request is received.

A network stream will be created and the server will wait for requests from the connected

client by listening for valid dVP packets on the designated socket.
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Data Request

When a request for data streaming is received, the transmitter will shift the server into

a processing state. The data request will be used to identify the requested input source,

either a capture file or a live network interface, and the server will initiate the packet

processing thread accordingly.

Data Transmission

During the packet processing process, packets will need to be transmitted to the client

application. The dVP API defines various ’transmit()’ methods that can be used for

this purpose. The packet processor extracts 5-tuple collections from each packet requir-

ing transmission. This tuple is passed to the transmitter via the appropriate tranmit()

method.

The transmitter will construct a dVP packet with the packet body containing the data it

has been asked to transmit. The dVP packet headers are set and the socket previously

created is used to transmit the complete dVP packet. The dVP packet creation and

transmission process is shown in the code listing below:

Listing 5.1: Transmission of a captured packet within the dotNetVis Protocol Library

public stat ic void Transmit ( int dataType , string vers ion , long id ,

string src , string dest , ushort port , DateTime date )

{
St r ing pkt = ( dataType +

” ; ” +

ve r s i on +

” ; ” +

id . ToString ( ) +

” ; ” +

s r c +

” ; ” +

dest +

” ; ” +

port . ToString ( ) +

” ; ” +

date . ToString ( ) ) ;
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pktS i ze = asen . GetByteCount ( pkt ) ;

s . Send ( pktMarker ) ; // ind i c a t e v a l i d dVP packet s t a r t

byte [ ] meth = { (byte )Method Types .SEND PACKET } ;
s . Send (meth ) ;

s . Send ( BitConverter . GetBytes ( pktS i ze ) ) ; //num of by t e s used fo r pkt body

s . Send ( asen . GetBytes ( pkt ) ) ; // send pkt

s . Send ( pktMarker ) ; // inda i ca t e end o f pk t

Console . WriteLine ( ”Number o f packets sent : ” + counter ) ;

counter++;

}

Once the packet processing thread has finished processiong packets from the capture

source, the server uses the transmitter to send a notification to the client instructing the

client to disconnect from the server. The server shifts into waiting state until another

client connection is requested or the server is stopped.

5.2.2 Client Communication

The mainstream data input source available to the client application is through use of the

dVP API. This is because the client application’s only purpose is to render a visualisation

based on data which is processed at the server. The dVP API defines a receiver class

which offers the functionality required by a dotNetVis client application.

The receiver component is responsible for capturing and analyzing dVP packets. The

receiver provides storage for packet data as well as a variety of retrieval methods. The

client application also makes use of the dVP library’s Transmitter class to send requests

to the server.

Receiving a data stream

When the client application requires data for a visualisation, a connection to the server is

attempted. Once a connection is established, the client will request that the server begins

a data capture stream based on the specified configuration. This is done by sending a

dVP packet with the method header field containing a value of 0x01. Once identified, the

server will broadcast on the specified port and the client’s dVP receiver will be used to

capture all broadcast dVP packets.
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The receiver will then store each packet in a list of custom receiver objects. (Due to list

capacity limitations, the maximum number of packets the list can contain is 8,388,6073).

These packet representations are instances of the dVP library’s receiver-defined structure

named ’Point3D’. This structure is responsible for representing the 5-tuple contained in

the body of a dVP packet. The Point3D structure is shown below:

Listing 5.2: The Point3D struct

public struct Point3D : IComparable<Point3D>

{
public long ID ;

public f loat x ;

public f loat y ;

public f loat z ;

public long time ;

public Point3D ( int ID , f loat x , f loat y , f loat z , long t ime )

{
ID = ID ;

x = x ;

y = y ;

z = z ;

time = time ;

}
///@override : s e t t i n g comparison o f time va lue s

public int CompareTo( Point3D other )

{
return this . time . CompareTo( other . time ) ;

}
}

A Point3D item represents a packet in the simplest form possible for rendering purposes.

It also overrides the CompareTo() method so that objects of this type can be compared

by their time values. The ID field is most important as it can be used to refer to the

original packet that was captured by the server component.

3Based on the type of values the list maintains, as well as the size of each object in the list. A test
was constructed to determine this size limit
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dVP Packet Processing

The process of populating the receivers with Point3D objects is handled by a packet

worker class which is defined in the dVP library. For every dVP packet containing visu-

alisation data received by the client’s receiver, a packet worker thread is spawned. This

worker thread is given the 5-tuple dVP packet body and it creates a Point3D object using

the parameters received.

Each Point3D item created needs to be added to the receiver’s list of points. With mul-

tiple packet worker threads executing concurrently, access control is required to manage

updating of the shared receiver resource (the list of Point3D objects). A simple locking

mechanism was implemented to control the update procedure. A snippet demonstrating

the use of the lock construct is shown:

Listing 5.3: Thread locking mechanism for access to shared resource

class PacketWorker

{
stat ic readonly object l o c k e r = new object ( ) ;

public void ProcessPacket ( object paramaters )

{
St r ing [ ] p = ( St r ing [ ] ) paramaters ;

Transmitter . Point3D point = new Transmitter . Point3D ( ) ;

lock ( l o c k e r )

{
Transmitter . r e c e i v edPo in t s .Add( po int ) ;

}
}

}

The packet worker class defines a static read-only object which can be locked using the

keyword ’lock’ in C#. This locks the static object across all thread instances of the class.

The thread which locked the static object will unlock it when it has completed the block

of code inside the scope of the lock.

The worker threads are used so that the process of receiving packets does not suffer

from the additional processing time taken to retrieve and store packet data. The network

communication process is also kept separate from the analyzing and storage process.
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Once the server has sent all the data it has been requested to process, a ’processing

complete’ status message will be sent by the server. The receiver will disconnect from the

server when it receives this message. It will then initialize the indexing process on the

collected data.

Data Indexing

The list of packets is sorted (based on the pre-defined comparison method specified in the

Point3D struct) and the minimum and maximum packet arrival times are attained. These

are used, along with the minimum replay rate allowed, to set up a list of indices that are

used to retrieve subsets of the data based on minimum replay rate time groupings4. Due

to the volume of data, it is unfeasible to perform time comparisons during visualisation

replay.

The methods ’getPoint3DRangeFromNavigationIndex()’ and ’getVectorRangeFromNav-

igationIndex()’ are used by the dVManager to retrieve the data subsets for rendering.

The vector range method is preferred as it provides the simplest data type possible to

represent each point in the 3-Dimensional plane.

5.3 Chapter Summary

The implementation of the dVP library offers a dotNetVis specific framework for commu-

nication of data between teh client and server applications.

4Minimum replay rate is 1 millisecond per second, so indeces are created based on this necessity. A
higher replay rate will combine indeces to allow retrieval based on larger groupings



Chapter 6

Client Application Development

The client application is the focus point of the dotNetVis system. Any meaning that

can be inferred from the abstract data processed at the server, will be dependant on

the output visualisation at the client. To handle the various complexities, in terms of

expected functionality, the client application is divided into four main components. The

rendering component and the dVP API are used to receive and visualise data from the

server. The settings window provides a simple interface which allows the user to configure

the client application and interact with the server component. The fourth component,

providing a means of integration, is the dotNetVis manager which enables cross thread

communication and overall management of the client application.

6.1 Client Component Manager

The manager class controls all processing on the client side. It is responsible for instan-

tiating and maintaining objects as well as for invoking static behavior across all the sub

components of the client application.

On startup, the settings control and the rendering component are intitialised in sepa-

rate threads due to limitations detailed in Section 6.2. The manager object will use

the threads to provide an internal communications infrastructure, allowing data to pass

between threads.

44
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6.1.1 Object Communication

As requests are processed, cross thread communication must occur. The manager class

passes objects by reference1 to the threads it owns, thus allowing for simple communica-

tion between objects. Static variables are used as flags to communicate object status and

to update object configurations.

When a thread needs to interact with a user interface (UI) control belonging to another

thread, a less trivial approach is required. Marshalling must be implemented to allow the

calling thread’s code to execute on the UI thread in the Window’s Forms environment.

There are two main alternatives for marshalling thread execution; namely synchronous

and asynchronous approaches. The only advantage offered by asynchronous marshalling

techniques is to prevent a blocking state in which the calling thread waits for the UI

thread to complete execution. The level of control over the dotNetVis system at all times

during execution removes the opportunity for a blocking state to occur, thereby negating

the necessity of asynchronous methods.

The synchronous marshalling is implemented using a delegate method which handles

the passing of parameters via an object array. A check is done to determine if the control

must be invoked and, once invoked, processing will continue as normal. The listing below

demonstrates this procedure:

Listing 6.1: Marshalling to allow cross thread communication

public void SetNavigat ion (bool b , int range )

{
i f ( this . t rackNav igat ion . InvokeRequired )

{
//Make use o f a d e l e g a t e method to invoke e x p l i c i t l y

SetNavigat ionCal lback d = new SetNavigat ionCal lback ( SetNavigat ion ) ;

this . Invoke (d , new object [ ] { b , range }) ;
}
else

{
this . t rackNav igat ion . Enabled = b ;

this . t rackNav igat ion .Maximum = range − 1 ;

this . t rackNav igat ion .Minimum = 0 ;

}
}

1Using C#’s ’ref’ keyword
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Apart from internal communication, it is also the responsibility of the manager class to

move subsets of data from the dVP receiver onto the graphics device for rendering. The

subset ranges are calculated from the replay position specified on the settings component’s

replay navigation control. This value is changed by the user of the system and on every

change, the manager’s packet updater thread will execute.

6.1.2 Packet Updater

The packet updater class is the most important component of the client application as it

forms the link through which data visualisation can occur. The bottleneck of the entire

system exists at this very point since large subsets of data need to be moved at high

speeds onto a single graphics device. To alleviate the congestion, a substantial amount of

pre-processing is done before the user can start a visualisation replay.

Due to the cycle speed of the rendering component, access to the list of points on the

graphics device is kept to a minimum. The updater thread will acquire a subset of data

using the specified navigation value. It will convert the full subset of data into the re-

quired format before allocating the list to the referenced device’s shared resource.

The subset of data acquired will be represented as a list of points, each having asso-

ciated X, Y and Z values. These values are used to construct a new subset of points in

the format required by the rendering component. In the case of the XNA implementation

in dotNetVis, a colour is assigned to each point based on a specified axis (the destination

port is the default choice). This colour is used to add an extra dimension to the visu-

alisation by offering visual separation in addition to spacial separation offered by the axes.

The following listing shows how data are acquired, formatted, and transferred to the

graphics device for visualisation:

Listing 6.2: Moving packets onto the graphics device

//add packe t s wi th in range to l o c a l l i s t

foreach ( Vector3 v in Transmitter . getVectorRangeFromNavigationIndex ( navValue ) )

{
i f ( v . Z != −1) //UDP or TCP packet

{
vpc = new VertexPos i t i onColor (new Vector3 (v .X, v .Y, v . Z) ,
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xc . getColour ( v .Y) ) ;

pktsLoca l .Add( vpc ) ;

}
else // s p e c i a l case : ICMP p l o t

{
vpc = new VertexPos i t i onColor (new Vector3 (v .X, v .Y, 0) ,

Color . Gray ) ;

pktsLocalICMP .Add( vpc ) ;

}
}
//Move the packe t s onto the dev i ce us ing the re f e renced XNA component , xc :

xc . packetsToDraw = pktsLoca l ;

xc . packetsICMPToDraw = pktsLocalICMP ;

In the case of ICMP traffic, pre-processing of the data will assign a value of -1 as the Z

value of an ICMP packet. In this case, the colour grey is assigned to the point and the

point is added to a list of other ICMP traffic on the rendering component.

6.2 Rendering Component

The InetVis implementation made use of openGL to provide a three dimensional, im-

mersive scatter plot visualisation to display network traffic. XNA is used to provide the

same functionality for the dotNetVis application. While the .NET framework offers native

support for three dimensional rendering in XNA, the integration of an XNA component

within a Windows Forms environment presents a few issues.

XNA is a framework which was designed for game development. Applications designed

in this way follow a specific flow of execution. Once initialized, the application enters

a ’game loop’ in which all transformations and vertex calculations are recalculated and

the resulting output is redrawn. User input for such an application is processed through

polling, where the application will check for input at each iteration of the game loop.

Contrary to this, windows forms applications process input based on event-driven proce-

dures where events are triggered when a predefined action occurs. The XNA component

has been created within the context of a windows forms application on a separate thread.

The client manager handles this initialization as well as communication between windows

forms components and the XNA thread.
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6.2.1 Plotting Scheme

Figure 6.1: dotNetVis plotting scheme

The plotting scheme of dotNetVis is shown in Figure 10. van riel identified this scheme to

be an efficient approach at representing network events, associating danger-inferred red

with Internet addresses and the calmer blue with the internal network.

Points are positioned and rendered within the dotNetVis cube based on three dimen-

sions. These dimensions are represented as axes and are defined as follows:

• Blue x-axis:

Packets are plotted along this range according to their destination IP address. Be-

fore reading an input stream of network traffic, an IP address range representing

the destination subnet must be specified. A ratio is calculated using the packets

position within the range. This ratio is then applied to the length of the axis to find

a relative position.
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• Green y-axis:

Packets that specify a destination port number (TCP and UDP packets) will be

plotted along this range according to that value. Again, the port range must be

specified before data is processed. In the case of ICMP packets that have no as-

sociated port number, the packet will be plotted on the ICMP plane below the

cube.

• Red z-axis:

Packets are plotted along this range according to their source IP address. Typically,

this range represents the full IPv4 Address space, i.e., from 0.0.0.0 to 255.255.255.255,

but the user can specify a subset range for filtered monitoring. Again, a ratio is

calculated and used to position packets along this axis.

In the case of ICMP packets, a two dimensional plane is sufficient for representation of

traffic. To avoid ambiguity within the cube, ICMP traffic is plotted on a separate plane

below the cube. This avoids obfuscation and misinterpretation of traffic arriving on ports

in the 0-100 range (assuming ICMP traffic would be plotted within the cube at a port

value of 0).

With this representation, visual signatures of malicious activity are identifiable. A port

scan, as shown in a figure X (a dummy capture, enhanced using photoshop to distinguish

points), will take the form of a vertical line; a host scan on a specific port will take the

form of a horizontal line spanning the x-axis.

6.2.2 Navigation

Due to the dynamic range and quantity of data that are plotted, a static view of the

cube is not feasible. Instead, visualisation navigation is provided to allow the user to

dynamically explore subsets of the cube during replay of data.

The InetVis application used rendering techniques such as scaling, transformation and

rotation to provide an immersive visualisation. In 3-D programming terms, the world
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Figure 6.2: A generated visualisation showing visual port scan signatures

(the space in which objects, such as the cube, exist) was changed via navigation. When

the user zooms in or out, InetVis will move the cube in the world and subsequently all

plotted points would need to be moved as well. In the case of dotNetVis navigation, a

camera component is used to view the world. This approach is far more efficient since

all navigation is achieved through adjusting the camera object’s view of the world, rather

than adjusting the world itself.

All navigation of the 3-D space is possible through use of the mouse. This eliminates

the need to have visible navigation controls. Boundaries are implemented to limit the

user’s navigation so that the cube will always be visible on the screen.

6.3 Settings Component

The settings component provides an interface through which the user can interact with

and customize the dotNetVis application. The available functionality mimics and extends

that of the InetVis implementation while at the same time offering a much improved de-

sign in terms of screen usage. The drawback of using the original InetVis application

is that the control windows would take up a substantial amount of desktop real estate

(monitor space). To demonstrate, on a monitor with a display resolution of 1280x1024,

the maximum cube resolution, allowing un-obscured access to controls, is 745x669 (See

Figure 6.3). This represents 38% usage of the screen’s resolution. With the dotNetVis
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settings control, the maximum screen usage for representation under the same conditions

(excluding the fullscreen option) is 48%.

Figure 6.3: Comparison of screen utilization

The redesigned control makes use of tab-based navigation to combine the various windows

seen in InetVis, into one simple component. An illustration of each tab’s layout, along

with an explanation of usage and assignment of values is given below:

• Home Tab

Figure 6.4: Home tab layout

The home tab allows the user to configure the server connection settings, to se-

lect the network stream source for visualisation, and also to initiate the client server
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capture process. Once the process has been started, the underlying dVP library will

be used to connect to the server using the specified settings and a capture request

will be issued. When the capture process is started, a progress bar will relay the

state of transmission.

• Replay Visualisation Tab

Figure 6.5: Replay navigation tab layout

Replay of capture data will be controlled from this tab. The user can change the

replay rate, set the time window indicating the range of data to be viewed simulta-

neously, and navigate through network events.

• Axes Settings Tab

Figure 6.6: Axes configuration tab layout

The configuration of axes settings is done through this tab. Set the destination
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range of the home network2 by either manually entering the range or by selecting the

’predict’ button which will attempt to extrapolate the range from the capture file3.

The current implementation has no validity test to ensure that the correct range

has been entered, so care should be taken when manually specifying the range. An

incorrect range will simply yield an incorrect visualisation, either displaying no data

or a subset of the full set. The destination address of a packet that is to be plotted

will determine its position on the X-axis. Set the source internet network range in

the same way as the destination range. This can be used to visualize a subset of the

traffic in a capture file. The default value will monitor the entire address space. The

source address of a packet that is to be plotted will determine its position relative

to the Z-axis. This is used to specify a destination port range for monitoring. The

destination port number of the IP network traffic that falls within the source and

destination network ranges will be plotted on the Y-axis.

• Colour Scheme Tab

Figure 6.7: Colour scheme choice tab layout

2The home network range in this case refers to the address range that was used by the packet capturing
device to monitor and record network traffic. The destination address of every packet within the capture
file will fall within this range. The range is completely independent of the machine on which the dotNetVis
client application is run.

3This is not recommended as the approximated range will nearly always be a subset of the full
destination range. This is due to the upper and lower destination addresses not being the targets of
network traffic, thus not being included in the resulting capture file



6.3. SETTINGS COMPONENT 54

The default scheme is for the colours of plotted points to be chosen based on the

destination port number value of the associated packet. Other options include us-

ing the protocol type, the destination or source address of packets to distinguish

between the points. The background colour of the cube can be selected using the

dropdown box or by selecting a common white or black setting. The visual repre-

sentation can be enhanced by selecting an appropriate background colour based on

the chosen colour settings and cube congestion. Point settings are included in the

design but configuration has not been implemented due to a lack of support in XNA

and time constraints.

• Reference Frame Settings Tab

Figure 6.8: Reference frame configuration tab layout

The six sides of the cube, as well as the ICMP plane have the option of displaying

a transparent grid that can be used to view the cube in segments rather than as a

whole. A drop down checklist is used to toggle these grids. The opacity of the grids

can be set to a value between 0 (being invisible) and 100. Each axis can be assigned

a value which specifies the number of partitions the user wants the grid to be split

into on that axis. This is done using the colour coded sliders. This helps to partition

the cube nicely. The default value is 10 partitions on each axis. Text labels can be

switched on for a more detailed representation. Axis labels show the ranges that

have been selected and they also show the colours that have been assigned to the
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axes. A date and time label shows the current position of playback in the capture

file. The framerate label gives an indication of the performance of the rendering

component.

• Packet Information Tab

Figure 6.9: Packet Information tab layout

This tab is useful as it lists all the packets that are currently on display and that

are in the event buffer. This list is updated on every frame. By scrolling over the

items in the list of current packets, the user will be able to identify the relative

packet in the cube. By selecting a packet in the list, that packet’s information will

be retrieved from the server and will be displayed in a second list. A pause and

play toggle button is also available on this tab to allow for playback and navigation

while concurrently observing the contents of the packet event buffer.

6.4 Chapter Summary

Having described all components, the overall flow of data has been described from input

at the server components through to the output visualisation at the client’s rendering

component.
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Conclusion

7.1 Overview

In conclusion, we have re-implemented a relatively full featured and highly optimised

port of the InetVis tool. The dotNetVis tool leverages the XNA framework for the cube

generation while utilizing the .NET framework’s GUI controls to capture input and dis-

play overhead information on a per packet scale. The processing of packets is handled

completely separately to the dotNetVis server. The dotNetVis protocol allows for unin-

terrupted communication between client and server.

We begin this section with an overview of the current feature set of dotNetVis. Follow-

ing, is a section which outlines future, desirable functionality currently not implemented

within this system, either due to complexity or time constraints. A section mentioning

the performance results of the dotNetVis system, highlighting the improvement on the

InetVis tool, is given and in closing, a summary of this both this document and the suc-

cess of this project is given.

7.2 Current Functionality

The dotNetVis server allows for the processing of IP packets which are captured by a net-

work telescope. The processing that the packets undergo includes filtering and extracting

56
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necessary information that needs to be passed onto the dotNetVis client.

Packet data is sent using the dotNetVis protocol and once received by the client, an

XNA representation of the packets is shown. If the packets are being read from a capture

file, a variable playback rate is used. This can be set in both the client and the server

applications. Playback rates range from 0.001 times (one millisecond per second) to 86400

times (one day per second) just as the InetVis tool allowed.

Navigation of the 3D environment is also enabled through rotation and scale transfor-

mations applied to a camera in the XNA world. This allows users to view the 3D cube

in a 2D perspective. Once the user identifies a packet of interest, they can use the mouse

to select the packet from a list of plotted packets displayed on the settings component.

Once a packet is selected, the packet ID is used to retrieve information on the selected

packet. This information is displayed in the information tab of the custom control.

In the same way that InetVis allows, dotNetVis offers a customizable view of the cube. A

user can set the background colour, the axes colours and text colours to enhance playback.

Reference grids and axes can also be turned on or off. An orthographic or a perspective

camera view can be used to view the cube for different purposes. The user controls the

ranges that the cube draws so if a packet is received from the server that falls out of

range, it is not drawn.

7.3 Future Functionality

• Variable Logarithmic scaling

The current implementation of dotNetVis does not support the logarithmic axes

scaling methods used in InetVis. With a large portion of traffic falling into the port

range of between 0 and 1023, the lower parts of the cube are not easy to read. Using

logarithmic scaling to expand the lower port numbers, the cube can be much more

easily interpreted.

• Web Client
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With the client server approach implemented in dotNetVis, a very useful exten-

sion would be a web based client for the dotNetVis tool. With the advancement

of web development and the continual growth of bandwidth, a web based 3D ren-

dering client is not far off. Working with the dotNetVis protocol, a web client can

easily access the server data and render a cube. Using a XAML browser applica-

tion approach, 3D graphics can be displayed using xml files. By configuring the

dotNetVis server to output xml, this approach can be used to produce a web client

visualisation.

• Cube signature detection and representation

An extension of this magnitude would transform the dotNetVis tool into an In-

trusion detection system (IDS) as the client would then have the ability to identify

malicious activity. As seen in the figure x, malicious signatures are easy to spot with

the human eye. This extension would involve providing an intelligent component

which would monitor the plotted packets and infer malicious signatures from the

data the cube is displaying.

• 3D Navigation

– Section expansion capabilities

Navigation and packet selection is not optimal in the current implementation

of dotNetVis. By allowing a user to expand a portion of the cube, a much

more accurate navigation experience can be seen.

– 3D hardware support

The XNA environment allows for simple integration between the XNA com-

ponent and various hardware devices. With the boom of 3D, new devices are

being released, and there are already a few available, which allow for 3D nav-

igation, such as 3D mouses. By using such a device, navigation could be less

tedious and more natural.

• Updated client side front-end

As was mentioned with the web client extension, building a client application is rela-

tively simple as none of the packet capturing and issuing needs to be re-implemented.

A client can use the dotNetVis protocol to communicate with the server and once it

receives data from the server, it merely has to render the data in some meaningful

manner. This flexibility allows for a multitude of different graphs which can be

tailored for specific needs.
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• Filtering with BPF expressions

InetVis made use of BPF filtering to filter traffic for replay. While dotNetVis has

been implemented inbuilt filtering, there exists no option to apply filtering on the

client side. This could be useful for when a client wishes to view specific traffic

within a replay visualisation.

• Avi support

It would be a useful option to allow a user to record playback of a visualisation.

This will allow later replay of the visualisation without having to invoke the capture

process at the server side again.

7.4 Performance Results

Figure 7.1: 8,200,000 packets displayed
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It is shown in Figure 7.1 that the representation of large datasets is no longer an issue in the

dotNetVis system. The server component captured and transferred 8.2 million packets in

just over 5 minutes from the dump file containing data representing the traffic on Rhodes

University’s class C network telescope over 2009. This large dataset (a magnitude of

10 times the maximum size the InetVis tool could manage) was displayed at a decent 7

frames per second by the client application. The client process consumed 728mb of RAM

to allow for storage of these packets, and CPU usage idled around 60% across all four

cores. The machine on which the client was run has 3.2 GB of effective RAM (due to

the 32bit environment of the operating system) and a 2.66GHz Intel Q9400 quad core

processor.

As was mentioned in Section 2.4.2, the InetVis tool was tested on a machine with 1 GB of

RAM and a 3.0GHz processor and only managed to display some 450,000 packets before

system performance became unstable.

7.5 Summary

While no improvements on the underlying concept were implemented, a host of perfor-

mance enhancements were carried out. Optimization of processor usage, modularization

of the input and output process and improvements on memory usage coupled with in-

creased memory capacity are some of the enhancements that improve on JP van Rieĺs

original 3-D scatter plot visualisation tool - InetVis. This research has proved successful

in optimizing the InetVis system to handle much larger datasets as well as offer a much

more flexible architecture on which future extensions can be built.
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Appendix A

Library Code Listing

Listing A.1: Library definitions

using System ;

using System . Co l l e c t i o n s . Generic ;

using System . Linq ;

using System . Text ;

using System . IO ;

using System . Net ;

using System . Net . Sockets ;

using System . Co l l e c t i o n s ;

using System . Threading ;

using Microso f t .Xna . Framework ;

using System . D iagnos t i c s ;

namespace dVP

{
public class Transmitter

{
private stat ic bool generateRandomPackets = true ;

private bool connected = fa l se ;

private bool shouldStop = fa l se ;

private stat ic bool capFi leRequested = fa l se ;

private bool capF i l eProc e s s i ng = fa l se ;

private St r ing ServerIP = ” 146 . 231 . 123 . 91 ” ;

private int ServerPort = 31337;

TcpClient t cp c l n t ;

Stream stm ;

public stat ic List<Point3D> r e c e i v edPo in t s = new List<Point3D>() ;

public stat ic List<Vector3> vec t o r s = new List<Vector3 >() ;

public stat ic int [ ] i ndece s ;

public stat ic int navigationRange = 0 ;

public St r ing [ ] RECEIVE PACKET FIELDS = { ”Method : ” ,

”Vers ion : ” ,

”Packet ID : ” ,

”X in t : ” ,
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”Y in t : ” ,

”Z i n t : ” ,

”Microseconds : ” } ;
public stat ic f loat xRange = 4294967296.0 f ;

public stat ic f loat yRange = 4294967296.0 f ;

public stat ic f loat zRange = 65536.0 f ; //max i s 65536

public bool isReady = true ; //when true , a batch o f packe t s has e i t h e r been

processed or the packet array i s empty

public stat ic long maxTime = 0L ;

public stat ic long minTime = 0L ;

// pub l i c s t a t i c i n t navigationRange = 1000;

private BufferedStream bstm ;

enum StatusReplys : byte

{
OK = 0x00 , // the s e r v e r s r eque s t i s approved

WAIT = 0x01 // the se rve r must wait f o r i t s d e f a u l t time and t ry again

} ;
private byte [ ] pktMarker = { 0xFF } ;
public enum Method Types : byte

{
SEND PACKET = 0x00 ,

REQUEST DEFAULT CAP FILE = 0x01

} ;
int COUNT = 0 ;

Stopwatch stopWatch = new Stopwatch ( ) ;

public struct Point3D : IComparable<Point3D>

{
public long ID ;

public f loat x ;

public f loat y ;

public f loat z ;

public long time ;

public Point3D ( int ID , f loat x , f loat y , f loat z , long t ime )

{
ID = ID ;

x = x ;

y = y ;

z = z ;

time = time ;

}

public int CompareTo( Point3D other )

{
return this . time . CompareTo( other . time ) ;

}
}

public void ThreadRun ( )

private void waitForCapFileRequest ( )

private void connectToServer ( )

private void s t a r t L i s t e n i n g ( )
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private void r e c e i v e ( )

private void f i n i s hPro c e s s i n gCapF i l e ( )

public stat ic int getNavigationRange ( )

private void disconnectFromServer ( )

private void t ransmit (byte b /∗ r eque s t based on method types enumerator∗/ )

private void t ransmit ( S t r ing s )

public stat ic long ToInt ( string addr )

stat ic string ToAddr( long address )

public stat ic void requestCapFi l e ( )

public bool isPacketArrayReady ( )

public void generateRandoms ( )

public stat ic void c r e a t e Inde c e s ( int range )

public stat ic void c r e a t eVec to rL i s t ( )

public stat ic List<Point3D> getPoint3DRangeFromNavigationIndex ( int i )

public stat ic List<Vector3> getVectorRangeFromNavigationIndex ( int i )

public void RequestStop ( )

}

class PacketWorker

{
stat ic readonly object l o c k e r = new object ( ) ;

public void ProcessPacket ( object paramaters )

{
St r ing [ ] p = ( St r ing [ ] ) paramaters ;

Transmitter . Point3D point = new Transmitter . Point3D ( ) ;

po int . ID = Convert . ToInt64 (p [ 2 ] ) ;

po int . x = Transmitter . ToInt (p [ 3 ] ) / Transmitter . xRange ;

//Console . WriteLine (” time : ” + Convert . ToInt64 (p [ 5 ] ) ) ;

long temp = 0 ;

try

{
temp += (Convert . ToInt64 (p [ 4 ] . Subst r ing (0 , p [ 4 ] . IndexOf ( ’ . ’ ) ) ) ∗ 255 ∗

255 ∗ 255) ;

p [ 4 ] . Remove (0 , p [ 4 ] . IndexOf ( ’ . ’ ) ) ;

temp += (Convert . ToInt64 (p [ 4 ] . Subst r ing (0 , p [ 4 ] . IndexOf ( ’ . ’ ) ) ) ∗ 255 ∗
255) ;

p [ 4 ] . Remove (0 , p [ 4 ] . IndexOf ( ’ . ’ ) ) ;

temp += (Convert . ToInt64 (p [ 4 ] . Subst r ing (0 , p [ 4 ] . IndexOf ( ’ . ’ ) ) ) ∗ 255) ;

p [ 4 ] . Remove (0 , p [ 4 ] . IndexOf ( ’ . ’ ) ) ;
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temp += (Convert . ToInt64 (p [ 4 ] . Subst r ing (0 , p [ 4 ] . IndexOf ( ’ . ’ ) ) ) ) ;

}
catch ( Exception e ) { Console . out . Write ( ”The IPAddress cannot be pasrsed ” ) }
point . z = temp / Transmitter . yRange ;

i f (p [ 0 ] . CompareTo( ”1” ) == 0) //ICMP packet r ece i v ed

point . y = −1;
else point . y = Convert . ToUInt16 (p [ 5 ] ) / Transmitter . zRange ;

po int . time = Convert . ToDateTime ( ( p [ 6 ] ) ) . Ticks ;

po int . x = ( po int . x ∗ 2) − 1 ;

po int . y = ( po int . y ∗ 2) − 1 ;

po int . z = ( po int . z ∗ 2) − 1 ;

lock ( l o c k e r )

{
Transmitter . r e c e i v edPo in t s .Add( po int ) ;

//Console . WriteLine (” Packet l i s t s i z e : ” + Transmitter . packe t s . Count ) ;

}
}

}
}


